
The Python
Imaging Library
Secret Labs AB

The Python
 Imaging Library

By Fredrik Lundh

The Python Imaging Library
by Fredrik Lundh

Copyright © 1995-2001 by Secret Labs AB. All rights reserved.

Secret Labs AB and the author assumes no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

Updated for Python Imaging Library 1.1, April 2001

i

Table of Contents
Preface .. i

Introduction .. i
Image Archives .. i
Image Display.. i
Image Processing.. i

I. Introducing PIL... 1
Tutorial... 1

Using the Image Class ... 1
Reading and Writing Images ... 1
Cutting, Pasting and Merging Images... 3
Geometrical Transforms.. 4
Colour Transforms ... 4
Image Enhancement... 5

Filters ... 5
Point Operations .. 5
Enhancement .. 6

Image Sequences... 6
Postscript Printing ... 7
More on Reading Images.. 7

Controlling the Decoder ... 8
Concepts ... 9

Bands... 9
Mode ... 9
Size... 9
Coordinate System... 9
Palette..10
Info ..10

II. Module Reference ...11
The Image Module ...11

Examples ...11
Functions ...11

new ...11
open ..11
blend ...11
composite ...12
eval ...12
fromstring ...12
merge ..12

Methods...12
convert...12
copy ..13
crop...13
draft ..13
filter..13
fromstring ...13
getbands ...13

ii

getbbox ..13
getdata...14
getextrema..14
getpixel ..14
histogram..14
load...14
offset ...14
paste ...14
point..15
putalpha ...15
putdata ..15
putpalette ...15
putpixel ..16
resize...16
rotate ..16
save...16
seek...16
show..16
split...17
tell ..17
thumbnail..17
tobitmap...17
tostring...17
transform..17
transform(EXTENT) ..17
transform(AFFINE) ...18
transform(QUAD)...18
transform(MESH) ...18
transpose ..18
verify ...18

Attributes ..18
format..18
mode ...19
size ...19
palette ...19
info ...19

The ImageChops Module..20
Functions ...20

constant ...20
duplicate ..20
invert ...20
lighter ..20
darker ..20
difference ...20
multiply ..21
screen ..21
add..21
subtract..21
blend ...21
composite ...21
offset ...21

iii

The ImageCrackCode Module (PIL Plus) ...22
Functions ...22

CrackCode (class) ..22
Methods and attributes ..22

area...22
bbox ..22
caliper..22
centroid..22
edge ..22
links...22
offset ...22
start ..22
top ..22
hit...23
topath ..23
getmask..23
getoutline ...23

The ImageDraw Module...24
Example ..24
Functions ...24

Draw (constructor)...24
Methods...24

arc ..24
bitmap ...24
chord ...24
ellipse ..25
line..25
pieslice...25
point..25
polygon...25
rectangle ..25
text ...26
textsize ..26

Compatibility ..26
ImageDraw (constructor) ...26
setink...26
setfill ...26
setfont ...26

The ImageEnhance Module ..27
Example ..27
Interface ...27

enhance..27
The Color Class..27

Color (constructor) ..27
The Brightness Class..27

Brightness (constructor) ..27
The Contrast Class..28

Contrast (constructor)...28
The Sharpness Class ..28

Sharpness (constructor)...28
The ImageFile Module ..29

iv

Example ..29
Functions ...29

Parser (constructor) ...29
Methods...29

feed...29
close..29

The ImageFileIO Module..30
Functions ...30

ImageFileIO (factory)..30
The ImageFilter Module ..31

Example ..31
Filters ...31

The ImageFont Module ...32
Functions ...32

load (factory) ...32
load_path (factory) ..32

Methods...32
getsize ...32
getmask..32

The ImagePath Module ...33
Functions ...33

Path (factory)...33
The ImageSequence Module ...34

Functions ...34
Iterator (constructor) ...34

Methods...34
The [] Operator...34

The ImageStat Module ..35
Functions ...35

Stat (class) ..35
Attributes ..35

extrema..35
count ...35
sum ...35
sum2..35
mean ...35
median ...35
rms..35
var ..35
stddev ..36

The ImageTk Module..37
The BitmapImage Class ..37

BitmapImage (constructor)...37
The PhotoImage Class..37

PhotoImage (constructor) ..37
paste ...37

The ImageWin Module ..38
The Dib Class ..38

Dib (constructor) ...38
Methods...38

expose..38

v

palette ...38
paste ...38

The PSDraw Module ...39
Functions ...39

PSDraw (constructor)..39
PSDraw Methods...39

begin_document..39
end_document..39
line..39
rectangle ..39
text ...39
setfont ...39
setink...39
setfill ...40

III. Tools Reference...41

The pildriver Utility ...41
The pilconvert Utility...42
The pilfile Utility ..43
The pilfont Utility ...44
The pilprint Utility ..45

IV. Appendices...46

A. Software License...46
B. Getting Support ..47
C. Image File Formats ..48

Format Descriptions ..48
BMP ...48
CUR (read only)...48
DCX (read only)...48
EPS (write-only) ..48
FLI, FLC (read only)..48
FPX (read only) ...48
GBR (read only)...49
GD (read only) ..49
GIF ..49
ICO (read only) ...49
IM ...49
IMT (read only) ...49
JPEG..49
MIC (read only) ...50
MCIDAS (read only)...50
MPEG (identify only)...50
MSP ...50
PCD (read only)...50
PCX ...50
PDF (write only) ..50
PNG...51
PPM ...51
PSD (read only) ...51
SGI (read only)..51
SUN (read only)...51
TGA (read only)...51

vi

TIFF...51
XBM ...51
XPM (read only)...52
File Extensions..52

D. Writing Your Own File Decoder..53
Example ..53
The Tile Attribute ..54
The Raw Decoder ...54
Decoding Floating Point Data...55
The Bit Decoder...56

i

Preface
This document describes the Python Imaging Library, version 1.1, including some PIL
Plus extensions. It was last updated April 30, 2001.

Introduction
The Python Imaging Library adds image processing capabilities to your Python
interpreter.

This library provides extensive file format support, an efficient internal representation,
and powerful image processing capabilities.

The core image library is designed for fast access to data stored in a few, basic pixel
formats. It should be well suited as a base for a general image processing tool.

Let's look at a few possible uses for this library:

Image Archives

The Python Imaging Library is well suited for image archival and batch processing
applications. You can use the library to create thumbnails, convert between file formats,
print images, etc.

The current version identifies and reads a large number of formats. Write support is
intentionally restricted to the most commonly used interchange and presentation
formats.

Image Display

The current release includes Tk PhotoImage and BitmapImage interfaces, as well as a
Windows DIB interface that can be used with PythonWin.

For debugging, there's also a show method in the Unix version which calls xv to display
the image.

Image Processing

The library contains some basic image processing functionality, including point
operations, filtering with a set of built-in convolution kernels, and colour space
conversions.

The library also supports image resizing, rotation and arbitrary affine transforms.

There's a histogram method allowing you to pull some statistics out of an image. This can
be used for automatic contrast enhancement, and for global statistical analysis.

1

Tutorial

Using the Image Class
The most important class in the Python Imaging Library is the Image class, defined in the
module with the same name. You can create instances of this class in several ways;
either by loading images from files, processing other images, or creating images from
scratch.

To load an image from a file, use the open function in the Image module.

 >>> import Image
 >>> im = Image.open("lena.ppm")

If successful, this function returns an Image object. You can now use instance attributes
to see what the file really contained.

 >>> print im.format, im.size, im.mode
 PPM (512, 512) RGB

The format attribute identifies the source of an image. If the image was not read from a
file, it is set to None. The size attribute is a 2-tuple containing width and height (in
pixels). The mode attribute defines the number and names of the bands in the image,
and also the pixel type and depth. Common modes are “L” (for luminance) for greyscale
images, “RGB” for true colour images, and “CMYK” for pre-press images.

If the file cannot be opened, an IOError exception is raised.

Once you have an instance of the Image class, you can use the methods defined by this
class to process and manipulate the image. For example, let's display the image we just
loaded:

 >>> im.show()

(The standard version of show is not very efficient, since it saves the image to a
temporary file and calls the xv utility to display the image. If you don't have xv installed,
it won't even work. When it does work, it is very handy for debugging and tests, though.)

The following sections provide an overview of the different functions provided in this
library.

Reading and Writing Images
The Python Imaging Library supports a wide variety of image file formats. To read files
from disk, you use the open function in the Image module. You don't have to know the
file format to open a file. The library automatically determines the format based on the
contents of the file.

To save a file, use the save method in the Image class. When saving files, the name
becomes important. Unless you specify the format, the library use the filename
extension to figure out which file format to use when storing the file.

Tutorial

2

Example 1. Convert files to JPEG

import os, sys
import Image

for infile in sys.argv[1:]:
 outfile = os.path.splitext(infile)[0] + ".jpg"
 if infile != outfile:
 try:
 Image.open(infile).save(outfile)
 except IOError:
 print "cannot convert", infile

You can use a second argument to the save method in order to explicitly specify a file
format. If you use a non-standard extension, you must always specify the format this
way:

Example 2. Create JPEG Thumbnails

import os, sys
import Image

for infile in sys.argv[1:]:
 outfile = os.path.splitext(infile)[0] + ".thumbnail"
 if infile != outfile:
 try:
 im = Image.open(infile)
 im.thumbnail((128, 128))
 im.save(outfile, "JPEG")
 except IOError:
 print "cannot create thumbnail for", infile

An important detail is that the library doesn't decode or load the raster data unless it
really has to. When you open a file, the file header is read to determine the file format
and extract things like mode, size, and other properties required to decode the file, but
the rest of the file is not processed until later.

This also means that opening an image file is a fast operation, independent of the file
size and compression type. Here's a simple script to quickly identify a set of image files:

Example 3. Identify Image Files

import sys
import Image

for infile in sys.argv[1:]:
 try:
 im = Image.open(infile)
 print infile, im.format, "%dx%d" % im.size, im.mode
 except IOError:
 pass

Tutorial

3

Cutting, Pasting and Merging Images
The Image class contains methods allowing you to manipulate regions within an image.
To extract a sub-rectangle from an image, use the crop method.

Example 4. Copying a subrectangle from an image

 box = (100, 100, 400, 400)
 region = im.crop(box)

The region is defined by a 4-tuple, where coordinates are (left, upper, right, lower). The
Python Imaging Library uses a coordinate system with (0, 0) in the upper left corner. Also
note that coordinates refer to positions between the pixels, so the region in the above
example is 300x300 pixels and nothing else.

You can now process the region in some fashion, and possibly paste it back.

Example 5. Processing a subrectangle, and pasting it back

 region = region.transpose(Image.ROTATE_180)
 im.paste(region, box)

When pasting regions back, the size of the region must match the given region exactly.
In addition, the region cannot extend outside the image. However, the modes of the
original image and the region do not need to match. If they don't, the region is
automatically converted before being pasted (see the section on Colour Transforms
below for details).

Here's an additional example:

Example 6. "Rolling" an image

def roll(image, delta):
 "Roll an image sideways"

 xsize, ysize = image.size

 delta = delta % xsize
 if delta == 0: return image

 part1 = image.crop((0, 0, delta, ysize))
 part2 = image.crop((delta, 0, xsize, ysize))
 image.paste(part2, (0, 0, xsize-delta, ysize))
 image.paste(part1, (xsize-delta, 0, xsize, ysize))

 return image

For more advanced tricks, the paste method can also take a transparency mask as an
optional argument. In this mask, the value 255 indicates that the pasted image is opaque
in that position (that is, the pasted image should be used as is). The value 0 means that
the pasted image is completely transparent. Values in between indicate different levels
of transparency.

The Python Imaging Library also allows you to work with the individual bands of an multi-
band image, such as an RGB image. The split method creates a set of new images, each

Tutorial

4

containing one band from the original multi-band image. The merge function takes a
mode and a tuple of images, and combines them into a new image. The following sample
swaps the three bands of an RGB image:

Example 7. Splitting and merging bands

r, g, b = im.split()
im = Image.merge("RGB", (b, g, r))

Geometrical Transforms
The Image class contains methods to resize and rotate an image. The former takes a
tuple giving the new size, the latter the angle in degrees counter-clockwise.

Example 8. Simple geometry transforms

out = im.resize((128, 128))
out = im.rotate(45) # degrees counter-clockwise

To rotate the image in full 90 degree steps, you can either use the rotate method or the
transpose method. The latter can also be used to flip an image around its horizontal or
vertical axis.

Example 9. Transposing an image

out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)

There's no difference in performance or result between transpose(ROTATE) and
corresponding rotate operations.

A more general form of image transformations can be carried out via the transform
method. See the reference section for details.

Colour Transforms
The Python Imaging Library allows you to convert images between different pixel
representations using the convert function.

Example 10. Converting between modes

 im = Image.open("lena.ppm").convert("L")

The library supports transformations between each supported mode and the “L” and
“RGB” modes. To convert between other modes, you may have to use an intermediate
image (typically an “RGB” image).

Tutorial

5

Image Enhancement
The Python Imaging Library provides a number of methods and modules that can be used
for image enhancement.

Filters

The ImageFilter module contains a number of pre-defined enhancement filters that can
be used with the filter method.

Example 11. Applying filters

import ImageFilter
out = im.filter(ImageFilter.DETAIL)

Point Operations

The point method can be used to translate the pixel values of an image. This can for
example be used to manipulate the image contrast. In most cases, you can use pass this
function a function object expecting one argument. Each pixel is processed according to
that function:

Example 12. Applying point transforms

multiply each pixel by 1.2
out = im.point(lambda i: i * 1.2)

Using the above technique, you can quickly apply any simple expression to an image. You
can also combine the point and paste methods to selectively modify an image:

Example 13. Processing individual bands

split the image into individual bands
source = im.split()

R, G, B = 0, 1, 2

select regions where red is less than 100
mask = source[R].point(lambda i: i < 100 and 255)

process the green band
out = source[G].point(lambda i: i * 0.7)

paste the processed band back, but only where red was < 100
source[G].paste(out, None, mask)

build a new multiband image
im = Image.merge(im.mode, source)

Note the syntax used to create the mask:

 imout = im.point(lambda i: expression and 255)

Python only evaluates as much of a logical expression as is necessary to determine the
outcome, and returns the last value examined as the result of the expression. So if the

Tutorial

6

expression above is false (0), Python does not look at the second operand, and thus
returns 0. Otherwise, it returns 255.

Enhancement

For more advanced image enhancement, use the classes in the ImageEnhance module.
Once created from an image, an enhancement object can be used to quickly try out
different settings.

You can adjust contrast, brightness, colour balance and sharpness in this way.

Example 14. Enhancing images

import ImageEnhance

enh = ImageEnhance.Contrast(im)
enh.enhance(1.3).show("30% more contrast")

Image Sequences
The Python Imaging Library contains some basic support for image sequences (also called
animation formats). Supported sequence formats include FLI/FLC, GIF, and a few
experimental formats. TIFF files can also contain more than one frame.

When you open a sequence file, PIL automatically loads the first frame in the sequence.
You can use the seek and tell methods to change which frame to work with:

Example 15. Reading sequences

import Image

im = Image.open("animation.gif")
im.seek(1) # skip to the second frame

try:
 while 1:
 im.seek(im.tell()+1)
 # do something to im
except EOFError:
 pass # end of sequence

As seen in this example, you'll get an EOFError exception when the sequence ends.

Note that most drivers in the current version of the library only allows you to seek to the
next frame (as in the above example). To rewind the file, you may have to reopen it.

The following iterator class lets you to use the for-statement to loop over the sequence:

Example 16. A sequence iterator class

class ImageSequence:
 def __init__(self, im):
 self.im = im
 def __getitem__(self, ix):
 try:
 if ix:
 self.im.seek(ix)

Tutorial

7

 return self.im
 except EOFError:
 raise IndexError # end of sequence

for frame in ImageSequence(im):
 # ...do something to frame...

Postscript Printing
The Python Imaging Library includes functions to print images, text and graphics on
Postscript printers. Here's a simple example:

Example 17. Drawing Postscript

import Image
import PSDraw

im = Image.open("lena.ppm")
title = "lena"
box = (1*72, 2*72, 7*72, 10*72) # in points

ps = PSDraw.PSDraw() # default is sys.stdout
ps.begin_document(title)

draw the image (75 dpi)
ps.image(box, im, 75)
ps.rectangle(box)

draw centered title
ps.setfont("HelveticaNarrow-Bold", 36)
w, h, b = ps.textsize(title)
ps.text((4*72-w/2, 1*72-h), title)

ps.end_document()

More on Reading Images
As described earlier, you use the open function in the Image module to open an image
file. In most cases, you simply pass it the filename as argument:

im = Image.open("lena.ppm")

If everything goes well, the result is an Image object. Otherwise, an IOError exception
is raised.

You can use a file-like object instead of the filename. The file object must implement
the read, seek and tell methods, and be opened in binary mode.

Example 18. Reading from an open file

fp = open("lena.ppm", "rb")
im = Image.open(fp)

To read an image from data that you have in a string, use the StringIO class:

Tutorial

8

Example 19. Reading from a string

import StringIO

im = Image.open(StringIO.StringIO(buffer))

Note that the library rewinds the file (using seek(0)) before reading the image header.
In addition, seek will also be used when the image data is read (by the load method). If
the image file is embedded in a larger file, such as a tar file, you can use the
ContainerIO or TarIO modules to access it.

Example 20. Reading from a tar archive

import TarIO

fp = TarIO.TarIO("Imaging.tar", "Imaging/test/lena.ppm")
im = Image.open(fp)

See comments in these modules for details.

Controlling the Decoder

Some decoders allow you to manipulate the image while reading it from file. This can
often be used to speed up decoding when creating thumbnails (when speed is usually be
more important than quality) and printing to a monochrome laser printer (when only a
greyscale version of the image is needed).

The draft method manipulates an opened but not yet loaded image so it as closely as
possible matches the given mode and size. This is done by reconfiguring the image
decoder.

Example 21. Reading in draft mode

im = Image.open(file)
print "original =", im.mode, im.size

im.draft("L", (100, 100))
print "draft =", im.mode, im.size

 original = RGB (512, 512)
 draft = L (128, 128)

Note that the resulting image may not exactly match the requested mode and size. To
make sure that the image is not larger than the given size, use the thumbnail method
instead.

9

Concepts
The Python Imaging Library handles raster images, that is, rectangles of pixel data.

Bands
An image can consist of one or more bands of data. The Python Imaging Library allows
you to store several bands in a single image, provided they all have the same dimensions
and depth.

To get the number and names of bands in an image, use the getbands method.

Mode
The mode of an image defines the type and depth of a pixel in the image. The current
release supports the following standard modes:

• 1 (1-bit pixels, black and white, stored as 8-bit pixels)

• L (8-bit pixels, black and white)

• P (8-bit pixels, mapped to any other mode using a colour palette)

• RGB (3x8-bit pixels, true colour)

• RGBA (4x8-bit pixels, true colour with transparency mask)

• CMYK (4x8-bit pixels, colour separation)

• YCbCr (3x8-bit pixels, colour video format)

• I (32-bit integer pixels)

• F (32-bit floating point pixels)

PIL also supports a few special modes, including RGBX (true colour with padding) and
RGBa (true colour with premultiplied alpha).

You can read the mode of an image through the mode attribute. This is a string
containing one of the above values.

Size
You can read the image size through the size attribute. This is a 2-tuple, containing the
horizontal and vertical size in pixels.

Coordinate System
The Python Imaging Library uses a Cartesian pixel coordinate system, with (0,0) in the
upper left corner. Note that the coordinates refer to the implied pixel corners; the
centre of a pixel addressed as (0, 0) actually lies at (0.5, 0.5):

Concepts

10

Coordinates are usually passed to the library as 2-tuples (x, y). Rectangles are
represented as 4-tuples, with the upper left corner given first. For example, a rectangle
covering all of an 800x600 pixel image is written as (0, 0, 800, 600).

Palette
The palette mode ("P") uses a colour palette to define the actual colour for each pixel.

Info
You can attach auxiliary information to an image using the info attribute. This is a
dictionary object.

How such information is handled when loading and saving image files is up to the file
format handler (see the chapter on Image File Formats).

11

The Image Module
The Image module provides a class with the same name which is used to represent a PIL
image. The module also provides a number of factory functions, including functions to
load images from files, and to create new images.

Examples

Example 1. Open, rotate, and display an image

import Image
im = Image.open("bride.jpg")
im.rotate(45).show()

Example 2. Create thumbnails

import glob

for infile in glob.glob("*.jpg"):
 try:
 outfile = os.splitext(file)[0] + ".thumbnail"
 Image.open(infile).resize(128, 128).save(outfile, "JPEG")
 except:
 print "Cannot create thumbnail for %s" % infile

Functions

new

new(mode, size [,colour]). Creates a new image with the given mode and size. Size
is given as a 2-tuple. The colour is given as a single numerical value for single-band
images, and a tuple for multi-band images. If the colour is omitted, the image is filled
with black. If the colour is None, the image is not initialised.

open

open(infile [,mode]). Opens and identifies the given image file. The actual image
data is not read from the file until you try to process the data (or call the load method).
If the mode is given, it must be “r”.

You can use either a string (giving the filename) or a file object. In the latter case, the
file object must implement read, seek, and tell methods, and be opened in binary
mode.

blend

blend(image1, image2, alpha). Creates a new image by interpolating between the
given images, using a constant alpha. Both images must have the same size and mode.

 out = image1 * (1.0 - alpha) + image2 * alpha

The Image Module

12

If alpha is 0.0, a copy of the first image is returned. If alpha is 1.0, a copy of the second
image is returned. There are no restrictions on the alpha value. If necessary, the result is
clipped to fit into the allowed output range.

composite

composite(image1, image2, mask). Creates a new image by interpolating between the
given images, using the mask as alpha. The mask can be either “1”, “L”, or “RGBA”. All
images must have the same size.

eval

eval(function, image). Applies the function (which should take one argument) to
each pixel in the given image. If the image has more than one band, the same function is
applied to each band. Note that the function is evaluated once for each possible pixel
value, so you cannot use random components or other generators.

fromstring

fromstring(mode, size, data). Creates an image memory from pixel data in a string,
using the standard “raw” decoder.

fromstring(mode, size, data, decoder, parameters). Same, but allows you to use
any pixel decoder supported by PIL. For more information on available decoders, see the
section Writing Your Own File Decoder.

Note that this function decodes pixel data, not entire images. If you have an entire
image in a string, wrap it in a StringIO object, and use open to load it.

merge

merge(mode, bands). Creates a new image from a number of single band images. The
bands are given as a tuple or list of images, one for each band described by the mode.
All bands must have the same size.

Methods
An instance of the Image class have the following methods. Unless otherwise stated, all
methods return a new instance of the Image class, holding the resulting image.

convert

convert(mode). Returns a converted copy of an image. For the “P” mode, this translates
pixels through the palette. If mode is omitted, a mode is chosen so that all information
in the image and the palette can be represented without a palette.

The current release supports all possible conversions between “L”, “RGB” and “CMYK.”

When translating a colour image to black and white (mode “L”), the library uses the ITU-
R 601-2 luma transform:

 L = R * 299/1000 + G * 587/1000 + B * 114/1000

When translating an greyscale image into a bilevel image (mode “1”), all non-zero values
are set to 255 (white). To use other thresholds, use the point method.

The Image Module

13

convert(mode, matrix). Converts an “RGB” image to “L” or “RGB” using a conversion
matrix. The matrix is a 4- or 16-tuple.

The following example converts an RGB image (linearly calibrated according to ITU-R
709, using the D65 luminant) to the CIE XYZ colour space:

Example 3. Convert RGB to XYZ

 rgb2xyz = (
 0.412453, 0.357580, 0.180423, 0,
 0.212671, 0.715160, 0.072169, 0,
 0.019334, 0.119193, 0.950227, 0)
 out = im.convert("RGB", rgb2xyz)

copy

copy(). Copies the image. Use this method if you wish to paste things into an image, but
still retain the original.

crop

crop(box). Returns a rectangular region from the current image. The box is a 4-tuple
defining the left, upper, right, and lower pixel coordinate.

draft

draft(mode, size). Configures the image file loader so it returns a version of the
image that as closely as possible matches the given mode and size. For example, you can
use this method to convert a colour JPEG to greyscale while loading it, or to extract a
128x192 version from a PCD file. Note that this method modifies the Image object in
place. If the image has already been loaded, this method has no effect.

filter

filter(filter). Returns a copy of an image filtered by the given filter. For a list of
available filters, see the ImageFilter module.

fromstring

fromstring(data), fromstring(data, decoder, parameters). Same as the
fromstring function, but loads data into the current image.

getbands

getbands(). Returns a tuple containing the name of each band. For example, getbands
on an RGB image returns (“R”, “G”, “B”).

getbbox

getbbox(). Calculates the bounding box of the non-zero regions in the image. The
bounding box is returned as a 4-tuple defining the left, upper, right, and lower pixel
coordinate. If the image is completely empty, this method returns None.

The Image Module

14

getdata

getdata(). Returns the contents of a the image as a sequence object containing pixel
values. The sequence object is flattened, so that values for line one follows directly
after the values for line zero, and so on.

getextrema

getextrema(). Returns a 2-tuple containing the minimum and maximum values in the
image. In this version, this only works for single-band images.

getpixel

getpixel(xy). Returns the pixel at the given position. If the image is a multi-layer
image, this method returns a tuple.

histogram

histogram(). Returns a histogram for the image. The histogram is returned as a list of
pixel counts, one for each pixel value in the source image. If the image has more than
one band, the histograms for all bands are concatenated (for example, the histogram for
an “RGB” image contains 768 values).

A bilevel image (mode “1”) is treated as an greyscale (“L”) image by this method.

histogram(mask). Returns a histogram for those parts of the image where the mask
image is non-zero. The mask image must have the same size as the image, and be either
a bi-level image (mode “1”) or a greyscale image (“L”).

load

load(). Allocates storage for the image and loads it from the file. In normal cases, you
don't need to call this method, since the Image class automatically loads an opened
image when it is accessed the first time.

offset

(Deprecated). offset(xoffset, yoffset). Returns a copy of the image where data
have been offset by the given distances. Data wraps around the edges. If yoffset is
omitted, it is assumed to be equal to xoffset.

This method is deprecated. New code should use the offset function in the ImageChops
module.

paste

paste(image, box). Pastes an image into self. The box argument is either a 2-tuple
giving the upper left corner, or a 4-tuple defining the left, upper, right, and lower pixel
coordinate. If None is given instead of a tuple, all of self is assumed. In any case, the size
of the pasted image must match the size of the region.

If the mode does not match the mode of self, conversions are automatically applied (see
the convert method for details).

The Image Module

15

paste(colour, box). Same as above, but fills the region with a single colour. The
colour is given as a single numerical value for single-band images, and a tuple for multi-
band images.

paste(image, box, mask). Same as above, but updates only the regions indicated by
the mask. You can use either “1”, “L” or “RGBA” images (in the latter case, the alpha
band is used as mask). Where the mask is 255, the given image is copied as is. Where the
mask is 0, the current value is preserved. Intermediate values can be used for
transparency effects.

Note that if you paste an “RGBA” image, the alpha band is ignored unless you use the
same image as mask.

paste(colour, box, mask). Same as above, but fills the region with a single colour.

point

point(table), point(function). Returns a copy of the image where each pixel has
been mapped through the given table. The table should contains 256 values per band in
the image. If a function is used instead, it should take a single argument. The function is
called once for each possible pixel value, and the resulting table is applied to all bands
of the image.

If the image has mode “I” (integer) or “F” (floating point), you must use a function, and
it must have the following format:

 argument * scale + offset

Example 4. Map floating point images

 out = im.point(lambda i: i * 1.2 + 10)

You can leave out either the scale or the offset.

point(table, mode), point(function, mode). Map the image through table, and
convert it on fly. In this version, this can only be used to convert “L” and “P” images to
“1” in one step, e.g. to threshold an image.

putalpha

putalpha(band). Copies the given band to the alpha layer of self. Self must be an
“RGBA” image, and the band must be either “L” or “1”.

putdata

putdata(data [[, scale [, offset]]). Copy pixel values from a sequence object
into the image, starting at the upper left corner. The scale and offset values are used to
adjust the sequence values. If the scale is omitted, it defaults to 1.0. If the offset is
omitted, it defaults to 0.0.

putpalette

putpalette(sequence). Attach a palette to a “P” or “L” image. The palette sequence
should contain 768 integer values, where each group of three values represent the red,
green, and blue values for the corresponding pixel index. Instead of an integer sequence,
you can use an 8-bit string.

The Image Module

16

putpixel

putpixel(xy, colour). Modifies the pixel at the given position. The colour is given as a
single numerical value for single-band images, and a tuple for multi-band images.

For more extensive changes, use paste or the ImageDraw module instead.

resize

resize(size), resize(size, filter). Returns a resized copy of an image. The size
argument gives the requested size in pixels, as a 2-tuple: (width, height).

The filter argument can be NEAREST, BILINEAR, or BICUBIC. If omitted, it defaults to
NEAREST.

rotate

rotate(angle), rotate(angle, filter). Returns a copy of an image rotated the given
number of degrees counter clockwise around its centre.

The filter argument can be NEAREST, BILINEAR, or BICUBIC. If omitted, it defaults to
NEAREST.

save

save(outfile, options), save(outfile, format, options). Saves the image under
the given filename. If format is omitted, the format is determined from the filename
extension, if possible. This method returns None.

Keyword options can be used to provide additional instructions to the writer. If a writer
doesn't recognise an option, it is silently ignored. The available options are described
later in this handbook.

You can use a file object instead of a filename. In this case, you must always specify the
format. The file object must implement the seek, tell, and write methods, and be
opened in binary mode.

seek

seek(frame). Seeks to the given frame in a sequence file. If you seek beyond the end of
the sequence, the method raises an EOFError exception. When a sequence file is
opened, the library automatically seeks to frame 0.

Note that in the current version of the library, most sequence formats only allows you to
seek to the next frame.

show

show(). Displays an image. This method is mainly intended for debugging purposes.

On Unix platforms, this method saves the image to a temporary PPM file, and calls the xv
utility.

On Windows, it saves the image to a temporary BMP file, and runs the start command
on it to start the registered BMP display utility (usually Paint).

This method returns None.

The Image Module

17

split

split(). Returns a tuple of individual image bands from an image. For example, if you
split an “RGB” image, you get three new images, containing copies of the red, green,
and blue bands from the original image.

tell

tell(). Returns the current frame number.

thumbnail

thumbnail(size). Modifies the image to contain a thumbnail version of itself, no larger
than the given size. This method calculates an appropriate thumbnail size to preserve
the aspect of the image, calls the draft method to configure the file reader (where
applicable), and finally resizes the image.

Note that this function modifies the Image object in place. If you need to use the full
resolution image as well, apply this method to a copy of the original image. This method
returns None.

tobitmap

tobitmap(). Returns the image converted to an X11 bitmap.

tostring

tostring(). Returns a string containing pixel data, using the standard “raw” encoder.

tostring(decoder, parameters).

transform

transform(size, method, data), transform(size, method, data, filter).
Creates a new image with the given size, and the same mode as the original, and copies
data to the new image using the given transform.

In this version, the method argument can be EXTENT (cut out a rectangular subregion),
AFFINE (affine transform), QUAD (map a quadrilateral to a rectangle), or MESH (map a
number of source quadrilaterals in one operation). The various methods are described
below.

The filter argument defines how to filter pixels from the source image. In this version, it
can be NEAREST (use nearest neighbour), BILINEAR (linear interpolatation in a 2x2
environment), or BICUBIC (cubic spline interpolation in a 4x4 environment). If omitted,
it defaults to NEAREST.

transform(EXTENT)

transform(size, EXTENT, data), transform(size, EXTENT, data, filter).
Extracts a subregion from the image.

Data is a 4-tuple (x0, y0, x1, y1) which specifies two points in the input image's
coordinate system. The resulting image will contain data sampled from between these

The Image Module

18

two points, so that (x0, y0) in the input image will end up at (0,0) in the output image,
and (x1, y1) at size.

This method can be used to crop, stretch, shrink, or mirror an arbitrary rectangle in the
current image. It is slightly slower than crop, but about as fast as a corresponding
resize operation.

transform(AFFINE)

transform(size, AFFINE, data), transform(size, AFFINE, data, filter). Applies
an affine transform to the image, and places the result in a new image with the given
size.

Data is a 6-tuple (a, b, c, d, e, f) which contain the first two rows from an affine
transform matrix. For each pixel (x, y) in the output image, the new value is taken from
a position (a x + b y + c, d x + e y + f) in the input image, rounded to nearest pixel.

This function can be used to scale, translate, rotate, and shear the original image.

transform(QUAD)

transform(size, QUAD, data), transform(size, QUAD, data, filter). Maps a
quadrilateral (a region defined by four corners) from the image to a rectangle with the
given size.

Data is an 8-tuple (x0, y0, x1, y1, x2, y2, y3, y3) which contain the upper left, lower
left, lower right, and upper right corner of the source quadrilateral.

transform(MESH)

transform(size, MESH, data), transform(size, MESH, data, filter). Similar to
QUAD, but data is a list of target rectangles and corresponding source quadrilaterals.

transpose

transpose(method). Returns a flipped or rotated copy of an image.

Method can be one of the following: FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM, ROTATE_90,
ROTATE_180, or ROTATE_270.

verify

verify(). Attempts to determine if the file is broken, without actually decoding the
image data. If this method finds any problems, it raises suitable exceptions. If you need
to load the image after using this method, you must reopen the image file.

Attributes
Instances of the Image class have the following attributes:

format

The file format that this image was read from. For images created by the library, this
attribute is set to None.

The Image Module

19

mode

Image mode. This is a string specifying the pixel format used by the image, with typical
values like “1”, “L”, “RGB”, or “CMYK.”

size

Image size, in pixels. The size is given as a 2-tuple, with the width given first.

palette

Colour palette table, if any. If mode is “P”, this should be an instance of the
ImagePalette class. Otherwise, it should be set to None.

info

A dictionary holding data associated with the image.

20

The ImageChops Module
This module contains a number of arithmetical image operations, called channel
operations (“chops”). These can be used for various purposes, including special effects,
image compositions, algorithmic painting, and more.

Functions
Most channel operations take one or two image arguments and returns a new image.
Unless otherwise noted, the result of a channel operation is always clipped to the range
0 to MAX (which is 255 for all modes supported by the operations in this module).

constant

constant(image, value). Return a layer with the same size as the given image, but
filled with the given pixel value.

duplicate

duplicate(image). Return a copy of the given image.

invert

invert(image). Inverts an image.

 out = MAX - image

lighter

lighter(image1, image2). Compares the two images, pixels by pixel, and returns a
new image containing the lighter value for each pixel.

 out = max(image1, image2)

darker

darker(image1, image2). Compares the two images, pixels by pixel, and returns a new
image containing the darker value for each pixel.

 out = min(image1, image2)

difference

difference(image1, image2). Returns the absolute value of the difference between
the two images.

 out = abs(image1 - image2)

The ImageChops Module

21

multiply

multiply(image1, image2). Superimposes two images on top of each other. If you
multiply an image with a solid black image, the result is black. If you multiply with a
solid white image, the image is unaffected.

 out = image1 * image2 / MAX

screen

screen(image1, image2). Superimposes two inverted images on top of each other.

 out = MAX - ((MAX - image1) * (MAX - image2) / MAX)

add

add(image1, image2, scale, offset). Adds two images, dividing the result by scale
and adding the offset. If omitted, scale defaults to 1.0, and offset to 0.0.

 out = (image1 + image2) / scale + offset

subtract

subtract(image1, image2, scale, offset). Subtracts two images, dividing the result
by scale and adding the offset. If omitted, scale defaults to 1.0, and offset to 0.0.

 out = (image1 - image2) / scale + offset

blend

blend(image1, image2, alpha). Same as the blend function in the Image module.

composite

composite(image1, image2, mask). Same as the composite function in the Image
module.

offset

(Deprecated) offset(xoffset, yoffset). Returns a copy of the image where data have
been offset by the given distances. Data wraps around the edges. If yoffset is omitted, it
is assumed to be equal to xoffset.

22

The ImageCrackCode Module (PIL Plus)
The ImageCrackCode module allows you to detect and measure features in an image.
This module is only available in the PIL Plus package.

Functions

CrackCode (class)

CrackCode(image, position) identifies a feature in the given image. If the position is
omitted, the constructor searches from the top left corner.

Methods and attributes

area

area (attribute). The feature area, in pixels.

bbox

bbox (attribute). The bounding box, given as a 4-tuple (left, upper, right, lower).

caliper

caliper (attribute). The caliper size, given as a 2-tuple (height, width).

centroid

centroid (attribute). The center of gravity.

edge

edge (attribute). True if the feature touches the edges of the image, zero otherwise.

links

links (attribute). The number of links in the crack code chain.

offset

offset (attribute). The offset from the upper left corner of the image, to the feature's
bounding box,

start

start (attribute). The first coordinate in the crack code chain.

top

top (attribute). The topmost coordinate in the crack code chain.

The ImageCrackCode Module (PIL Plus)

23

hit

hit(xy). Check if the given point is inside this feature.

topath

topath(xy). Return crack code outline as an ImagePath object.

getmask

getmask(). Get filled feature mask, as an image object.

getoutline

getoutline(). Get feature outline, as an image object.

24

The ImageDraw Module
This module provide basic graphics support for Image objects. It can for example be used
to create new images, annotate or retouch existing images, and to generate graphics on
the fly for web use.

Example

Example 1. Draw a Grey Cross Over an Image

import Image, ImageDraw

im = Image.open("lena.pgm")

draw = ImageDraw.Draw(im)
draw.line((0, 0) + im.size, fill=128)
draw.line((0, im.size[1], im.size[0], 0), fill=128)
del draw

write to stdout
im.save(sys.stdout, "PNG")

Functions

Draw (constructor)

Draw(image) creates an object that can be used to draw in the given image.

Note that the image will be modified in place.

Methods

arc

arc(xy, start, end, options). Draws an arc (a circle outline segment) between the
start and end angles, inside the given bounding box.

The outline option gives the colour to use for the arc.

bitmap

bitmap(xy, bitmap, options). Draws a bitmap at the given position, using the current
fill colour.

chord

chord(xy, start, end, options). Same as arc, but connects the end points with a
straight line.

The outline option gives the colour to use for the chord outline. The fill option gives
the colour to use for the chord interior.

The ImageDraw Module

25

ellipse

ellipse(xy, options). Draws an ellipse inside the given bounding box.

The outline option gives the colour to use for the ellipse outline. The fill option gives
the colour to use for the ellipse interior.

line

line(xy, options) draws a line between the coordinates in the xy list.

The coordinate list can be any sequence object containing either 2-tuples [(x, y), ...]
or numeric values [x, y, ...]. It should contain at least two coordinates.

The fill option gives the colour to use for the line.

pieslice

pieslice(xy, start, end, options). Same as arc, but also draws straight lines
between the end points and the center of the bounding box.

The outline option gives the colour to use for the pieslice outline. The fill option
gives the colour to use for the pieslice interior.

point

point(xy, options) draws points (individual pixels) at the given coordinates.

The coordinate list can be any sequence object containing either 2-tuples [(x, y), ...]
or numeric values [x, y, ...].

The fill option gives the colour to use for the points.

polygon

polygon(xy, options) draws a polygon.

The polygon outline consists of straight lines between the given coordinates, plus a
straight line between the last and the first coordinate.

The coordinate list can be any sequence object containing either 2-tuples [(x, y), ...]
or numeric values [x, y, ...]. It should contain at least three coordinates.

The outline option gives the colour to use for the polygon outline. The fill option
gives the colour to use for the polygon interior.

rectangle

rectangle(box, options) draws a rectangle.

The box can be any sequence object containing either 2-tuples [(x, y), (x, y)] or
numeric values [x, y, x, y]. It should contain exactly two coordinates.

Note that the second coordinate pair defines a point just outside the rectangle, also
when the rectangle is not filled.

The outline option gives the colour to use for the rectangle outline. The fill option
gives the colour to use for the rectangle interior.

The ImageDraw Module

26

text

text(position, string, options) draws the string at the given position.

The font option is used to specify what font to use. It should be an instance of the
ImageFont class, typically loaded from file using the load method in the ImageFont
module.

The fill option gives the colour to use for the text.

textsize

textsize(string, options) ? (width, height) return the size of the given string.

The font option is used to specify what font to use. It should be an instance of the
ImageFont class, typically loaded from file using the load method in the ImageFont
module.

Compatibility
The Draw class contains a constructor and a number of methods which are provided for
backwards compatibility only. For this to work properly, you should either use options on
the drawing primitives, or these methods. Do not mix the old and new calling
conventions.

ImageDraw (constructor)

ImageDraw(image). Same as Draw. Don't use this name in new code.

setink

setink(ink) sets the color to use for subsequent draw and fill operations.

setfill

setfill(mode) sets the fill mode.

If the mode is 0, subsequently drawn shapes (like polygons and rectangles) are outlined.
If the mode is 1, they are filled.

setfont

setfont(font) sets the default font to use for the text method.

The font argument should be an instance of the ImageFont class, typically loaded from
file using the load method in the ImageFont module.

27

The ImageEnhance Module
This module contains a number of classes that can be used for image enhancement.

Example

Example 1. Vary the Sharpness of an Image

import ImageEnhance

enhancer = ImageEnhance.Sharpness(image)

for i in range(8):
 factor = i / 4.0
 enhancer.enhance(factor).show("Sharpness %f" % factor)

Also see the enhancer.py demo program in the Scripts directory.

Interface
All enhancement classes implement a common interface, containing a single method:

enhance

enhance(factor). Returns an enhanced image. The factor is a floating point value
controlling the enhancement. Factor 1.0 always returns a copy of the original image,
lower factors means less colour (brightness, contrast, etc), and higher values more.
There are no restrictions on this value.

The Color Class
The colour enhancement class is used to colour balance of an image, similar to the
controls on a colour TV set. This class implements the enhancement interface as
described above.

Color (constructor)

Color(image). Creates an enhancement object for adjusting colour in an image. A
factor of 0.0 gives a black and white image, a factor of 1.0 gives the original image.

The Brightness Class
The brightness enhancement class is used to control the brightness of an image.

Brightness (constructor)

Brightness(image). Creates an enhancement object for adjusting brightness in an
image. A factor of 0.0 gives a black image, factor 1.0 gives the original image.

The ImageEnhance Module

28

The Contrast Class
The contrast enhancement class is used to control the contrast of an image, similar to
the control on a TV set.

Contrast (constructor)

Contrast(image). Creates an enhancement object for adjusting contrast in an image. A
factor of 0.0 gives an solid grey image, factor 1.0 gives the original image.

The Sharpness Class
The sharpness enhancement class is used to control the sharpness of an image.

Sharpness (constructor)

Sharpness(image). Creates an enhancement object for adjusting sharpness in an image.
The factor 0.0 gives a blurred image, 1.0 gives the original image, and a factor of 2.0
gives a sharpened image.

29

The ImageFile Module
This module provides support functions for the image open and save functions.

In addition, it provides a Parser class which you can use to decode an image piece by
piece, for example while receiving it over a network connection. This class implements
the same consumer interface as the standard sgmllib and xmllib modules.

Example

Example 1. Parse An Image

import ImageFile

fp = open("lena.pgm", "rb")

p = ImageFile.Parser()

while 1:
 s = fp.read(1024)
 if not s:
 break
 p.feed(s)

im = p.close()

im.save("copy.jpg")

Functions

Parser (constructor)

Parser(). Creates a parser object. Parsers cannot be reused.

Methods

feed

feed(data). Feed a string of data to the parser. This method may raise an IOError
exception.

close

close(). Tells the parser to finish decoding. If the parser managed to decode an image,
it returns an Image object. Otherwise, this method raises an IOError exception.

Note: If the file cannot be identified, the parser will raise an IOError exception in the close
method. If the file can be identified, but not decoded (for example, if the data is damaged, or if it
uses an unsupported compression method), the parser will raise an IOError exception as soon
as possible, either in feed or close.

30

The ImageFileIO Module
The ImageFileIO module can be used to read an image from a socket, or any other
stream device.

This module is deprecated. New code should use the Parser class in the ImageFile
module instead.

Functions

ImageFileIO (factory)

ImageFileIO(stream) adds buffering to a stream file object, in order to provide seek
and tell methods required by the Image.open method. The stream object must
implement read and close methods.

31

The ImageFilter Module
This module contains definitions for the pre-defined set of filters, for use with the
filter method in the Image class.

Example

Example 1. Filter an Image

import ImageFilter

imout = im.filter(ImageFilter.BLUR)

Filters
This version of the library provides the following set of predefined image enhancement
filters:

• BLUR

• CONTOUR

• DETAIL

• EDGE_ENHANCE

• EDGE_ENHANCE_MORE

• EMBOSS

• FIND_EDGES

• SMOOTH

• SMOOTH_MORE

• SHARPEN

32

The ImageFont Module
The ImageFont module defines a class with the same name. Instances of this class store
bitmap fonts, and are used with the text method in the ImageDraw class.

PIL uses it's own font file format to store bitmap fonts. You can use the pilfont utility to
convert BDF and PCF font descriptors (X window font formats) to this format.

Functions

load (factory)

load(file). Loads a font from the given file, and returns the corresponding font object.
If this function fails, it raises an IOError exception.

load_path (factory)

load_path(file). Same as load, but searches for the file along sys.path if it's not
found in the current directory.

Methods

getsize

getsize(text). Returns the width and height of the given text, as a 2-tuple.

getmask

getmask(text). Returns a bitmap for the text. The bitmap should be an internal PIL
storage memory instance (as defined by the _imaging interface module).

If the font uses antialiasing, the bitmap should have mode "L" and use a maximum value
of 255. Otherwise, it should have mode "1".

33

The ImagePath Module
The ImagePath module is used to store and manipulate 2-dimensional vector data. Path
objects can be passed to the methods in the ImageDraw module.

Functions

Path (factory)

Path(coordinates) creates a path object. The coordinate list can be any sequence
object containing either 2-tuples [(x, y), ...] or numeric values [x, y, ...].

34

The ImageSequence Module
This module contains a wrapper class that makes it easy to loop over all frames in an
image sequence.

Functions

Iterator (constructor)

Iterator(image). Creates an Iterator instance that lets you loop over all frames in a
sequence.

Methods
The Iterator class implements the following method:

The [] Operator

You can call this operator with integer values from 0 and upwards. It raises an
IndexError exception when there are no more frames.

35

The ImageStat Module
This module calculates global statistics for an image, or a region of an image.

Functions

Stat (class)

Stat(image [,mask]). Calculates statistics for the give image. If a mask is included,
only the regions covered by that mask are included in the statistics.

Stat(list). Same, but calculates statistics for a previously calculated histogram.

Attributes
The following attributes contain a sequence with one element for each layer in the
image. All attributes are lazily evaluated; if you don't need a value, it won't be
calculated.

extrema

extrema (attribute). Get min/max values for each band in the image.

count

count (attribute). Get total number of pixels.

sum

sum (attribute). Get sum of all pixels.

sum2

sum2 (attribute). Squared sum of all pixels.

mean

mean (attribute). Average pixel level.

median

median (attribute). Median pixel level.

rms

rms (attribute). RMS (root-mean-square).

var

var (attribute). Variance.

The ImageStat Module

36

stddev

stddev (attribute). Standard deviation.

37

The ImageTk Module
This module contains support to create and modify Tkinter BitmapImage and PhotoImage
objects.

For examples, see the demo programs in the Scripts directory.

The BitmapImage Class

BitmapImage (constructor)

BitmapImage(image, options). Create a Tkinter-compatible bitmap image, which can
be used everywhere Tkinter expects an image object.

The given image must have mode “1”. Pixels having value 0 are treated as transparent.
Options, if any, are passed to Tkinter. The most commonly used option is foreground,
which is used to specify the colour for the non-transparent parts. See the Tkinter
documentation for information on how to specify colours.

The PhotoImage Class

PhotoImage (constructor)

PhotoImage(image). Creates a Tkinter-compatible photo image, which can be used
everywhere Tkinter expects an image object. If the image is an RGBA image, pixels
having alpha 0 are treated as transparent.

PhotoImage(mode, size). Creates an empty (transparent) photo image object. Use
paste to copy image data to this object.

paste

paste(image, box). Pastes an image into the photo image. The box is a 4-tuple defining
the left, upper, right, and lower pixel coordinate. If the box is omitted, or None, all of
the image is assumed. In any case, the size of the pasted image must match the size of
the region. If the image mode does not match the photo image mode, conversions are
automatically applied.

38

The ImageWin Module
This module contains support to create and display images under Windows 95/98, NT,
and 2000.

The Dib Class

Dib (constructor)

Dib(mode, size). This constructor creates a Windows bitmap with the given mode and
size. Mode can be one of "1", "L", or "RGB".

If the display requires a palette, this constructor creates a suitable palette and
associates it with the image. For an "L" image, 128 greylevels are allocated. For an "RGB"
image, a 6x6x6 colour cube is used, together with 20 greylevels.

To make sure that palettes work properly under Windows, you must call the palette
method upon certain events from Windows. See the method descriptions below.

Methods

expose

expose(hdc). Expose (draw) the image using the given device context handle. The
handle is an integer representing a Windows HDC handle.

In PythonWin, you can use the GetHandleAttrib method of the CDC class to get a
suitable handle.

palette

palette(hdc). Installs the palette associated with the image in the given device
context. The handle is an integer representing a Windows HDC handle.

This method should be called upon QUERYNEWPALETTE and PALETTECHANGED events from
Windows. If this method returns a non-zero value, one or more display palette entries
were changed, and the image should be redrawn.

paste

paste(image, box). Pastes an image into the bitmap image. The box is a 4-tuple
defining the left, upper, right, and lower pixel coordinate. If None is given instead of a
tuple, all of the image is assumed. In any case, the size of the pasted image must match
the size of the region. If the image mode does not match the bitmap mode, conversions
are automatically applied.

39

The PSDraw Module
The PSDraw module provides print support for Postscript printers. You can print text,
graphics and images through this module.

Functions

PSDraw (constructor)

PSDraw(file). Sets up printing to the given file. If file is omitted, sys.stdout is
assumed.

PSDraw Methods

begin_document

begin_document(). Sets up printing of a document.

end_document

end_document(). Ends printing.

line

line(from, to). Draws a line between the two points. Coordinates are given in
Postscript point coordinates (72 points per inch, (0, 0) is the lower left corner of the
page).

rectangle

rectangle(box). Draws a rectangle.

text

text(position, text), text(position, text, alignment). Draws text at the given
position. You must use setfont before calling this method.

setfont

setfont(font, size). Selects which font to use. The font argument is a Postscript font
name, the size argument is given in points.

setink

setink(ink). Selects the pixel value to use with subsequent operations.

The PSDraw Module

40

setfill

setfill(onoff). Selects if subsequent rectangle operations should draw filled
rectangles or just outlines.

41

The pildriver Utility
The pildriver tool, written by Eric S. Raymond, gives access to most PIL functions from
your operating system's command-line interface.

 $ pildriver "program"

An instance of the PILDriver class is essentially a software stack machine (Polish-
notation interpreter) for sequencing PIL image transformations. The state of the instance
is the interpreter stack.

The only method one will normally invoke after initialization is the `execute' method.
This takes an argument list of tokens, pushes them onto the instance's stack, and then
tries to clear the stack by successive evaluation of PILdriver operators. Any part of the
stack not cleaned off persists and is part of the evaluation context for the next call of
the execute method.

PILDriver doesn't catch any exceptions, on the theory that these are actually diagnostic
information that should be interpreted by the calling code.

When called as a script, the command-line arguments are passed to a PILDriver instance.
If there are no command-line arguments, the module runs an interactive interpreter,
each line of which is split into space-separated tokens and passed to the execute
method.

42

The pilconvert Utility
Convert an image from one format to another. The output format is determined by the
target extension, unless explicitly specified with the -c option.

 $ pilconvert lena.tif lena.png
 $ pilconvert -c JPEG lena.tif lena.tmp

43

The pilfile Utility
This utility identifies image files, showing the file format, size, and mode for every
image it can identify.

 $ pilfile *.tif
 lena.tif: TIFF 128x128 RGB

Use the -i option to display the info member. Use the -t option to display the tile
descriptor (which contains information used to load the image).

44

The pilfont Utility
Converts BDF or PCF font files to a format that can be used with PIL's ImageFont module.

 $ pilfont *.pdf

45

The pilprint Utility
Print an image to any PostScript level 1 printer. The image is centred on the page, with
the filename (minus path and extension) written above it. Output is written to standard
output.

 $ pilprint lena.tif | lpr -h

You can use the -p option to print directly via lpr and -c to print to a colour printer
(otherwise, a colour image is translated to greyscale before being sent to the printer).

46

A. Software License
The Python Imaging Library is:

Copyright © 1997-2001 by Secret Labs AB

Copyright © 1995-2001 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its associated documentation,
you agree that you have read, understood, and will comply with the following terms and
conditions:

Permission to use, copy, modify, and distribute this software and its associated
documentation for any purpose and without fee is hereby granted, provided that the
above copyright notice appears in all copies, and that both that copyright notice and this
permission notice appear in supporting documentation, and that the name of Secret Labs
AB or the author not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN
NO EVENT SHALL SECRET LABS AB OR THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

47

B. Getting Support
Patches, fixes, updates, and new utilities are welcome. If you stumble upon files that
the library does not handle as expected, post a note to the Image SIG mailing list (see
below). If you fix such a problem and supply a patch, you may send me the image file
anyway so I don't mess things up again in later revisions.

Ideas on formats and features that should be added, sample files, and other
contributions are also welcome.

For all sorts of updates, including information on commercial extensions to PIL, check
the PIL product page, at:

• http://www.pythonware.com/products/pil

You may also find information related to PIL at http://www.pythonware.com or via the
Python home page http://www.python.org

For support and general questions, send e-mail to the Python Image SIG mailing list:

• image-sig@python.org (mailto:image-sig@python.org)

You can join the Image SIG by sending a mail to image-sig-request@python.org. Put
subscribe in the message body to automatically subscribe to the list, or help to get
additional information.

Alternatively, you can use the Python mailing list, python-list@python.org, or the
newsgroup comp.lang.python.

48

C. Image File Formats
The Python Imaging Library supports a wide variety of raster file formats. Nearly 30
different file formats can be identified and read by the library. Write support is less
extensive, but most common interchange and presentation formats are supported.

The open function identifies files from their contents, not their names, but the save
method looks at the name to determine which format to use, unless the format is given
explicitly.

Format Descriptions

BMP

PIL reads and writes Windows and OS/2 BMP files containing "1", "L", "P", or "RGB" data.
16-colour images are read as "P" images. Run-length encoding is not supported.

The open method sets the following info properties:

compression. Set to "bmp_rle" if the file is run-length encoded.

CUR (read only)

CUR is used to store cursors on Windows. The CUR decoder reads the largest available
cursor. Animated cursors are not supported.

DCX (read only)

DCX is a container file format for PCX files, defined by Intel. The DCX format is
commonly used in fax applications. The DCX decoder files containing "1", "L", "P", or
"RGB" data. Only the first image is read.

EPS (write-only)

The library identifies EPS files containing image data. It can also write EPS images.

FLI, FLC (read only)

The library reads Autodesk FLI and FLC animations.

The open method sets the following info properties:

duration. The delay (in milliseconds) between each frame.

FPX (read only)

The library reads Kodak FlashPix files. In the current version, only the highest resolution
image is read from the file, and the viewing transform is not taken into account.

Note: To enable full FlashPix support, you need to build and install the IJG JPEG library
before building the Python Imaging Library. See the distribution README for details.

C. Image File Formats

49

GBR (read only)

The GBR decoder reads GIMP brush files.

The open method sets the following info properties:

description. The brush name.

GD (read only)

The library reads GD uncompressed files. Note that this file format cannot be
automatically identified, so you must use the open function in the GdImageFile module
to read such a file.

The open method sets the following info properties:

transparency. Transparency colour index. This key is omitted if the image is not
transparent.

GIF

The library reads GIF87a and GIF89a versions of the GIF file format. The library writes
run-length encoded GIF87a files. Note that GIF files are always read as palette mode
("P") images.

The open method sets the following info properties:

version. Version (either "GIF87a" or "GIF89a").

transparency. Transparency colour index. This key is omitted if the image is not
transparent.

ICO (read only)

ICO is used to store icons on Windows. The largest available icon is read.

IM

IM is a format used by LabEye and other applications based on the IFUNC image
processing library. The library reads and writes most uncompressed interchange versions
of this format.

IM is the only format that can store all internal PIL formats.

IMT (read only)

The library reads Image Tools images containing "L" data.

JPEG

The library reads JPEG, JFIF, and Adobe JPEG files containing "L", "RGB", or "CMYK" data.
It writes standard and progressive JFIF files.

Using the draft method, you can speed things up by converting "RGB" images to "L", and
resize images to 1/2, 1/4 or 1/8 of their original size while loading them. The draft
method also configures the JPEG decoder to trade some quality for speed.

The open method sets the following info properties:

C. Image File Formats

50

jfif. JFIF application marker found. If the file is not a JFIF file, this key is not present.

adobe. Adobe application marker found. If the file is not an Adobe JPEG file, this key is
not present.

progression. Indicates that this is a progressive JPEG file.

The save method supports the following options:

quality. Specify the image quality, on a scale from 1 (worst) to 100 (best). The default
is 75.

optimize. If present, indicates that the encoder should make an extra pass over the
image in order to select optimal encoder settings.

progression. If present, indicates that this image should be stored as a progressive
JPEG file.

Note: To enable JPEG support, you need to build and install the IJG JPEG library before
building the Python Imaging Library. See the distribution README for details.

MIC (read only)

The library identifies and reads Microsoft Image Composer (MIC) files. When opened, the
first sprite in the file is loaded. You can use seek and tell to read other sprites from
the file.

MCIDAS (read only)

The library identifies and reads 8-bit McIdas area files.

MPEG (identify only)

The library identifies MPEG files.

MSP

The library identifies and reads MSP files from Windows 1 and 2. The library writes
uncompressed (Windows 1) versions of this format.

PCD (read only)

The library reads PhotoCD files containing "RGB" data. By default, the 768x512 resolution
is read. You can use the draft method to read the lower resolution versions instead,
thus effectively resizing the image to 384x256 or 192x128. Higher resolutions cannot be
read by the Python Imaging Library.

PCX

The library reads and writes PCX files containing "1", "L", "P", or "RGB" data.

PDF (write only)

The library can write PDF (Acrobat) images. Such images are written as binary PDF 1.1
files, using either JPEG or HEX encoding depending on the image mode (and whether
JPEG support is available or not).

C. Image File Formats

51

PNG

The library identifies, reads, and writes PNG files containing "1", "L", "P", "RGB", or
"RGBA" data. Interlaced files are currently not supported.

The open method sets the following info properties:

gamma. Gamma, given as a floating point number.

transparency. Transparency colour index. This key is omitted if the image is not a
transparent palette image.

The save method supports the following options:

optimize. If present, instructs the PNG writer to make the output file as small as
possible. This includes extra processing in order to find optimal encoder settings.

Note: To enable PNG support, you need to build and install the ZLIB compression library
before building the Python Imaging Library. See the distribution README for details.

PPM

The library reads and writes PBM, PGM and PPM files containing "1", "L" or "RGB" data.

PSD (read only)

The library identifies and reads PSD files written by Adobe Photoshop 2.5 and 3.0.

SGI (read only)

The library reads uncompressed "L" and "RGB" files. This driver is highly experimental.

SUN (read only)

The library reads uncompressed "1", "P", "L" and "RGB" files.

TGA (read only)

The library reads 24- and 32-bit uncompressed and run-length encoded TGA files.

TIFF

The library reads and writes TIFF files containing "1", "L", "RGB", or "CMYK" data. It reads
both striped and tiled images, pixel and plane interleaved multi-band images, and either
uncompressed, or Packbits, LZW, or JPEG compressed images. The current version
always writes uncompressed TIFF files.

The open method sets the following info properties:

compression. Compression mode.

In addition, the tag attribute contains a dictionary of decoded TIFF fields. Values are
stored as either strings or tuples. Note that only short, long and ASCII tags are correctly
unpacked by this release.

XBM

The library reads and writes X bitmap files (mode "1").

C. Image File Formats

52

XPM (read only)

The library reads X pixmap files (mode "P") with 256 colours or less.

The open method sets the following info properties:

transparency. Transparency colour index. This key is omitted if the image is not
transparent.

File Extensions

The Python Imaging Library associates file name extensions to each file format. The open
function identifies files from their contents, not their names, but the save method looks
at the name to determine which format to use, unless the format is given explicitly.

BMP. ".bmp", ".dib"

CUR. ".cur"

DCX. ".dcx"

EPS. ".eps", ".ps"

FLI. ".fli", ".flc"

FPX. ".fpx"

GBR. ".gbr"

GD. ".gd"

GIF. ".gif"

ICO. ".ico"

IM. ".im"

JPEG. ".jpg", ".jpe", ".jpeg"

MIC. ".mic"

MSP. ".msp"

PCD. ".pcd"

PCX. ".pcx"

PDF. ".pdf"

PNG. ".png"

PPM. ".pbm", ".pgm", ".ppm"

PSD. ".psd"

SGI. ".bw", ".rgb", ".cmyk"

SUN. ".ras"

TGA. ".tga"

TIFF. ".tif", ".tiff"

XBM. ".xbm"

XPM. ".xpm"

Keep in mind that not all of these formats can actually be saved by the library.

53

D. Writing Your Own File Decoder
The Python Imaging Library uses a plug-in model which allows you to add your own
decoders to the library, without any changes to the library itself. Such plug-ins have
names like XxxImagePlugin.py, where Xxx is a unique format name (usually an
abbreviation).

A decoder plug-in should contain a decoder class, based on the ImageFile base class
defined in the module with the same name. This class should provide an _open method,
which reads the file header and sets up at least the mode and size attributes. To be able
to load the file, the method must also create a list of tile descriptors. The class must be
explicitly registered, via a call to the Image module.

For performance reasons, it is important that the _open method quickly rejects files that
do not have the appropriate contents.

Example
The following plug-in supports a simple format, which has a 128-byte header consisting
of the words "SPAM" followed by the width, height, and pixel size in bits. The header
fields are separated by spaces. The image data follows directly after the header, and can
be either bi-level, greyscale, or 24-bit true colour.

Example 1. File: SpamImagePlugin.py

import Image, ImageFile
import string

class SpamImageFile(ImageFile.ImageFile):

 format = "SPAM"
 format_description = "Spam raster image"

 def _open(self):

 # check header
 header = self.fp.read(128)
 if header[:4] != "SPAM":
 raise SyntaxError, "not a SPAM file"

 header = string.split(header)

 # size in pixels (width, height)
 self.size = string.atoi(header[1]), string.atoi(header[2])

 # mode setting
 bits = string.atoi(header[3])
 if bits == 1:
 self.mode = "1"
 elif bits == 8:
 self.mode = "L"
 elif bits == 24:
 self.mode = "RGB"

D. Writing Your Own File Decoder

54

 else:
 raise SyntaxError, "unknown number of bits"

 # data descriptor
 self.tile = [("raw", (0, 0) + self.size, 128,
 (self.mode, 0, 1))]

Image.register_open("SPAM", SpamImageFile)

Image.register_extension("SPAM", ".spam")
Image.register_extension("SPAM", ".spa") # dos version

The format handler must always set the size and mode attributes. If these are not set,
the file cannot be opened. To simplify the decoder, the calling code considers
exceptions like SyntaxError, KeyError, and IndexError, as a failure to identify the file.

Note that the decoder must be explicitly registered using the register_open function in
the Image module. Although not required, it is also a good idea to register any
extensions used by this format.

The Tile Attribute
To be able to read the file as well as just identifying it, the tile attribute must also be
set. This attribute consists of a list of tile descriptors, where each descriptor specifies
how data should be loaded to a given region in the image. In most cases, only a single
descriptor is used, covering the full image.

The tile descriptor is a 4-tuple with the following contents:

 (decoder, region, offset, parameters)

The fields are used as follows:

decoder. Specifies which decoder to use. The "raw" decoder used here supports
uncompressed data, in a variety of pixel formats. For more information on this decoder,
see the description below.

region. A 4-tuple specifying where to store data in the image.

offset. Byte offset from the beginning of the file to image data.

parameters. Parameters to the decoder. The contents of this field depends on the
decoder specified by the first field in the tile descriptor tuple. If the decoder doesn't
need any parameters, use None for this field.

Note that the tile attribute contains a list of tile descriptors, not just a single descriptor.

The Raw Decoder
The raw decoder is used to read uncompressed data from an image file. It can be used
with most uncompressed file formats, such as PPM, BMP, uncompressed TIFF, and many
others. To use the raw decoder with the fromstring function, use the following syntax:

 image = fromstring(
 mode, size, data, "raw",
 raw mode, stride, orientation
)

D. Writing Your Own File Decoder

55

When used in a tile descriptor, the parameter field should look like:

 (raw mode, stride, orientation)

The fields are used as follows:

raw mode. The pixel layout used in the file, and is used to properly convert data to PIL's
internal layout. For a summary of the available formats, see the table below.

stride. The distance in bytes between two consecutive lines in the image. If 0, the image
is assumed to be packed (no padding between lines). If omitted, the stride defaults to 0.

orientation. Whether the first line in the image is the top line on the screen (1), or the
bottom line (-1). If omitted, the orientation defaults to 1.

The raw mode field is used to determine how the data should be unpacked to match PIL's
internal pixel layout. PIL supports a large set of raw modes; for a complete list, see the
table in the Unpack.c module. The following table describes some commonly used raw
modes:

“1”. 1-bit bilevel, stored with the leftmost pixel in the most significant bit. 0 means
black, 1 means white.

“1;I”. 1-bit inverted bilevel, stored with the leftmost pixel in the most significant bit. 0
means white, 1 means black.

“1;R”. 1-bit reversed bilevel, stored with the leftmost pixel in the least significant bit. 0
means black, 1 means white.

“L”. 8-bit greyscale. 0 means black, 255 means white.

“L;I”. 8-bit inverted greyscale. 0 means white, 255 means black.

“P”. 8-bit palette-mapped image.

“RGB”. 24-bit true colour, stored as (red, green, blue).

“BGR”. 24-bit true colour, stored as (blue, green, red).

“RGBX”. 24-bit true colour, stored as (blue, green, red, pad).

“RGB;L”. 24-bit true colour, line interleaved (first all red pixels, the all green pixels,
finally all blue pixels).

Note that for the most common cases, the raw mode is simply the same as the mode.

The Python Imaging Library supports many other decoders, including JPEG, PNG, and
PackBits. For details, see the decode.c source file, and the standard plug-in
implementations provided with the library.

Decoding Floating Point Data
PIL provides some special mechanisms to allow you to load a wide variety of formats into
a mode "F" (floating point) image memory.

You can use the "raw" decoder to read images where data is packed in any standard
machine data type, using one of the following raw modes:

“F”. 32-bit native floating point.

“F;8”. 8-bit unsigned integer.

“F;8S”. 8-bit signed integer.

D. Writing Your Own File Decoder

56

“F;16”. 16-bit little endian unsigned integer.

“F;16S”. 16-bit little endian signed integer.

“F;16B”. 16-bit big endian unsigned integer.

“F;16BS”. 16-bit big endian signed integer.

“F;16N”. 16-bit native unsigned integer.

“F;16NS”. 16-bit native signed integer.

“F;32”. 32-bit little endian unsigned integer.

“F;32S”. 32-bit little endian signed integer.

“F;32B”. 32-bit big endian unsigned integer.

“F;32BS”. 32-bit big endian signed integer.

“F;32N”. 32-bit native unsigned integer.

“F;32NS”. 32-bit native signed integer.

“F;32F”. 32-bit little endian floating point.

“F;32BF”. 32-bit big endian floating point.

“F;32NF”. 32-bit native floating point.

“F;64F”. 64-bit little endian floating point.

“F;64BF”. 64-bit big endian floating point.

“F;64NF”. 64-bit native floating point.

The Bit Decoder
If the raw decoder cannot handle your format, PIL also provides a special "bit" decoder
which can be used to read various packed formats into a floating point image memory.

To use the bit decoder with the fromstring function, use the following syntax:

 image = fromstring(
 mode, size, data, "bit",
 bits, pad, fill, sign, orientation
)

When used in a tile descriptor, the parameter field should look like:

 (bits, pad, fill, sign, orientation)

The fields are used as follows:

bits. Number of bits per pixel (2-32). No default.

pad. Padding between lines, in bits. This is either 0 if there is no padding, or 8 if lines
are padded to full bytes. If omitted, the pad value defaults to 8.

fill. Controls how data are added to, and stored from, the decoder bit buffer.

fill=0. Add bytes to the msb end of the decoder buffer; store pixels from the msb end.

fill=1. Add bytes to the lsb end of the decoder buffer; store pixels from the msb end.

fill=2. Add bytes to the msb end of the decoder buffer; store pixels from the lsb end.

fill=3. Add bytes to the lsb end of the decoder buffer; store pixels from the lsb end.

D. Writing Your Own File Decoder

57

If omitted, the fill order defaults to 0.

sign. If non-zero, bit fields are sign extended. If zero or omitted, bit fields are unsigned.

orientation. Whether the first line in the image is the top line on the screen (1), or the
bottom line (-1). If omitted, the orientation defaults to 1.

