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Chapter 1
Competing risks in practice

The concept of competing risks is one where persons in a given state, ’alive’, say, er subject
to a number of different causes of deaths, 'causel’, 'cause2’ etc. Causes of death are
required to be exhaustive and mutually exclusive. In situations where the causes are not
causes of death but other events, it is implicit that we only consider the first occurrence of
an event from the state ’alive’, and ignore what occurs after.

The likelihood for observations from a competing risk scenario is a function of the
cause-specific transition rates, and is product of the likelihoods that would emerge if we
considered each cause the only one. Thus analysis is in principle straight forward; just
estimate a model for each of the cause-specific rates. These will together form a complete
model for the competing risks problem.

If the cause-specific rates are all we want to assess then we will be done.

But most often we would like to have estimates of the cumulative risks, that is the
probability of dying from a specific cause before a given time as function of time. Each of
these are functions of all rates. Specifically, if the cause-specific rates are A.(t), then:

Even if we from the modeling of the As have standard errors of log(\.) the standard errors
of R.s will be analytically intractable from these.

The only viable way to get confidence intervals for the cumulative risks, R., is by
calculation of the rates A(¢) by sampling from the posterior distribution of the parameters
in the models for log(\(s)), and computing the integrals numerically for each simulated
sample.

The simulation approach also allows calculation of confidence intervals for sums of the
cumulative risks, R;(t) + Ry(t), for example, which will be needed if we want to show
stacked cumulative risks.

Finally, it will also allow calculation of standard errors of sojourn times in each of the
states ’alive’ and 'causel’, 'cause2’. While the latter two may not be of direct interest, then
differences between such sojourn times between different groups can be interpreted as
years of life lost to each cause between groups.
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1.1 Example data

As an illustrative data example we use the (fake) diabetes register data; we set up the
Lexis object, cut the follow-up time at dates of OAD, resp Ins:

> library(Epi)
> library(popEpi)
> data(DMlate)
> Ldm <- Lexis(entry = list( per = dodm,
age = dodm-dobth,
tfd = 0 ),
exit = list( per = dox ),
exit.status = factor( !is.na(dodth), labels = c("DM", "Dead") ),
+ data = DMlate )

NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 4 rows with duration of follow up < tol

+ 4+ + +

> summary(Ldm, t = T)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996
Timescales:
per age tfd

nn nn nn

> Mdm <- mcutLexis( Ldm,

+ wh = c('dooad’, 'doins'),
+ new.states = c('0OAD', 'Ins"'),

+ precursor = 'DM',

+ seq.states = FALSE,

+ ties = TRUE )

NOTE: 15 records with tied events times resolved (adding 0.01 random uniform),
so results are only reproducible if the random number seed was set.

> summary( Mdm )

Transitions:
To

From DM Dead OAD 1Ins Ins+0AD Records: Events: Risk time: Persons:
DM 2830 1056 2957 689 0 7532 4702 22920.32 7532
0AD 0 992 3327 0 1005 5324 1997 22965.25 5324
Ins 0 152 0 462 172 786 324 3883.07 786
Ins+0AD 0 299 0 0 878 1177 299 4504.62 1177
Sum 2830 2499 6284 1151 2055 14819 7322 54273.27 9996

We initially split the FU before drug inception in intervals of 1/12 year, creating a Lexis

object for a competing risks situation with three possible event types:

> Sdm <- splitMulti(factorize(subset(Mdm, lex.Cst == "DM")),
+ tfd = seq(0, 20, 1/12))

NOTE: lex.Cst and lex.Xst now have levels:

DM Dead OAD Ins

We can illustrate the follow-up in the full data set and in the restricted
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Figure 1.1: The transitions in the multistate model, where follow-up is extended also after

beginning of first drug exposure. Rates in brackets are per 100 PY. ./crisk-boxes5
> boxes(Mdm, boxpos = list(x = c(15, 50, 15, 85, 85),

+ = c(85, 50, 15, 85, 15)),

+ scale.R = 100,

+ show.BE = TRUE)

> boxes( Relevel(Sdm, c(1, 4, 2, 3)),

+ boxpos = list(x = c(15, 85, 80, 15),

+ y = c(85, 85, 20, 15)),

+ scale.R = 100,

+ show.BE = TRUE )

1.2 Models for rates

Now that we have set up a dataset with three competing events, we can model the
cause-specific rates separately by time from diagnosis as the only underlying time scale.
Note that we only need to specify the to= argument because there is only one possible
from for each to (incidentally the same for all to states, namely DM):

> mD <- gam.Lexis(Sdm, ~ s(tfd, k = 5), to = 'Dead')
mgcv::gam Poisson analysis of Lexis object Sdm with log link:
Rates for the transition: DM->Dead

> m0 <- gam.Lexis(Sdm, ~ s(tfd, k = 5), to = '0OAD' )

mgcv::gam Poisson analysis of Lexis object Sdm with log link:
Rates for the transition: DM->0AD
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Figure 1.2: The transitions in the competing risks model, where follow-up is stopped at drug
exposure. By that token only the DM state has person-years; a characteristic of a competing
risks situation. ./crisk-boxes4

> mI <- gam.Lexis(Sdm, ~ s(tfd, k = 5), to = 'Ins' )

mgcv::gam Poisson analysis of Lexis object Sdm with log link:
Rates for the transition: DM->Ins

With these models fitted we can compute the rates, cumulative rates and the cumulative
risks an sojourn times in states using the usual formulae. First we compute the rates in
intervals of length 1/100 years. Note that these models only have time since diagnosis as
covariates, so they are the counterpart of Nelson-Aalen estimates, albeit in a biologically
more meaningful guise.

The points where we compute the predicted rates are midpoints of intervals of length
1/100 year. These points are unrelated to the follow-up intervals in which we split the
data—they were 1 month intervals, here we use 1/100 year (about 3.7 days):

> int <- 1/100

> nd <- data.frame( tfd = seq(int,10,int)-int/2 ) # not the same as the split,
> # and totally unrelated to it
> rownames (nd) <- nd$tfd

> str(nd)

'data.frame': 1000 obs. of 1 variable:

$ tfd: num 0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 ...

With this we can show the rates as a function of the time since diagnosis:

> matshade (nd$tfd, cbind(ci.pred(mD, nd),
+ ci.pred(mI, nd),
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Figure 1.3: Estimated rates from the DM state, estimates are from gam models fitted to data
split in 1 month intervals (1/12 year, that is). Rates of OAD is in the vicinity of 0.1/year,
and mortality about half of this. Rates of insulin start among persons on no other drug are

beginning high decreasing to about 4 year and then have a peak at 8 years.

./crisk-rates

Note that the graph in figure 1.3 is not normally shown in analyses of competing risks; the

competing cause-s

pecific rates are hardly ever shown. I suspect that this is frequently

because they are often modeled by a Cox model and so are buried in the model.
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1.3 Cumulative rates and risks

For the calculation of the cumulative rates and state probabilities, we need just the rates
without Cls:

LD <-
LI <-
LO <-
Sv <-
# but

rD <-
rI <-
r0 <-

VVVVVVVVVVVVVVYV

Now we

# rates at midpoints

1D <- ci.pred( mD, nd )[,1]

11 <- ci.pred( mI, nd )[,1]

10 <- ci.pred( m0, nd )[,1]

# cumulative rates and survival fuction at right border of the intervals

cumsum(1D) * int

cumsum(1I) * int

cumsum (10) * int

exp( -LD - LI - LO )

when integrating to get the cumulative risks we use the average

# of the survival function at the two endpoints (adding 1 as the first)
mp <- function(x) x - diff(c(1, x)) / 2

cumsum (1D * mp(Sv)) * int
cumsum (1T * mp(Sv)) * int
cumsum (10 * mp(Sv)) * int

have the cumulative risks for the three causes and the survival, computed at the
end of each of the intervals, at any time point the sum of the 3 cumulative risks and the
survival should be 1:

> summary(rD + rI +r0 + Sv)
1st Qu. Median Mean 3rd Qu. Max.

Min.
1

1 1 1 1 1

> oo <- options(digits = 20)
> cbind(summary(Sv + rD + rI + r0))

Min.
1st Qu.
Median
Mean
3rd Qu.
Max.

o e e

1

[,1]

.0000000534682520481
.0000010095665299303
.0000010154411886898
.0000009973166215094
.0000010316432050850
.0000010385709348082

> options(0o)

We can then plot the 3 cumulative risk functions together:

>
+
+
+
+

zz <- mat2pol(cbind(rD,rI,r0,Sv), x = nd$tfd,

xlim = ¢(0,10), xaxs = "i", yaxs = "i", las = 1,
xlab = "Time since DM diagnosis (years)",
ylab = "Probability",

col = c("black","red","blue","forestgreen") )

> mm <- t(apply(zz,1,mid<-function(x) x[-1]-diff(x)/2))
> text( 9, mm[900,], c("Dead","Ins","OAD","DM"), col = "white" )
> box(col

= "white",lwd = 3)
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Figure 1.4: Probabilities of being in the 4 different states as a function of time since diagnosis.
Note that OAD means that OAD was initiated first, and similarly for Ins. We are not
concerned about what occur after these events. Dead means dead without being on any drug.

./crisk-stack



Chapter 2

Confidence intervals

We want confidence intervals for each of the 4 cumulative risks, but we may also be
interested in confidence intervals for sums of any subset of the cumulative risks,
corresponding to the borders between the colours in figure 1.4. If we only had two
competing risks (and hence three states) the latter would not be an issue, because the sum
of any two cumulative risks will be 1 minus the cumulative risk of the remainder, so we
could get away with the confidence intervals for the single cumulative risks. This is the
reason we have chosen an example with 3 competing risks and not just 2; we then have 4
probabilities to sum in different order.

A short look at the formulae for cumulative risks will reveal that analytic approximation
to the standard error of these probabilities (or some transform of them) is not really a
viable way to go. Particularly if we also want confidence intervals of sums of the state
probabilities as those shown in stacked plots.

So in practice, if we want confidence intervals not only for the state probabilities, but
also for any sum of subsets of them we would want a large number of simulated copies of
the cumulative risks, each copy of the same structure as the one we just extracted from the
model.

Moreover, we might also want confidence intervals for sojourn times (i.e. time spent) in
each state up to a given time, which would come almost for free from the simulation
approach.

This means that we must devise a method to make a prediction not from the estimated
model, but where we instead of the model parameters use a sample from the posterior
distribution of the estimated parameters. Here the posterior distribution of the parameters
is taken to be the multivariate normal distribution with mean equal to the vector of
parameter estimates and variance-covariance matrix equal to the estimated
variance-covariance matrix of the parameters.

Precisely this approach is implemented in ci.lin via the sample argument; we can get a
predicted value from a given prediction data frame just as from ci.pred resp. ci.exp; here
is an indication of different ways of getting predicted values of the cause-specific rates:

> head(cbind(ci.pred(mI,nd), ci.exp(mI,nd) ))
Estimate 2.5% 97.5% exp(Est.) 2.5% 97.5%
0.005 0.3355221 0.3050046 0.3690931 0.3355221 0.3050046 0.3690931
0.015 0.3240042 0.2950104 0.3558474 0.3240042 0.2950104 0.3558474
0.025 0.3128817 0.2853291 0.3430948 0.3128817 0.2853291 0.3430948
0.035 0.3021411 0.2759506 0.3308172 0.3021411 0.2759506 0.3308172
0.045 0.2917693 0.2668654 0.3189974 0.2917693 0.2668654 0.3189974
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0.055 0.2817538 0.2580639 0.3076184 0.2817538 0.2580639 0.3076184
> head(cbind(ci.pred(mI,nd), exp(ci.lin(mI,nd)[,c(1,5:6)1)))

Estimate 2.5% 97.5% Estimate 2.5% 97 .5%
0.005 0.3355221 0.3050046 0.3690931 0.3355221 0.3050046 0.3690931
0.015 0.3240042 0.2950104 0.3558474 0.3240042 0.2950104 0.3558474
0.025 0.3128817 0.2853291 0.3430948 0.3128817 0.2853291 0.3430948
0.035 0.3021411 0.2759506 0.3308172 0.3021411 0.2759506 0.3308172
0.045 0.2917693 0.2668654 0.3189974 0.2917693 0.2668654 0.3189974
0.055 0.2817538 0.2580639 0.3076184 0.2817538 0.2580639 0.3076184

Here is an illustration of the prediction with model based confidence intervals for the rates,
alongside predictions based on samples from the posterior distribution of the parameters in
the model:

> str(ci.lin(mI, nd, sample = 4))
num [1:1000, 1:4] -1.14 -1.18 -1.21 -1.24 -1.28 ...
- attr(*, "dimnames")=List of 2

..$ : chr [1:1000] "0.005" "0.015" "0.025" "0.035"

..$ : NULL
> head(cbind(ci.pred(mI,nd), exp(ci.lin(mI, nd, sample = 4))))
Estimate 2.5% 97.5%
0.005 0.3355221 0.3050046 0.3690931 0.3767340 0.3368546 0.3618715 0.3346903
0.015 0.3240042 0.2950104 0.3558474 0.3633041 0.3245842 0.3484644 0.3233786
0.025 0.3128817 0.2853291 0.3430948 0.3503529 0.3127608 0.3355540 0.3124492
0.035 0.3021411 0.2759506 0.3308172 0.3378636 0.3013682 0.3231222 0.3018893
0.045 0.2917693 0.2668654 0.3189974 0.3258196 0.2903907 0.3111510 0.2916864
0.055 0.2817538 0.2580639 0.3076184 0.3142052 0.2798133 0.2996236 0.2818285

The simulation is taking place at the parameter level and the transformation to survival
and cumulative risks is simply a function applied to every simulated set of rates.

2.1 Joint models for several transitions

Note that we are implicitly assuming that the transitions are being modeled separately. If
some transitions are modeled jointly—for example assuming that the rates of 0AD and Ins
are proportional as functions of time since entry, using one model—we are in trouble,
because we then need one sample from the posterior generating two predictions, one for
each of the transitions modeled together. Moreover the model will have to be a model
fitted to a stack.Lexis object, so a little more complicated to work with.

A simple way to program would be to reset the seed to the same value before simulating
with different values of nd, this is what is intended to be implemented, but is not yet. This
is mainly the complication of having different prediction frames for different risks in this
case.

Finally, it is not a very urgent need, since the situation where you want common
parameters for different rates out of a common state is quite rare.

2.2 Simulation based confidence intervals

These ideas have been implemented in the function ci.Crisk (confidence intervals for
Cumulative risks) in the Epi package: We can now run the function using the model
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objects for the three competing events, using a common prediction data frame, nd for the
rates:

> system.time(
+ res <- c¢i.Crisk(1ist(0OAD = m0O,

+ Ins = mI,

+ Dead = mD),

+ nd = data.frame(tfd = (1:1000-0.5)/100),
+ nB = 1000,

+ perm = 4:1))

Times are assumed to be in the column tfd at equal distances of 0.01
user system elapsed
12.326  0.669 12.477

> str(res)

List of 3
$ Crisk: num [1:1001, 1:4, 1:3] 1 0.991 0.983 0.975 0.967 ...
..— attr(*, "dimnames")=List of 3
..$ time : chr [1:1001] "Qm" "qim nomw n3n |
..$ cause: chr [1:4] "Surv" "OAD" "Ins" "Dead"
o8 : chr [1:3] "B5O%" "2.5%" "97.5%"
$ Srisk: num [1:1001, 1:3, 1:3] 0 0.000696 0.001385 0.002065 0.002738 ...
..— attr(*, "dimnames")=List of 3
..$ time : chr [1:1001] "OQ" "qm n2m n3n |
..$ cause: chr [1:3] "Dead" "Dead+Ins" "Dead+Ins+0AD"
.. .. 3 : chr [1:3] "50%" "2.5%" "97.5%"
$ Stime: num [1:1000, 1:4, 1:3] 0.00996 0.01983 0.02962 0.03933 0.04896 ...
..— attr(*, "dimnames")=List of 3

.$ : chr [1:1000] "im™ mom n3m wgn |
..$ cause: chr [1:4] "Surv" "OAD" "Ins" "Dead"
$ : chr [1:3] "50%" "2.5%" "97.5%"

- attr(*, "int")= num 0.01

As we see, the returned object (res) is a list of length 3, each element a 3-way arrays. The
three components of res represent

e Crisk Cumulative risks for each state
e Srisk Stacked cumulative risks across states

e Stime Sojourn time for each state, truncated at each point of the time dimension,
hence there is no 0 in the time dimension

The first dimension of each is time as interval number, starting with 0, and
corresponding to endpoints of intervals of length int. The second dimension is states (or
combinations thereof). The last dimension of the arrays is the type of statistic; 50% the
median of the samples, and the bootstrap intervals as indicated.

The argument perm governs in which order the state probabilities are stacked in the
Srisk element of the returned list, the default is the states in the order given in the list of
models in the first argument to ci.Crisk followed by the survival.

If we want the bootstrap samples to make other calculations we can ask the function to
return the bootstrap samples of the rates by using the argument sim.res=’rates’
(defaults to *none’):
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> system.time(
+ rsm <- ci.Crisk(1ist(0OAD = m0O,

+ Ins = mI,

+ Dead = mD),

+ nd = data.frame(tfd = (1:1000-0.5)/100),
+ nB = 2000,

+ sim.res = 'rates'))

Times are assumed to be in the column tfd at equal distances of 0.01
user system elapsed
0.461 0.500 0.320
> str(rsm)
num [1:1000, 1:3, 1:2000] 0.453 0.449 0.444 0.44 0.436 ...
- attr(*, "dimnames")=List of 3
..$ time: chr [1:1000] "1" "2m n3m ngn
..$ mod : chr [1:3] "OAD" "Ins" "Dead"
..$ sim : chr [1:2000] "1" "2" "3" "4
- attr(x, "int")= num 0.01

This is bootstrap samples of the rates evaluated at the 1000 midpoints of intervals.
Alternatively we can get the bootstrap samples of the cumulative risks by setting
sim.res=’crisk’:

> system.time(
+ csm <- ci.Crisk(1ist(0OAD = m0O,

+ Ins = mI,

+ Dead = mD),

+ nd = data.frame(tfd = (1:1000-0.5)/100),
+ nB = 2000,

+ sim.res = 'crisk'))

Times are assumed to be in the column tfd at equal distances of 0.01
user system elapsed
6.192 0.554 6.109

> str(csm)

num [1:1001, 1:4, 1:2000] 1 0.991 0.982 0.974 0.966 ...
- attr(*, "dimnames")=List of 3

..$ time : chr [1:1001] "OQ" "im mw2m n3n |

..$ cause: chr [1:4] "Surv" "OAD" "Ins" "Dead"

..$ sim : chr [1:2000] '"im n2m n3n wgn
- attr(x, "int")= num 0.01

This is the cumulative risks evaluated at the 1001 endpoints of the 1000 intervals, and also
includes the survival probability in the first slot of the 15* dimension of rsm.

In both cases, the first slot of the 3" dimension, sim, is the rates, resp. cumulative risks
from the model.

2.3 Simulated confidence intervals for rates

In figure 1.3 we showed the rates with confidence intervals from the model. But in rsm we
have 2000 (parametric) bootstrap samples of the occurrence rates, so we can derive the
bootstrap medians and the bootstrap c.i.—remember that the first slice of the 3™
dimension is the model estimates that should not enter the calculations. We use the
function mnqt to compute the model estimate and the mean, median and quantiles of the
simulated values.
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> Brates <- aperm(apply(rsm, 1:2, Epi:::mnqt), c(2,3,1))
> str(Brates)
num [1:1000, 1:3, 1:3] 0.458 0.454 0.449 0.445 0.441
- attr(*, "dimnames")=List of 3
..$ time: chr [1:1000] "im m"2" n3" n4n
..$ mod : chr [1:3] "OAD" "Ins" "Dead"
.8 : chr [1:3] "50%" "2.5%" "97.5%"

Then we can plot the bootstrap estimates on top of the estimates based on the normal
approximation to distribution of the parameters. They are not surprisingly in close
agreement since they are both based on an assumption of normality of the parameters on
the log-rate scale:

> matshade (nd$tfd, cbind(ci.pred(mD, nd),

+ ci.pred(mI, nd),

+ ci.pred(m0, nd))*1000,
+ ylim = ¢(0.1,500), yaxt = "n",

+ ylab "Rates per 1000 PY",

+ xlab = "Time since DM diagnosis (years)",
+ col = c("black","red", "blue"), log = "y", 1wd = 3, plot = TRUE)
> matlines(nd$tfd, cbind(Brates[, "Dead",],

+ Brates[,"Ins" ,],
+ Brates[,"0OAD" ,])*1000,
+

>

+

>

+

>

+

+

col = c("white","black","black"), 1ty = 3, lwd=c(3,1,1))
axis(side = 2, at = 1ll<-outer(c(1,2,5),-2:3,function(x,y) x*107y),
labels = formatC(1l1l,digits = 4), las = 1)
axis(side = 2, at = ll<-outer(c(1.5,2:9),-2:3,function(x,y) x*107y),
labels = NA, tcl = -0.3)
text (0, 0.5%0.6°c(1,2,0),
c(”Dead n, "Tns u, IIOADH) s
col = c("black","red", "blue"), adj = 0)

2.4 Confidence intervals for cumulative risks

In the Crisk component of res we have the cumulative risks as functions of of time, with
bootstrap confidence intervals, so we can immediately plot the three cumulative risks:

> matshade (c(0,nd$tfd+1/200),
+ cbind(res$Crisk[, "Dead", ],

res$Crisk[,"Ins" ,],

res$Crisk[,"OAD" ,]), plot = TRUE,
xlim = ¢(0,10), xaxs = "i", yaxs = "i", las = 1,
xlab = "Time since DM diagnosis (years)",
ylab = "Cumulative probability",

col c("black", "red", "blue"))
text(8, 0.3 + ¢(1,0,2)/25,
c(”Dead n, "Tns u, IIUADH) s
col = c("black","red", "blue"), adj = 0)

+ 4+ VvV ++++ o+ o+

2.5 Confidence intervals for stacked cumulative risks

Unlike the single cumulative risks where we have a confidence interval for each cumulative
risk, when we want to show the stacked probabilities we must deliver the confidence
intervals for the relevant sums, they are in the Srisk component of res.
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Figure 2.1: Estimated rates from the DM state, estimates are from gam models fitted to data
split in 1 month intervals (1/12 year, that is). The white dotted curves are the bootstrap
medians, black dotted curves are the bootstrap 95% c.i.s. ./crisk-rates-ci

> str(res$Crisk)
num [1:1001, 1:4, 1:3] 1 0.991 0.983 0.975 0.967 ...
- attr(*, "dimnames")=List of 3

..$ time : chr [1:1001] "OQ" "qm mnom n3n |

..$ cause: chr [1:4] "Surv" "OAD" "Ins" "Dead"

.3 : chr [1:3] "50%" "2.5%4" "97.5%"

> str(res$Srisk)

num [1:1001, 1:3, 1:3] 0 0.000696 0.001385 0.002065 0.002738 ...
- attr(*, "dimnames")=List of 3

..$ time : chr [1:1001] "OQ" "qm nam n3gn |

..$ cause: chr [1:3] "Dead" "Dead+Ins" "Dead+Ins+0AD"

.3 : chr [1:3] "50%" "2.5%" "97.5%"

But we start out by plotting the stacked probabilities using mat2pol (matrix to polygon),
the input required is the single components from the Crisk component. Then we can add
the confidence intervals
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Figure 2.2: Cumulative risks for the three types of events, with 95% bootstrap-based confidence

ntervals as shades.

zz <- mat2pol(res$Crisk[,c("Dead", "Ins","0AD","Surv"),1],
x = as.numeric (dimnames (res$Crisk)[[1]])/100,
xlim = ¢(0,10), xaxs = "i", yaxs = "i", las = 1,
xlab = "Time since DM diagnosis (years)",
ylab = "Probability",
col = c("black","red","blue", "forestgreen") )

mm <- t(apply(zz, 1, mid<-function(x) x[-1] - diff(x) / 2))

matshade (as.numeric (dimnames (res$Srisk) [[1]1])/100,
cbind(res$Srisk([,1,],
res$Sriskl[,2,],
res$Srisk[,3,]),
col = 'transparent', col.shade = "white", alpha =

+ +++VVV+++++V

./crisk-crates

text( 9, mm[900,], c("Dead","Ins","OAD","DM"), col = "white" )

0.3)
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Figure 2.3: Probabilities of being in the 4 different states as a function of time since diagnosis.
Note that OAD means that OAD was initiated first, and similarly for Ins. We are not
concerned about what occurs after these events. Dead means dead without being on any

drug.
The white shadings around the borders between coloured areas represent the 95% confidence
intervals for the (sum of) probabilities. ./crisk-stack-ci

2.6 Sojourn times

From the Stime component of the res we can derive the estimated time spent in each state
during the first, say, 5 or 10 years:

> str(res$Stime)
num [1:1000, 1:4, 1:3] 0.00996 0.01983 0.02962 0.03933 0.04896 ...
- attr(*, "dimnames")=List of 3



16 2.6 Sojourn times

ParCmpRSim

.3 : chr [1:1000] "1m m2m n3m wgn |
..$ cause: chr [1:4] "Surv" "QOAD" "Ins" "Dead"
.3 : chr [1:3] "50%" "2.5%" "97.5%"

We extract the 5 and 10 years components:

> 5510 <- res$Stime[1:2%500,,]
> dimnames(s510) [[1]] <= c(" 5 yr","10 yr")
> round(ftable(s510, row.vars=1:2), 2)

50% 2.5% 97.5%

cause

5 yr Surv @ 2.77 2.72 2.82
0AD 1.44 1.40 1.49
Ins 0.40 0.37 0.43
Dead 0.39 0.36 0.42

10 yr Surv  4.31 4.22 4.41
0AD 3.64 3.54 3.75
Ins 0.84 0.78 0.90
Dead 1.20 1.14 1.27

So we see that the expected life lived without pharmaceutical treatment during the first 10
years after DM diagnosis is 4.31 years with a 95% CI of (4.21;4.42), and during the first 5

years 2.77 (2.72;2.82).

The quantity 0AD is the years lived without medication that has been terminated by

OAD inception, and similarly for Ins and Dead.
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