
Maven: The Complete Reference

January 2010
Edition 0.3.1

Tim O’Brien
Jason van Zyl

Brian Fox
John Casey

Juven Xu
Thomas Locher

Contributing Authors:

Dan Fabulich
Eric Redmond
Bruce Snyder
Larry Shatzer

The Complete Reference

A Sonatype Open Book
Mountain View, CA

Copyright © 2009 Sonatype, Inc.

This work is licensed under a Creative Commons Attribution-Noncommercial-No
Derivative Works 3.0 United States license. For more information about this license,
see http://creativecommons.org/licenses/by-nc-nd/3.0/us/. You are free to share,
copy, distribute, display, and perform the work under the following conditions:

 • You must attribute the work to Sonatype, Inc. with a link to
 http://www.sonatype.com.
 • You may not use this work for commercial purposes.
 • You may not alter, transform, or build upon this work.

Nexus™, Nexus Professional™, and all Nexus-related logos are trademarks or registered
trademarks of Sonatype, Inc., in the United States and other countries. Java™ and all
Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. IBM® and WebSphere® are
trademarks or registered trademarks of International Business Machines, Inc., in the
United States and other countries. Eclipse™ is a trademark of the Eclipse Foundation,
Inc., in the United States and other countries. Apache and the Apache feather logo are
trademarks of The Apache Software Foundation.

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and
Sonatype, Inc. was aware of a trademark claim, the designations have been printed in
caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
and authors assume no responsibility for errors or omissions, or for damages resulting
from the use of the information contained herein.

Published by:

Sonatype, Inc.
800 W. El Camino Real
Suite 400
Mountain View, CA 94040.

ISBN 978-0-9842433-4-1 Editor: Tim O’Brien

For online information and ordering of this and other
Sonatype books, please visit www.sonatype.com. The
publisher o�ers discounts on this book when ordered in
quantity. For more information, please contact:
book@sonatype.com

Maven Training by Sonatype

http://www.sonatype.com/training

With Sonatype training, you will learn Maven fundamentals and best practices directly
from Maven and Nexus experts. If your team is using Nexus, this class is the easiest
way to make sure that everyone starts from the same foundation.

MVN-101 Maven Mechanics
An online instructor-led course of two half-day sessions, ideal for programmers who
work with Maven projects and need to understand how to work with an existing
Maven build. This class is also appropriate for experienced Maven users who are inter-
ested in becoming more familiar with Maven fundamentals.

MVN-201 Development Infrastructure Design
An online instructor-led course of two half-day sessions, ideal for Development Infra-
structure Engineers who are responsible for maintaining enterprise development infra-
structure. This class includes content on advanced repository management using
Nexus and continuous integration using Hudson.

Nexus Professional

http://www.sonatype.com/products/nexus

Nexus Professional 1.4 is now available with a wide array of new features. This release
introduces new staging and repository management capabilities as well as improved
permissions management tools. Download your free, 30-day evaluation today.

"At Intuit, we recognize that as builds grow and the teams who create them change
over time, swift, accurate repository management becomes critical. Nexus provides
a comprehensive, easy-to-use open source solution that lets teams and developers
track, search, organize and access build components."

 - Kaizer Sogiawala, Software Con�guration Management Engineer, Intuit.

"We have adopted Maven for all our software development projects and have
started using Nexus to better support our development processes. The support for
promotion and procurement work�ows in Nexus Professional now expands Nexus
with a robust set of additional features which make it easier for us to maintain
consistency between our development, testing and production environments."

 - Chris Maki, Principal Software Engineer, Overstock.com

Copyright ... xvii
Foreword: 0.3.1 .. xix

1. Changes in Edition 0.2.1 .. xix
Preface ... xxi

1. How to Use this Book ... xxi
2. Your Feedback ... xxi
3. Font Conventions ... xxii
4. Maven Writing Conventions ... xxii
5. Acknowledgements .. xxiii

1. Introducing Apache Maven ... 1
1.1. Maven... What is it? .. 1
1.2. Convention Over Configuration ... 1
1.3. A Common Interface ... 2
1.4. Universal Reuse through Maven Plugins ... 3
1.5. Conceptual Model of a "Project" .. 4
1.6. Is Maven an alternative to XYZ? ... 5
1.. Comparing Maven with Ant ... 5

2. Installing Maven ... 9
2.1. Verify your Java Installation ... 9
2.2. Downloading Maven .. 9
2.3. Installing Maven ... 10

2.3.1. Installing Maven on Mac OSX .. 10
2.3.2. Installing Maven on Microsoft Windows ... 11
2.3.3. Installing Maven on Linux .. 11
2.3.4. Installing Maven on FreeBSD or OpenBSD ... 12

2.4. Testing a Maven Installation .. 12
2.5. Maven Installation Details ... 12

2.5.1. User-specific Configuration and Repository ... 13
2.5.2. Upgrading a Maven Installation ... 13
2.5.3. Upgrading from Maven 1.x to Maven 2.x .. 14

2.6. Uninstalling Maven .. 14
2.7. Getting Help with Maven .. 15
2.8. About the Apache Software License ... 15

3. The Project Object Model ... 17
3.1. Introduction .. 17
3.2. The POM ... 17

3.2.. The Super POM ... 19
3.2.2. The Simplest POM .. 22
3.2.3. The Effective POM ... 23
3.2.4. Real POMs .. 23

3.3. POM Syntax ... 24
3.3.1. Project Versions ... 24
3.3.2. Property References ... 25

iv

3.4. Project Dependencies ... 27
3.4.1. Dependency Scope .. 28
3.4.2. Optional Dependencies ... 28
3.4.3. Dependency Version Ranges ... 30
3.4.4. Transitive Dependencies ... 31
3.4.5. Conflict Resolution ... 32
3.4.6. Dependency Management ... 34

3.5. Project Relationships .. 35
3.5.1. More on Coordinates ... 36
3.5.2. Project Inheritance .. 37

3.6. POM Best Practices ... 39
3.6.1. Grouping Dependencies ... 39
3.6.2. Multi-module vs. Inheritance ... 41

4. The Build Lifecycle ... 47
4.1. Introduction .. 47

4.1.1. Clean Lifecycle (clean) .. 47
4.1.2. Default Lifecycle (default) .. 50
4.1.3. Site Lifecycle (site) ... 51

4.2. Package-specific Lifecycles ... 52
4.2.1. JAR .. 52
4.2.2. POM ... 53
4.2.3. Maven Plugin ... 53
4.2.4. EJB .. 53
4.2.5. WAR .. 54
4.2.6. EAR ... 54
4.2.7. Other Packaging Types .. 55

4.3. Common Lifecycle Goals .. 56
4.3.1. Process Resources ... 56
4.3.2. Compile .. 59
4.3.3. Process Test Resources .. 61
4.3.4. Test Compile .. 61
4.3.5. Test .. 61
4.3.6. Install ... 62
4.3.7. Deploy .. 62

5. Build Profiles .. 65
5.1. What Are They For? .. 65

5.1.1. What is Build Portability .. 65
5.1.2. Selecting an Appropriate Level of Portability ... 66

5.2. Portability through Maven Profiles ... 67
5.2.1. Overriding a Project Object Model ... 69

5.3. Profile Activation .. 70
5.3.1. Activation Configuration .. 71
5.3.2. Activation by the Absence of a Property .. 73

v

5.4. Listing Active Profiles .. 73
5.5. Tips and Tricks ... 74

5.5.1. Common Environments .. 74
5.5.2. Protecting Secrets ... 76
5.5.3. Platform Classifiers ... 77

5.6. Summary ... 79
6. Running Maven ... 81

6.1. Maven Command Line Options .. 81
6.1.1. Defining Properties ... 81
6.1.2. Getting Help .. 81
6.1.3. Using Build Profiles .. 83
6.1.4. Displaying Version Information ... 83
6.1.5. Running in Offline Mode ... 83
6.1.6. Using a Custom POM or Custom Settings File ... 83
6.1.7. Encrypting Passwords .. 84
6.1.8. Dealing with Failure .. 84
6.1.9. Controlling Maven's Verbosity .. 84
6.1.10. Running Maven in Batch Mode ... 85
6.1.11. Downloading and Verifying Dependencies ... 85
6.1.12. Controlling Plugin Updates ... 86
6.1.13. Non-recursive Builds ... 86

6.2. Using Advanced Reactor Options ... 87
6.2.1. Advanced Reactor Options Example Project ... 87
6.2.2. Resuming Builds ... 89
6.2.3. Specifying a Subset of Projects .. 89
6.2.4. Making a Subset of Projects .. 89
6.2.5. Making Project Dependents .. 90
6.2.6. Resuming a "make" build ... 90

6.3. Using the Maven Help Plugin .. 91
6.3.1. Describing a Maven Plugin ... 91

7. Maven Configuration .. 95
7.1. Configuring Maven Plugins ... 95

7.1.1. Plugin Configuration Parameters .. 95
7.1.2. Adding Plugin Dependencies ... 98
7.1.3. Setting Global Plugin Parameters ... 99
7.1.4. Setting Execution Specific Parameters ... 99
7.1.5. Setting Default Command Line Execution Parameters 100
7.1.6. Setting Parameters for Goals Bound to Default Lifecycle 100

8. Maven Assemblies ... 103
8.1. Introduction .. 103
8.2. Assembly Basics .. 103

8.2.1. Predefined Assembly Descriptors ... 104
8.2.2. Building an Assembly .. 105

vi

8.2.3. Assemblies as Dependencies ... 107
8.2.4. Assembling Assemblies via Assembly Dependencies 108

8.3. Overview of the Assembly Descriptor ... 112
8.4. The Assembly Descriptor .. 113

8.4.1. Property References in Assembly Descriptors ... 113
8.4.2. Required Assembly Information ... 113

8.5. Controlling the Contents of an Assembly ... 114
8.5.1. Files Section .. 115
8.5.2. FileSets Section ... 116
8.5.3. Default Exclusion Patterns for fileSets .. 118
8.5.4. dependencySets Section .. 119
8.5.5. moduleSets Sections .. 128
8.5.6. Repositories Section ... 134
8.5.7. Managing the Assembly’s Root Directory .. 135
8.5.8. componentDescriptors and containerDescriptorHandlers 136

8.6. Best Practices .. 136
8.6.1. Standard, Reusable Assembly Descriptors .. 137
8.6.2. Distribution (Aggregating) Assemblies .. 140

8.7. Summary .. 144
9. Properties and Resource Filtering .. 145

9.1. Introduction .. 145
9.2. Maven Properties ... 145

9.2.1. Maven Project Properties .. 146
9.2.2. Maven Settings Properties ... 147
9.2.3. Environment Variable Properties .. 148
9.2.4. Java System Properties ... 148
9.2.5. User-defined Properties .. 149

9.3. Resource Filtering .. 150
10. Site Generation .. 155

10.1. Introduction ... 155
10.2. Building a Project Site with Maven ... 155
10.3. Customizing the Site Descriptor .. 157

10.3.1. Customizing the Header Graphics ... 158
10.3.2. Customizing the Navigation Menu .. 159

10.4. Site Directory Structure ... 160
10.5. Writing Project Documentation ... 161

10.5.1. APT Example ... 161
10.5.2. FML Example ... 162

10.6. Deploying Your Project Website ... 163
10.6.1. Configuring Server Authentication .. 163
10.6.2. Configuring File and Directory Modes ... 164

10.7. Customizing Site Appearance ... 164
10.7.1. Customizing the Site CSS ... 165

vii

10.7.2. Create a Custom Site Template .. 165
10.7.3. Reusable Website Skins .. 170
10.7.4. Creating a Custom Theme CSS .. 171

10.8. Tips and Tricks .. 172
10.8.1. Inject XHTML into HEAD .. 172
10.8.2. Add Links under Your Site Logo .. 173
10.8.3. Add Breadcrumbs to Your Site ... 173
10.8.4. Add the Project Version .. 174
10.8.5. Modify the Publication Date Format and Location 174
10.8.6. Using Doxia Macros .. 175

11. Writing Plugins .. 177
11.1. Introduction ... 177
11.2. Programming Maven .. 177

11.2.1. What is Inversion of Control? .. 177
11.2.2. Introduction to Plexus ... 178
11.2.3. Why Plexus? ... 179
11.2.4. What is a Plugin? .. 180

11.3. Plugin Descriptor ... 180
11.3.1. Top-level Plugin Descriptor Elements .. 182
11.3.2. Mojo Configuration .. 183
11.3.3. Plugin Dependencies .. 185

11.4. Writing a Custom Plugin ... 185
11.4.1. Creating a Plugin Project .. 185
11.4.2. A Simple Java Mojo .. 186
11.4.3. Configuring a Plugin Prefix ... 188
11.4.4. Logging from a Plugin ... 191
11.4.5. Mojo Class Annotations .. 192
11.4.6. When a Mojo Fails .. 193

11.5. Mojo Parameters .. 194
11.5.1. Supplying Values for Mojo Parameters .. 194
11.5.2. Multi-valued Mojo Parameters ... 196
11.5.3. Depending on Plexus Components .. 198
11.5.4. Mojo Parameter Annotations .. 198

11.6. Plugins and the Maven Lifecycle .. 199
11.6.1. Executing a Parallel Lifecycle .. 199
11.6.2. Creating a Custom Lifecycle .. 200
11.6.3. Overriding the Default Lifecycle .. 202

12. Using Maven Archetypes ... 205
12.1. Introduction to Maven Archetypes ... 205
12.2. Using Archetypes ... 205

12.2.1. Using an Archetype from the Command Line .. 205
12.2.2. Using the Interactive generate Goal ... 206
12.2.3. Using an Archetype from m2eclipse .. 208

viii

12.3. Available Archetypes .. 208
12.3.1. Common Maven Archetypes .. 209
12.3.2. Notable Third-Party Archetypes .. 209

12.4. Publishing Archetypes ... 212
13. Developing with Flexmojos .. 215

13.1. Introduction ... 215
13.2. Configuring Build Environment for Flexmojos .. 215

13.2.1. Referencing a Repository with the Flex Framework 215
13.2.2. Configuring Environment to Support Flex Unit Tests 220
13.2.3. Adding FlexMojos to Your Maven Settings' Plugin Groups 222

13.3. Creating a Flex Mojos Project from an Archetype .. 222
13.3.1. Creating a Flex Library ... 222
13.3.2. Creating a Flex Application ... 227
13.3.3. Creating a Multi-module Project: Web Application with a Flex Dependency
.. 229

13.4. The FlexMojos Lifecycle ... 235
13.4.1. The SWC Lifecycle ... 235
13.4.2. The SWF Lifecycle .. 236

13.5. FlexMojos Plugin Goals .. 237
13.5.1. Generating Actionscript Documentation ... 238
13.5.2. Compiling Flex Source ... 239
13.5.3. Generating Flex Builder Project Files .. 240

13.6. FlexMojos Plugin Reports .. 240
13.6.1. Generating Actionscript Documentation Report 240

13.7. Developing and Customizing Flexmojos ... 242
13.7.1. Get the Flexmojos Source Code ... 242

A. Appendix: Settings Details .. 245
A.1. Quick Overview .. 245
A.2. Settings Details ... 245

A.2.1. Simple Values .. 245
A.2.2. Servers ... 246
A.2.3. Mirrors ... 247
A.2.4. Proxies ... 248
A.2.5. Profiles ... 249
A.2.6. Activation ... 249
A.2.7. Properties .. 250
A.2.8. Repositories ... 251
A.2.9. Plugin Repositories ... 253
A.2.10. Active Profiles ... 253
A.2.11. Encrypting Passwords in Maven Settings ... 254

B. Appendix: Sun Specification Alternatives ... 257
C. Creative Commons License ... 261

C.1. Creative Commons BY-NC-ND 3.0 US License .. 262

ix

D. Book Revision History ... 267
D.1. Changes in Edition 0.2.1 .. 267
D.2. Changes in Edition 0.2 ... 267
D.3. Changes in Edition 0.1 ... 267

Index ... 269

List of Figures
3.1. The Project Object Model ... 18
3.2. The Super POM is always the base Parent ... 22
3.3. Project Inheritance for a-parent and project-a .. 38
3.4. maven-book Multi-module vs. Inheritance .. 42
3.5. Enterprise Multi-module vs. Inheritance ... 43
6.1. Directory Structure of Sample Multi-module Project .. 87
6.2. Dependencies within Sample Multi-module Project .. 88
10.1. Simple Generated Maven Site .. 156
10.2. Customized Sample Project Web Site .. 158
13.1. Adding a Proxy Repository to Sonatype Nexus .. 217
13.2. Configuring the Sonatype Flexmojos Proxy Repository ... 218
13.3. Adding the Sonatype Flexmojos Proxy to the Public Repositories Group 219
13.4. Flexmojo Library Archetype File Structure ... 223
13.5. Directory Structure for Flex Application Archetype .. 228
13.6. Directory Structure for Flex Multimodule Archetype ... 230
13.7. The FlexMojos SWC Lifecycle ... 236
13.8. The FlexMojos SWF Lifecycle ... 237
13.9. Actionscript Documentation Generated by the FlexMojos Plugin 239
13.10. Actionscript Documentation Report on Maven Site ... 241
13.11. Flexmojos Subversion Repository .. 242
A.1. Storing Unencrypted Passwords in Maven Settings .. 254
A.2. Storing Encrypted Passwords in Maven Settings ... 255

List of Examples
1.1. A Simple Ant build.xml file .. 6
1.2. A Sample Maven pom.xml ... 7
3.1. The Super POM .. 19
3.2. The Simplest POM .. 23
3.3. Project Dependencies ... 27
3.4. Declaring Optional Dependencies ... 29
3.5. Specifying a Dependency Range: JUnit 3.8 - JUnit 4.0 ... 30
3.6. Specifying a Dependency Range: JUnit <= 3.8.1 ... 30
3.7. Excluding a Transitive Dependency .. 32
3.8. Excluding and Replacing a Transitive Dependency .. 33
3.9. Defining Dependency Versions in a Top-level POM .. 34
3.10. Project Inheritance ... 37
3.11. Consolidating Dependencies in a Single POM Project ... 40
3.12. Declaring a Dependency on a POM .. 40
4.1. Triggering a Goal on pre-clean .. 48
4.2. Customizing Behavior of the Clean Plugin ... 49
4.3. Custom Packaging Type for Adobe Flex (SWF) .. 55
4.4. Using Properties in Project Resources ... 57
4.5. default.properties in src/main/filters .. 57
4.6. Filter Resources (Replacing Properties) ... 57
4.7. Configuring Additional Resource Directories .. 58
4.8. Filtering Script Resources ... 58
4.9. Setting the Source and Target Versions for the Compiler Plugin 60
4.10. Overriding the Default Source Directory .. 60
4.11. Overriding the Location of Test Source and Output .. 61
4.12. Configuring Surefire to Ignore Test Failures ... 62
5.1. Using a Maven Profile to Override Production Compiler Settings 67
5.2. Elements Allowed in a Profile ... 69
5.3. Dynamic Inclusion of Submodules Using Profile Activation .. 70
5.4. Profile Activation Parameters: JDK Version, OS Parameters, and Properties 72
5.5. Activating Profiles in the Absence of a Property ... 73
5.6. ~/.m2/settings.xml defines a default profile setting environment.type 74
5.7. Project Profile Activated by setting environment.type to 'dev' ... 75
5.8. Storing Secrets in a User-specific Settings Profile .. 76
5.9. Qualifying Artifacts with Platform Activated Project Profiles ... 77
5.10. Qualifying Artifacts with Platform Activated Project Profiles and Variable Substitution 78
5.11. Depending on a Qualified Artifact .. 79
6.1. Maven Version Information ... 83
6.2. Order of Project Builds in Maven Reactor .. 88
7.1. Adding Dependencies to a Plugin ... 98

xiv

Configuring a Maven Plugin ... 99
7.3. Setting Configuration Parameters in an Execution .. 99
Configuring Plugin Parameters for Command Line Execution .. 100
Setting a Parameter for a Default Goal Execution .. 101
7.6. Setting Two Default Goal Plugin Configuration Parameters ... 101
8.1. Assembly Descriptor for Executable JAR ... 106
8.2. Configuring the project assembly in top-level POM .. 108
8.3. Activating the Assembly Plugin Configuration in Child Projects 109
8.4. POM for the Assembly Bundling Project ... 110
8.5. Required Assembly Descriptor Elements .. 113
8.6. Including a JAR file in an Assembly using files ... 115
8.7. Including Files with fileSet .. 116
8.8. Definition of Default Exclusion Patterns from Plexus Utils .. 118
8.9. Defining Dependency Sets Using Scope ... 122
8.10. Using Dependency Excludes and Includes in dependencySets 124
8.11. Excluding Files from a Dependency Unpack ... 127
8.12. Includes and Excluding Modules with a moduleSet ... 130
8.13. Including JavaDoc from Modules in an Assembly .. 132
8.14. Including Module Artifacts and Dependencies in an Assembly 133
9.1. User-defined Properties in a POM .. 149
9.2. User-defined Properties in a Profile in a POM ... 150
9.3. Referencing Maven Properties from a Resource ... 151
9.4. Defining Variables and Activating Resource Filtering ... 151
10.1. An Initial Site Descriptor ... 157
10.2. Adding a Banner Left and Banner Right to Site Descriptor ... 158
10.3. Creating Menu Items in a Site Descriptor ... 159
10.4. Adding a Link to the Site Menu ... 159
10.5. APT Document .. 161
10.6. FAQ Markup Language Document .. 162
10.7. Configuring Site Deployment ... 163
10.8. Storing Server Authentication in User-specific Settings ... 163
10.9. Configuring File and Directory Modes on Remote Servers ... 164
10.10. Customizing the Page Template in a Project's POM .. 169
10.11. Adding a Menu Item to a Site Descriptor .. 170
10.12. Configuring a Custom Site Skin in Site Descriptor .. 172
10.13. Injecting HTML into the HEAD element .. 172
10.14. Adding Links Under Your Site Logo ... 173
10.15. Configuring the Site's Breadcrumbs ... 173
10.16. Positioning the Version Information ... 174
10.17. Positioning the Publish Date ... 175
10.18. Configuring the Publish Date Format ... 175
10.19. Output of the Snippet Macro in XHTML .. 175
11.1. Plugin Descriptor ... 181

xv

11.2. A Plugin Project's POM .. 186
11.3. A Simple EchoMojo ... 187
11.4. Maven Metadata for the Maven Plugin Group ... 189
11.5. Customizing the Plugin Groups in Maven Settings ... 189
11.6. Configuring a Plugin Prefix ... 190
11.7. A Plugin with Multi-valued Parameters .. 196
11.8. Depending on a Plexus Component ... 198
11.9. Define a Custom Lifecycle in lifecycle.xml ... 200
11.10. Forking a Customer Lifecycle from a Mojo ... 201
11.11. Overriding the Default Lifecycle ... 202
11.12. Configuring a Plugin as an Extension ... 203
12.1. Archetype Catalog for the Apache Cocoon Project ... 212
13.1. Adding a Reference to Sonatype's FlexMojos Repository in a POM 216
13.2. Settings XML for Local Nexus Instance ... 219
13.3. Adding Sonatype Plugins to Maven Settings ... 222
13.4. Project Object Model for Flex Library Archetype ... 223
13.5. Flex Library Archetype's Sample App Class .. 225
13.6. Unit Test for Library Archetype's App Class ... 225
13.7. POM for Flex Application Archetype .. 228
13.8. Sample Application Main.mxml .. 229
13.9. Unit Test for Main.mxml ... 229
13.10. Top-level POM Created by Modular Web Application Archetype 231
13.11. swc Module POM .. 231
13.12. swf module POM ... 232
13.13. war module POM ... 234
13.14. Setting Plugin Extensions to True for Custom Flex Lifecycle 235
13.15. Customizing the Compiler Plugin .. 239
13.16. Configuring the Actionscript Documentation Report .. 240
13.17. Configuring the asdoc-report .. 241
A.1. Overview of top-level elements in settings.xml ... 245
A.2. Simple top-level elements in settings.xml .. 245
A.3. Server configuration in settings.xml .. 246
A.4. Mirror configuration in settings.xml ... 247
A.5. Proxy configuration in settings.xml .. 248
A.6. Defining Activation Parameters in settings.xml ... 249
A.7. Setting the ${user.install} property in settings.xml .. 251
A.8. Repository Configuration in settings.xml ... 251
A.9. Plugin Repositories in settings.xml ... 253
A.10. Setting active profiles in settings.xml .. 253
A.11. settings-security.xml with Master Password .. 255
A.12. Storing an Encrypted Password in Maven Settings (~/.m2/settings.xml) 256
A.13. Configuring Relocation of the Master Password .. 256
B.1. Adding JTA 1.0.1B to a Maven Project ... 258

Copyright
Copyright © 2009 Sonatype, Inc.

Online version published by Sonatype, Inc., 800 W. El Camino Real, Suite 400, Mountain View, CA,
94040.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
United States license. For more information about this license, see http://creativecommons.org/licenses/
by-nc-nd/3.0/us/.

Nexus™, Nexus Professional™, and all Nexus-related logos are trademarks or registered trademarks of
Sonatype, Inc., in the United States and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries.

IBM® and WebSphere® are trademarks or registered trademarks of International Business Machines,
Inc., in the United States and other countries.

Eclipse™ is a trademark of the Eclipse Foundation, Inc., in the United States and other countries.

Apache and the Apache feather logo are trademarks of The Apache Software Foundation.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Sonatype, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Foreword: 0.3.1
We've had some great feedback so far, please keep it coming. Your feedback is greatly appreciated,
send it to book@sonatype.com1. To keep yourself informed of updates, read the book blog at: http://
blogs.sonatype.com/book. Everyone at Sonatype has had a hand in this version of the book, so the author
is officially "Sonatype".

Please report any bugs or issues on this book's GetSatisfaction page, here: http://
www.getsatisfaction.com/sonatype/products/sonatype_maven_the_complete_reference.

Tim O'Brien (tobrien@sonatype.com)

Evanston, IL

November 19, 2009

1. Changes in Edition 0.2.1
The following changes were made:

• Various small typos were address throughout the book.

1 mailto:book@sonatype.com

mailto:book@sonatype.com
http://blogs.sonatype.com/book
http://blogs.sonatype.com/book
http://www.getsatisfaction.com/sonatype/products/sonatype_maven_the_complete_reference
http://www.getsatisfaction.com/sonatype/products/sonatype_maven_the_complete_reference
mailto:book@sonatype.com

Preface
Maven is a build tool, a project management tool, an abstract container for running build tasks. It is a
tool that has shown itself indispensable for projects that graduate beyond the simple and need to start
finding consistent ways to manage and build large collections of interdependent modules and libraries
which make use of tens or hundreds of third-party components. It is a tool that has removed much of
the burden of 3rd party dependency management from the daily work schedule of millions of engineers,
and it has enabled many organizations to evolve beyond the toil and struggle of build management into
a new phase where the effort required to build and maintain software is no longer a limiting factor in
software design.

This work is the first attempt at a comprehensive title on Maven. It builds upon the combined experience
and work of the authors of all previous Maven titles, and you should view it not as a finished work but
as the first edition in a long line of updates to follow. While Maven has been around for a few years,
the authors of this book believe that it has just begun to deliver on the audacious promises it makes.
The authors, and company behind this book, Sonatype1, believe that the publishing of this book marks
the beginning of a new phase of innovation and development surrounding Maven and the software
ecosystem that surrounds it.

1. How to Use this Book

Pick it up, read some of the text on the pages. Once you reach the end of a page, you'll want to either
click on a link if you are looking at the HTML version, or, if you have the printed book, you'll lift up a
corner of a page and turn it. If you are sitting next to a computer, you can type in some of the examples
and try to follow along. Please don't throw a book this large at anyone in anger.

This book introduces Maven by developing some real examples and walking you through the structure
of those examples providing motivation and explanation along the way.

2. Your Feedback

We didn't write this book so we could send off a Word document to our publisher and go to a launch
party to congratulate ourselves on a job well done. This book isn't "done"; in fact, this book will never
be completely "done". The subject it covers is constantly changing and expanding, and we consider this
work an ongoing conversation with the community. Publishing the book means that the real work has
just begun, and you, as a reader, play a pivotal role to helping to maintain and improve this book. If
you see something in this book that is wrong: a spelling mistake, some bad code, a blatant lie, then you
should tell us, send us an email at: book@sonatype.com2.

1 http://www.sonatype.com
2 mailto:tobrien@sonatype.com

http://www.sonatype.com
mailto:tobrien@sonatype.com
http://www.sonatype.com
mailto:tobrien@sonatype.com

xxii

The ongoing relevance of this book depends upon your feedback. We want to know what works and
what doesn't work. We want to know if there is any information you couldn't understand. We especially
want to know if you think that the book is awful. Positive or negative comments are all welcome. Of
course, we reserve the right to disagree, but all feedback will be rewarded with a gracious response.

3. Font Conventions
This book follows certain conventions for font usage. Understanding these conventions up-front makes
it easier to use this book.

Italic

Used for filenames, file extensions, URLs, application names, emphasis, and new terms when
they are first introduced.

Constant width

Used for Java class names, methods, variables, properties, data types, database elements, and
snippets of code that appear in text.

Constant width bold
Used for commands you enter at the command line and to highlight new code inserted in a running
example.

Constant width italic

Used to annotate output.

4. Maven Writing Conventions
The book follows certain conventions for naming and font usage in relation to Apache Maven.
Understanding these conventions up-front makes it easier to read this book.

Compiler plugin
Maven plugins are capitalized.

create goal
Maven goal names are displayed in a constant width font.

"plugin"
While "plug-in" (with hyphen) would be the grammatically correct form, this book writes the
term as "plugin" both because it is easier to read and write and because it is a standard throughout
the Maven community.

Maven Lifecycle, Maven Standard Directory Layout, Maven Plugin, Project Object Model
Core Maven concepts are capitalized whenever they are being referenced in the text.

goalParameter

A Maven goal parameter is displayed in a constant width font.

xxiii

compile phase
Lifecycle phases are displayed in a constant width font.

5. Acknowledgements
Sonatype would like to thank the following contributors. The people listed below have provided
feedback which has helped improve the quality of this book. Thanks to Raymond Toal, Steve Daly, Paul
Strack, Paul Reinerfelt, Chad Gorshing, Marcus Biel, Brian Dols, Mangalaganesh Balasubramanian,
Marius Kruger, and Mark Stewart. Special thanks to Joel Costigliola for helping to debug and correct the
Spring web chapter. Stan Guillory was practically a contributing author given the number of corrections
he posted to the book's Get Satisfaction. Thank you Stan. Special thanks to Richard Coasby of Bamboo
for acting as the provisional grammar consultant.

Thanks to our contributing authors including Eric Redmond.

Thanks to the following contributors who reported errors either in an email or using the Get Satisfaction
site: Paco Soberón, Ray Krueger, Steinar Cook, Henning Saul, Anders Hammar, "george_007",
"ksangani", Niko Mahle, Arun Kumar, Harold Shinsato, "mimil", "-thrawn-", Matt Gumbley. If you see
your Get Satisfaction username in this list, and you would like it replaced with your real name, send
an email to book@sonatype.com3.

Special thanks to Grant Birchmeier for taking the time to proofread portions of the book and file
extremely detailed feedback via GetSatisfaction.

3 mailto:book@sonatype.com

mailto:book@sonatype.com
mailto:book@sonatype.com

Chapter 1. Introducing Apache Maven
Although there are a number of references for Maven online, there is no single, well-written narrative
for introducing Maven that can serve as both an authoritative reference and an introduction. What we’ve
tried to do with this effort is provide such a narrative coupled with useful reference material.

1.1. Maven... What is it?
The answer to this question depends on your own perspective. The great majority of Maven users are
going to call Maven a “build tool”: a tool used to build deployable artifacts from source code. Build
engineers and project managers might refer to Maven as something more comprehensive: a project
management tool. What is the difference? A build tool such as Ant is focused solely on preprocessing,
compilation, packaging, testing, and distribution. A project management tool such as Maven provides
a superset of features found in a build tool. In addition to providing build capabilities, Maven can also
run reports, generate a web site, and facilitate communication among members of a working team.

A more formal definition of Apache Maven1: Maven is a project management tool which encompasses
a project object model, a set of standards, a project lifecycle, a dependency management system, and
logic for executing plugin goals at defined phases in a lifecycle. When you use Maven, you describe
your project using a well-defined project object model, Maven can then apply cross-cutting logic from
a set of shared (or custom) plugins.

Don't let the fact that Maven is a "project management" tool scare you away. If you were just looking
for a build tool, Maven will do the job. In fact, the first few chapters of this book will deal with the most
common use case: using Maven to build and distribute your project.

1.2. Convention Over Configuration
Convention over configuration is a simple concept. Systems, libraries, and frameworks should assume
reasonable defaults. Without requiring unnecessary configuration, systems should "just work". Popular
frameworks such as Ruby on Rails2 and EJB3 have started to adhere to these principles in reaction to
the configuration complexity of frameworks such as the initial EJB 2.1 specifications. An illustration of
convention over configuration is something like EJB3 persistence: all you need to do to make a particular
bean persistent is to annotate that class with @Entity. The framework assumes table and column
names based on the name of the class and the names of the properties. Hooks are provided for you to
override these default, assumed names if the need arises, but, in most cases, you will find that using the
framework-supplied defaults results in a faster project execution.

Maven incorporates this concept by providing sensible default behavior for projects. Without
customization, source code is assumed to be in ${basedir}/src/main/java and resources are

1 http://maven.apache.org
2 http://www.rubyonrails.org/

http://maven.apache.org
http://www.rubyonrails.org/
http://maven.apache.org
http://www.rubyonrails.org/

2

assumed to be in ${basedir}/src/main/resources. Tests are assumed to be in ${basedir}/
src/test, and a project is assumed to produce a JAR file. Maven assumes that you want the compile
byte code to ${basedir}/target/classes and then create a distributable JAR file in ${basedir}/
target. While this might seem trivial, consider the fact that most Ant-based builds have to define the
locations of these directories. Ant doesn't ship with any built-in idea of where source code or resources
might be in a project; you have to supply this information. Maven's adoption of convention over
configuration goes farther than just simple directory locations, Maven's core plugins apply a common
set of conventions for compiling source code, packaging distributions, generating web sites, and many
other processes. Maven's strength comes from the fact that it is "opinionated", it has a defined life-
cycle and a set of common plugins that know how to build and assemble software. If you follow the
conventions, Maven will require almost zero effort - just put your source in the correct directory, and
Maven will take care of the rest.

One side-effect of using systems that follow "convention over configuration" is that end-users might
feel that they are forced to use a particular methodology or approach. While it is certainly true that
Maven has some core opinions that shouldn't be challenged, most of the defaults can be customized.
For example, the location of a project's source code and resources can be customized, names of JAR
files can be customized, and through the development of custom plugins, almost any behavior can be
tailored to your specific environment's requirements. If you don't care to follow convention, Maven will
allow you to customize defaults in order to adapt to your specific requirements.

1.3. A Common Interface
Before Maven provided a common interface for building software, every single project had someone
dedicated to managing a fully customized build system. Developers had to take time away from
developing software to learn about the idiosyncrasies of each new project they wanted to contribute to.
In 2001, you'd have a completely different approach to building a project like Turbine3 than you would
to building a project like Tomcat4. If a new source code analysis tool came out that would perform static
analysis on source code, or if someone developed a new unit testing framework, everybody would have
to drop what they were doing and figure out how to fit it into each project's custom build environment.
How do you run unit tests? There were a thousand different answers. This environment was characterized
by a thousand endless arguments about tools and build procedures. The age before Maven was an age
of inefficiency, the age of the "Build Engineer".

Today, most open source developers have used or are currently using Maven to manage new software
projects. This transition is less about developers moving from one build tool to another and more about
developers starting to adopt a common interface for project builds. As software systems have become
more modular, build systems have become more complex, and the number of projects has sky-rocketed.
Before Maven, when you wanted to check out a project like Apache ActiveMQ5 or Apache ServiceMix6

3 http://turbine.apache.org/
4 http://tomcat.apache.org
5 http://activemq.apache.org
6 http://servicemix.apache.org

http://turbine.apache.org/
http://tomcat.apache.org
http://activemq.apache.org
http://servicemix.apache.org
http://turbine.apache.org/
http://tomcat.apache.org
http://activemq.apache.org
http://servicemix.apache.org

3

from Subversion and build it from source, you really had to set aside about an hour to figure out the
build system for each particular project. What does the project need to build? What libraries do I need
to download? Where do I put them? What goals can I execute in the build? In the best case, it took
a few minutes to figure out a new project's build, and in the worst cases (like the old Servlet API
implementation in the Jakarta Project), a project's build was so difficult it would take multiple hours
just to get to the point where a new contributor could edit source and compile the project. These days,
you check it out from source, and you run mvn install.

While Maven provides an array of benefits including dependency management and reuse of common
build logic through plugins, the core reason why it has succeeded is that it has defined a common
interface for building software. When you see that a project like Apache ActiveMQ7 uses Maven, you
can assume that you'll be able to check it out from source and build it with mvn install without much
hassle. You know where the ignition keys goes, you know that the gas pedal is on the right-side, and
the brake is on the left.

1.4. Universal Reuse through Maven Plugins

The core of Maven is pretty dumb, it doesn't know how to do much beyond parsing a few XML
documents and keeping track of a lifecycle and a few plugins. Maven has been designed to delegate
most responsibility to a set of Maven Plugins which can affect the Maven Lifecycle and offer access
to goals. Most of the action in Maven happens in plugin goals which take care of things like compiling
source, packaging bytecode, publishing sites, and any other task which need to happen in a build. The
Maven you download from Apache doesn't know much about packaging a WAR file or running JUnit
tests; most of the intelligence of Maven is implemented in the plugins and the plugins are retrieved from
the Maven Repository. In fact, the first time you ran something like mvn install with a brand-new
Maven installation it retrieved most of the core Maven plugins from the Central Maven Repository. This
is more than just a trick to minimize the download size of the Maven distribution, this is behavior which
allows you to upgrade a plugin to add capability to your project's build. The fact that Maven retrieves
both dependencies and plugins from the remote repository allows for universal reuse of build logic.

The Maven Surefire plugin is the plugin that is responsible for running unit tests. Somewhere between
version 1.0 and the version that is in wide use today someone decided to add support for the TestNG
unit testing framework in addition to the support for JUnit. This upgrade happened in a way that didn't
break backwards compatibility. If you were using the Surefire plugin to compile and execute JUnit 3
unit tests, and you upgraded to the most recent version of the Surefire plugin, your tests continued to
execute without fail. But, you gained new functionality, if you want to execute unit tests in TestNG you
now have that ability. You also gained the ability to run annotated JUnit 4 unit tests. You gained all
of these capabilities without having to upgrade your Maven installation or install new software. Most
importantly, nothing about your project had to change aside from a version number for a plugin a single
Maven configuration file called the Project Object Model (POM).

7 http://wicket.apache.org

http://wicket.apache.org
http://wicket.apache.org

4

It is this mechanism that affects much more than the Surefire plugin. Maven has plugins for everything
from compiling Java code, to generating reports, to deploying to an application server. Maven has
abstracted common build tasks into plugins which are maintained centrally and shared universally. If
the state-of-the-art changes in any area of the build, if some new unit testing framework is released or
if some new tool is made available, you don't have to be the one to hack your project's custom build
system to support it. You benefit from the fact that plugins are downloaded from a remote repository
and maintained centrally. This is what is meant by universal reuse through Maven plugins.

1.5. Conceptual Model of a "Project"

Maven maintains a model of a project. You are not just compiling source code into bytecode, you are
developing a description of a software project and assigning a unique set of coordinates to a project. You
are describing the attributes of the project. What is the project's license? Who develops and contributes
to the project? What other projects does this project depend upon? Maven is more than just a "build
tool", it is more than just an improvement on tools like make and Ant, it is a platform that encompasses
a new semantics related to software projects and software development. This definition of a model for
every project enables such features as:

Dependency Management
Because a project is defined by a unique set of coordinates consisting of a group identifier, an
artifact identifier, and a version, projects can now use these coordinates to declare dependencies.

Remote Repositories
Related to dependency management, we can use the coordinates defined in the Maven Project
Object Model (POM) to create repositories of Maven artifacts.

Universal Reuse of Build Logic
Plugins contain logic that works with the descriptive data and configuration parameters defined
in Project Object Model (POM); they are not designed to operate upon specific files in known
locations.

Tool Portability / Integration
Tools like Eclipse, NetBeans, and IntelliJ now have a common place to find information about a
project. Before the advent of Maven, every IDE had a different way to store what was essentially
a custom Project Object Model (POM). Maven has standardized this description, and while each
IDE continues to maintain custom project files, they can be easily generated from the model.

Easy Searching and Filtering of Project Artifacts
Tools like Nexus allow you to index and search the contents of a repository using the information
stored in the POM.

5

1.6. Is Maven an alternative to XYZ?

So, sure, Maven is an alternative to Ant, but Apache Ant8 continues to be a great, widely-used tool. It
has been the reigning champion of Java builds for years, and you can integrate Ant build scripts with
your project's Maven build very easily. This is a common usage pattern for a Maven project. On the
other hand, as more and more open source projects move to Maven as a project management platform,
working developers are starting to realize that Maven not only simplifies the task of build management,
it is helping to encourage a common interface between developers and software projects. Maven is more
of a platform than a tool, while you could consider Maven an alternative to Ant, you are comparing
apples to oranges. "Maven" includes more than just a build tool.

This is the central point that makes all of the Maven vs. Ant, Maven vs. Buildr, Maven vs. Gradle
arguments irrelevant. Maven isn't totally defined by the mechanics of your build system. It isn't about
scripting the various tasks in your build as much as it is about encouraging a set of standards, a common
interface, a life-cycle, a standard repository format, a standard directory layout, etc. It certainly isn't
about what format the POM happens to be in (XML vs. YAML vs. Ruby). Maven is much larger than
that, and Maven refers to much more than the tool itself. When this book talks of Maven, it is referring
to the constellation of software, systems, and standards that support it. Buildr, Ivy, Gradle, all of these
tools interact with the repository format that Maven helped create, and you could just as easily use a
repository manager like Nexus to support a build written entirely in Ant.

While Maven is an alternative to many of these tools, the community needs to evolve beyond
seeing technology as a zero-sum game between unfriendly competitors in a competition for users and
developers. This might be how large corporations relate to one another, but it has very little relevance
to the way that open source communities work. The headline "Who's winning? Ant or Maven?" isn't
very constructive. If you force us to answer this question, we're definitely going to say that Maven is a
superior alternative to Ant as a foundational technology for a build; at the same time, Maven's boundaries
are constantly shifting and the Maven community is constantly trying to seek out new ways to become
more ecumenical, more inter-operable, more cooperative. The core tenets of Maven are declarative
builds, dependency management, repository managers, universal reuse through plugins, but the specific
incarnation of these ideas at any given moment is less important than the sense that the open source
community is collaborating to reduce the inefficiency of "enterprise-scale builds".

1.. Comparing Maven with Ant

The authors of this book have no interest in creating a feud between Apache Ant and Apache Maven,
but we are also cognizant of the fact that most organizations have to make a decision between the two
standard solutions: Apache Ant and Apache Maven. In this section, we compare and contrast the tools.

Ant excels at build process, it is a build system modeled after make with targets and dependencies. Each
target consists of a set of instructions which are coded in XML. There is a copy task and a javac task

8 http://ant.apache.org

http://ant.apache.org
http://ant.apache.org

6

as well as a jar task. When you use Ant, you supply Ant with specific instructions for compiling and
packaging your output. Look at the following example of a simple build.xml file:

Example 1.1. A Simple Ant build.xml file

<project name="my-project" default="dist" basedir=".">
 <description>
 simple example build file
 </description>
 <!-- set global properties for this build -->
 <property name="src" location="src/main/java"/>
 <property name="build" location="target/classes"/>
 <property name="dist" location="target"/>

 <target name="init">
 <!-- Create the time stamp -->
 <tstamp/>
 <!-- Create the build directory structure used by compile -->
 <mkdir dir="${build}"/>
 </target>

 <target name="compile" depends="init"
 description="compile the source " >
 <!-- Compile the java code from ${src} into ${build} -->
 <javac srcdir="${src}" destdir="${build}"/>
 </target>

 <target name="dist" depends="compile"
 description="generate the distribution" >
 <!-- Create the distribution directory -->
 <mkdir dir="${dist}/lib"/>

 <!-- Put everything in ${build} into the MyProject-${DSTAMP}.jar file -->
 <jar jarfile="${dist}/lib/MyProject-${DSTAMP}.jar" basedir="${build}"/>
 </target>

 <target name="clean"
 description="clean up" >
 <!-- Delete the ${build} and ${dist} directory trees -->
 <delete dir="${build}"/>
 <delete dir="${dist}"/>
 </target>
</project>

In this simple Ant example, you can see how you have to tell Ant exactly what to do. There is a compile
goal which includes the javac task that compiles the source in the src/main/java directory to the
target/classes directory. You have to tell Ant exactly where your source is, where you want the
resulting bytecode to be stored, and how to package this all into a JAR file. While there are some recent
developments that help make Ant less procedural, a developer's experience with Ant is in coding a
procedural language written in XML.

7

Contrast the previous Ant example with a Maven example. In Maven, to create a JAR file from some
Java source, all you need to do is create a simple pom.xml, place your source code in ${basedir}/
src/main/java and then run mvn install from the command line. The example Maven pom.xml
that achieves the same results as the simple Ant file listed in Example 1.1, “A Simple Ant build.xml
file” is shown in Example 1.2, “A Sample Maven pom.xml”.

Example 1.2. A Sample Maven pom.xml

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>my-project</artifactId>
 <version>1.0</version>
</project>

That's all you need in your pom.xml. Running mvn install from the command line will process
resources, compile source, execute unit tests, create a JAR, and install the JAR in a local repository for
reuse in other projects. Without modification, you can run mvn site and then find an index.html
file in target/site that contains links to JavaDoc and a few reports about your source code.

Admittedly, this is the simplest possible example project containing nothing more than some source
code and producing a simple JAR. It is a project which closely follows Maven conventions and doesn't
require any dependencies or customization. If we wanted to start customizing the behavior, our pom.xml
is going to grow in size, and in the largest of projects you can see collections of very complex Maven
POMs which contain a great deal of plugin customization and dependency declarations. But, even when
your project's POM files become more substantial, they hold an entirely different kind of information
from the build file of a similarly sized project using Ant. Maven POMs contain declarations: "This is a
JAR project", and "The source code is in src/main/java". Ant build files contain explicit instructions:
"This is project", "The source is in src/main/java", "Run javac against this directory", "Put the results
in target/classes", "Create a JAR from the", etc. Where Ant had to be explicit about the process,
there was something "built-in" to Maven that just knew where the source code was and how it should
be processed.

The differences between Ant and Maven in this example are:

Apache Ant

• Ant doesn't have formal conventions like a common project directory structure or default
behavior. You have to tell Ant exactly where to find the source and where to put the output.
Informal conventions have emerged over time, but they haven't been codified into the product.

• Ant is procedural. You have to tell Ant exactly what to do and when to do it. You have to tell
it to compile, then copy, then compress.

• Ant doesn't have a lifecycle. You have to define goals and goal dependencies. You have to
attach a sequence of tasks to each goal manually.

8

Apache Maven

• Maven has conventions. It knows where your source code is because you followed the
convention. Maven's Compiler plugin put the bytecode in target/classes, and it produces
a JAR file in target.

• Maven is declarative. All you had to do was create a pom.xml file and put your source in the
default directory. Maven took care of the rest.

• Maven has a lifecycle which was invoked when you executed mvn install. This command
told Maven to execute a series of sequential lifecycle phases until it reached the install lifecycle
phase. As a side-effect of this journey through the lifecycle, Maven executed a number of
default plugin goals which did things like compile and create a JAR.

Maven has built-in intelligence about common project tasks in the form of Maven plugins. If you wanted
to write and execute unit tests, all you would need to do is write the tests, place them in ${basedir}/
src/test/java, add a test-scoped dependency on either TestNG or JUnit, and run mvn test. If you
wanted to deploy a web application and not a JAR, all you would need to do is change your project type
to war and put your docroot in ${basedir}/src/main/webapp. Sure, you can do all of this with Ant,
but you will be writing the instructions from scratch. In Ant, you would first have to figure out where
the JUnit JAR file should be. Then you would have to create a classpath that includes the JUnit JAR
file. Then you would tell Ant where it should look for test source code, write a goal that compiles the
test source to bytecode, and execute the unit tests with JUnit.

Without supporting technologies like antlibs and Ivy (even with these supporting technologies), Ant has
the feeling of a c`ustom procedural build. An efficient set of Maven POMs in a project which adheres
to Maven's assumed conventions has surprisingly little XML compared to the Ant alternative. Another
benefit of Maven is the reliance on widely-shared Maven plugins. Everyone uses the Maven Surefire
plugin for unit testing, and if someone adds support for a new unit testing framework, you can gain new
capabilities in your own build by just incrementing the version of a particular Maven plugin in your
project's POM.

The decision to use Maven or Ant isn't a binary one, and Ant still has a place in a complex build. If
your current build contains some highly customized process, or if you've written some Ant scripts to
complete a specific process in a specific way that cannot be adapted to the Maven standards, you can
still use these scripts with Maven. Ant is made available as a core Maven plugin. Custom Maven plugins
can be implemented in Ant, and Maven projects can be configured to execute Ant scripts within the
Maven project lifecycle.

Chapter 2. Installing Maven
This chapter contains very detailed instructions for installing Maven on a number of different platforms.
Instead of assuming a level of familiarity with installing software and setting environment variables,
we've opted to be as thorough as possible to minimize any problems that might arise do to a partial
installation. The only thing this chapter assumes is that you've already installed a suitable Java
Development Kit (JDK). If you are just interested in installation, you can move on to the rest of the book
after reading through Downloading Maven and Installing Maven. If you are interested in the details of
your Maven installation, this entire chapter will give you an overview of what you've installed and the
meaning of the Apache Software License, Version 2.0.

2.1. Verify your Java Installation

While Maven can run on Java 1.4, this book assumes that you are running at least Java 5. Go with the
most recent stable Java Development Kit (JDK) available for your operating system. Either Java 5 or
Java 6 will work with all of the examples in this book.

% java -version
java version "1.5.0_16"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_16-b06-284)
Java HotSpot(TM) Client VM (build 1.5.0_16-133, mixed mode, sharing)

Maven works with all certified JavaTM compatible development kits, and a few non-certified
implementations of Java. The examples in this book were written and tested against the official Java
Development Kit releases downloaded from the Sun Microsystems web site. If you’re working with
a Linux distribution, you may need to download Sun’s JDK yourself and make sure it’s the version
you’re invoking (by running java -version). Now that Sun has open-sourced Java, this will hopefully
improve in the future, and we’ll get the Sun JRE and JDK by default even in purist Linux distributions.
Until that day, you may need to do some of your own downloading.

2.2. Downloading Maven

You can download Maven from the Apache Maven project website at http://maven.apache.org/
download.html.

When downloading Maven, make sure you choose the latest version of Apache Maven from the Maven
website. The latest version of Maven when this book was written was Maven 2.2.1. If you are not
familiar with the Apache Software License, you should familiarize yourself with the terms of the license
before you start using the product. More information on the Apache Software License can be found in
Section 2.8, “About the Apache Software License”.

http://maven.apache.org/download.html
http://maven.apache.org/download.html

10

2.3. Installing Maven
There are wide differences between operating systems such as Mac OS X and Microsoft Windows, and
there are subtle differences between different versions of Windows. Luckily, the process of installing
Maven on all of these operating systems is relatively painless and straightforward. The following
sections outline the recommended best-practice for installing Maven on a variety of operating systems.

2.3.1. Installing Maven on Mac OSX

You can download a binary release of Maven from http://maven.apache.org/download.html. Download
the current release of Maven in a format that is convenient for you to work with. Pick an appropriate
place for it to live, and expand the archive there. If you expanded the archive into the directory /usr/
local/apache-maven-2.2.1, you may want to create a symbolic link to make it easier to work with
and to avoid the need to change any environment configuration when you upgrade to a newer version:

/usr/local % cd /usr/local
/usr/local % ln -s apache-maven-2.2.1 maven
/usr/local % export M2_HOME=/usr/local/maven
/usr/local % export PATH=${M2_HOME}/bin:${PATH}

Once Maven is installed, you need to do a couple of things to make it work correctly. You need to add its
bin directory in the distribution (in this example, /usr/local/maven/bin) to your command path.
You also need to set the environment variable M2_HOME to the top-level directory you installed (in this
example, /usr/local/maven).

Note
Installation instructions are the same for both OSX Tiger and OSX Leopard. It has been
reported that Maven 2.0.6 is shipping with a preview release of XCode. If you have
installed XCode, run mvn from the command-line to check availability. XCode installs
Maven in /usr/share/maven. We recommend installing the most recent version of
Maven 2.2.1 as there have been a number of critical bug fixes and improvements since
Maven 2.0.6 was released.

You'll need to add both M2_HOME and PATH to a script that will run every time you login. To do this,
add the following lines to .bash_login.

export M2_HOME=/usr/local/maven
export PATH=${M2_HOME}/bin:${PATH}

Once you've added these lines to your own environment, you will be able to run Maven from the
command line.

Note
These installation instructions assume that you are running bash.

http://maven.apache.org/download.html

11

2.3.1.1. Installing Maven on OSX using MacPorts

If you are using MacPorts, you can install the maven2 port by executing the following command-line:

$ sudo port install maven2
Password: ******
---> Fetching maven2
---> Attempting to fetch apache-maven-2.2.1-bin.tar.bz2
 from http://www.apache.org/dist/maven/binaries
---> Verifying checksum(s) for maven2
---> Extracting maven2
---> Configuring maven2
---> Building maven2 with target all
---> Staging maven2 into destroot
---> Installing maven2 2.2.1_0
---> Activating maven2 2.2.1_0
---> Cleaning maven2

For more information about the maven2 port, see the maven2 Portfile1. For more information about
MacPorts and how to install it, see the MacPorts project page2.

2.3.2. Installing Maven on Microsoft Windows

Installing Maven on Windows is very similar to installing Maven on Mac OSX, the main differences
being the installation location and the setting of an environment variable. This book assumes a Maven
installation directory of c:\Program Files\apache-maven-2.2.1, but it won't make a difference if
you install Maven in another directory as long as you configure the proper environment variables. Once
you've unpacked Maven to the installation directory, you will need to set two environment variables
—PATH and M2_HOME. To set these environment variables from the command-line, type in the following
commands:

C:\Users\tobrien > set M2_HOME=c:\Program Files\apache-maven-2.2.1
C:\Users\tobrien > set PATH=%PATH%;%M2_HOME%\bin

Setting these environment variables on the command-line will allow you to run Maven in your current
session, but unless you add them to the System environment variables through the control panel, you'll
have to execute these two lines every time you log into your system. You should modify both of these
variables through the Control Panel in Microsoft Windows.

2.3.3. Installing Maven on Linux

To install Maven on a Linux machine follow the exact procedure outlined in Section 2.3.1, “Installing
Maven on Mac OSX”.

1 http://trac.macports.org/browser/trunk/dports/java/maven2/Portfile
2 http://www.macports.org/index.php

http://trac.macports.org/browser/trunk/dports/java/maven2/Portfile
http://www.macports.org/index.php
http://trac.macports.org/browser/trunk/dports/java/maven2/Portfile
http://www.macports.org/index.php

12

2.3.4. Installing Maven on FreeBSD or OpenBSD

To install Maven on a FreeBSD or OpenBSD machine, follow the exact procedure outlined in
Section 2.3.1, “Installing Maven on Mac OSX”.

2.4. Testing a Maven Installation
Once Maven is installed, you can check the version by running mvn -v from the command-line. If
Maven has been installed, you should see something resembling the following output.

$ mvn -v
Apache Maven 2.2.0 (r788681; 2009-06-26 08:04:01-0500)
Java version: 1.5.0_19
Java home: /System/Library/Frameworks/JavaVM.framework/Versions/1.5.0/Home
Default locale: en_US, platform encoding: MacRoman
OS name: "mac os x" version: "10.5.7" arch: "i386" Family: "unix"

If you see this output, you know that Maven is available and ready to be used. If you do not see this
output, and your operating system cannot find the mvn command, make sure that your PATH environment
variable and M2_HOME environment variable have been properly set.

2.5. Maven Installation Details
Maven's download measures in at roughly 1.5 MiB3, it has attained such a slim download size because
the core of Maven has been designed to retrieve plugins and dependencies from a remote repository on-
demand. When you start using Maven, it will start to download plugins to a local repository described in
Section 2.5.1, “User-specific Configuration and Repository”. In case you are curious, let's take a quick
look at what is in Maven's installation directory.3

/usr/local/maven $ ls -p1
LICENSE.txt
NOTICE.txt
README.txt
bin/
boot/
conf/
lib/

LICENSE.txt contains the software license for Apache Maven. This license is described in some
detail later in the section Section 2.8, “About the Apache Software License”. NOTICE.txt contains
some notices and attributions required by libraries that Maven depends on. README.txt contains some
installation instructions. bin/ contains the mvn script that executes Maven. boot/ contains a JAR file

3Ever purchased a 200 GB hard drive only to realize that it showed up as less than 200 GiB when you installed it? Computers
understand Gibibytes, but retailers sell products using Gigabytes. MiB stands for Mebibyte which is defined as 220 or 10242. These
binary prefix standards are endorsed by the IEEE, CIPM, and IEC. For more information about Kibibytes, Mebibytes, Gibibytes,
and Tebibytes see http://en.wikipedia.org/wiki/Mebibyte,

http://en.wikipedia.org/wiki/Mebibyte

13

(classwords-1.1.jar) that is responsible for creating the Class Loader in which Maven executes.
conf/ contains a global settings.xml that can be used to customize the behavior of your Maven
installation. If you need to customize Maven, it is customary to override any settings in a settings.xml
file stored in ~/.m2. lib/ contains a single JAR file (maven-core-2.2.1-uber.jar) that contains
the core of Maven.

Note

Unless you are working in a shared Unix environment, you should avoid customizing the
settings.xml in M2_HOME/conf. Altering the global settings.xml file in the Maven
installation itself is usually unnecessary and it tends to complicate the upgrade procedure
for Maven as you'll have to remember to copy the customized settings.xml from the
old Maven installation to the new installation. If you need to customize settings.xml,
you should be editing your own settings.xml in ~/.m2/settings.xml.

2.5.1. User-specific Configuration and Repository

Once you start using Maven extensively, you'll notice that Maven has created some local user-specific
configuration files and a local repository in your home directory. In ~/.m2 there will be:

~/.m2/settings.xml
A file containing user-specific configuration for authentication, repositories, and other
information to customize the behavior of Maven.

~/.m2/repository/
This directory contains your local Maven repository. When you download a dependency from a
remote Maven repository, Maven stores a copy of the dependency in your local repository.

Note

In Unix (and OSX), your home directory will be referred to using a tilde (i.e. ~/bin
refers to /home/tobrien/bin). In Windows, we will also be using ~ to refer to your
home directory. In Windows XP, your home directory is C:\Documents and Settings
\tobrien, and in Windows Vista, your home directory is C:\Users\tobrien. From
this point forward, you should translate paths such as ~/m2 to your operating system's
equivalent.

2.5.2. Upgrading a Maven Installation

If you've installed Maven on a Mac OSX or Unix machine according to the details in Section 2.3.1,
“Installing Maven on Mac OSX” and Section 2.3.3, “Installing Maven on Linux”, it should be
easy to upgrade to newer versions of Maven when they become available. Simply install the newer
version of Maven (/usr/local/maven-2.future) next to the existing version of Maven (/usr/
local/maven-2.2.1). Then switch the symbolic link /usr/local/maven from /usr/local/

14

maven-2.2.1 to /usr/local/maven-2.future. Since, you've already set your M2_HOME variable
to point to /usr/local/maven, you won't need to change any environment variables.

If you have installed Maven on a Windows machine, simply unpack Maven to c:\Program Files
\maven-2.future and update your M2_HOME variable.

Note
If you have any customizations to the global settings.xml in M2_HOME/conf, you will
need to copy this settings.xml to the conf directory of the new Maven installation.

2.5.3. Upgrading from Maven 1.x to Maven 2.x

If you are upgrading from Maven 1 to Maven 2, you are going to be using an entirely new POM
and repository structure. If you have already created a custom Maven 1 repository to hold custom
artifacts, you can use the Nexus Repository Manager to expose a Maven 1 repository in a format that
can be understood by Maven 2 clients. For more information about the Nexus Repository Manager, see
Repository Management with Nexus4. In addition to tools like Nexus, you can also configure
references to repositories to use the legacy layout format. For more information about configuring a
reference to a legacy repository, see Section A.2.8, “Repositories”.

If you have a set of Maven 1 projects, you may want to know about the Maven One Plugin. The Maven
One Plugin was designed to help projects migrate from Maven 1 to Maven 2. If you have a Maven 1
project, you can convert the project's POM by running the one:convert goal as follows:

$ cd my-project
$ mvn one:convert

one:convert will read a project.xml and produce a pom.xml that is compatible with Maven 2. If
you've customized a Maven 1 build using Jelly script in a maven.xml file, you will need to investigate
other options. While Maven 1 emphasized Jelly scripting for customizing builds, Maven 2 favors custom
plugins or customization through scripting Plugins or the Maven Antrun Plugin.

The most important thing to know about when upgrading from Maven 1 to Maven 2 is that Maven 2 is
a completely different build framework. Maven 2 introduces the concept of the Maven Lifecycle and
redefines the relationships between plugins. If you upgrade from Maven 1 to Maven 2, you need to
invest some time in learning about the differences between the two versions. Although it might seem
straightforward to start learning about the new POM structure, you should focus on the Lifecycle first.
If you understand the Maven Lifecycle, you will be able to use Maven to its fullest potential.

2.6. Uninstalling Maven
Most of the installation instructions involve unpacking of the Maven distribution archive in a directory
and setting of various environment variables. If you need to remove Maven from your computer, all you

4 http://www.sonatype.com/books/nexus-book/reference/

http://www.sonatype.com/books/nexus-book/reference/
http://www.sonatype.com/books/nexus-book/reference/

15

need to do is delete your Maven installation directory and remove the environment variables. You will
also want to delete the ~/.m2 directory as it contains your local repository.

2.7. Getting Help with Maven
While this book aims to be a comprehensive reference, there are going to be topics we will miss and
special situations and tips which are not covered. While the core of Maven is very simple, the real work
in Maven happens in the plugins, and there are too many plugins available to cover them all in one book.
You are going to encounter problems and features which have not been covered in this book; in these
cases, we suggest searching for answers at the following locations:

http://maven.apache.org
This will be the first place to look, the Maven web site contains a wealth of information and
documentation. Every plugin has a few pages of documentation and there are a series of "quick
start" documents which will be helpful in addition to the content of this book. While the Maven
site contains a wealth of information, it can also be a frustrating, confusing, and overwhelming.
There is a custom Google search box on the main Maven page that will search known Maven
sites for information. This provides better results than a generic Google search.

Maven User Mailing List
The Maven User mailing list is the place for users to ask questions. Before you ask a question on
the user mailing list, you will want to search for any previous discussion that might relate to your
question. It is bad form to ask a question that has already been asked without first checking to
see if an answer already exists in the archives. There are a number of useful mailing list archive
browsers, we've found Nabble to the be the most useful. You can browse the User mailing list
archives here: http://www.nabble.com/Maven---Users-f178.html. You can join the user mailing
list by following the instructions available here http://maven.apache.org/mail-lists.html.

http://www.sonatype.com
Sonatype maintains an online copy of this book and other tutorials related to Apache Maven.

2.8. About the Apache Software License
Apache Maven is released under the Apache Software License, Version 2.0. If you want to read this
license, you can read ${M2_HOME}/LICENSE.txt or read this license on the Open Source Initiative's
web site here: http://www.opensource.org/licenses/apache2.0.php.

There's a good chance that, if you are reading this book, you are not a lawyer. If you are wondering what
the Apache License, Version 2.0 means, the Apache Software Foundation has assembled a very helpful
Frequently Asked Questions (FAQ) page about the license available here: http://www.apache.org/
foundation/licence-FAQ.html. Here's is the answer to the question "I am not a lawyer. What does it all
mean?"

[This license] allows you to:

http://maven.apache.org
http://www.nabble.com/Maven---Users-f178.html
http://maven.apache.org/mail-lists.html
http://www.sonatype.com
http://www.opensource.org/licenses/apache2.0.php
http://www.apache.org/foundation/licence-FAQ.html
http://www.apache.org/foundation/licence-FAQ.html

16

• freely download and use Apache software, in whole or in part, for personal,
company internal, or commercial purposes;

• use Apache software in packages or distributions that you create.

It forbids you to:

• redistribute any piece of Apache-originated software without proper attribution;

• use any marks owned by The Apache Software Foundation in any way that might
state or imply that the Foundation endorses your distribution;

• use any marks owned by The Apache Software Foundation in any way that might
state or imply that you created the Apache software in question.

It requires you to:

• include a copy of the license in any redistribution you may make that includes
Apache software;

• provide clear attribution to The Apache Software Foundation for any
distributions that include Apache software.

It does not require you to:

• include the source of the Apache software itself, or of any modifications you
may have made to it, in any redistribution you may assemble that includes it;

• submit changes that you make to the software back to the Apache Software
Foundation (though such feedback is encouraged).

This ends the installation information. The next part of the book contains Maven examples.

Chapter 3. The Project Object Model
3.1. Introduction

This chapter covers the central concept of Maven—the Project Object Model. The POM is where
a project’s identity and structure are declared, builds are configured, and projects are related to one
another. The presence of a pom.xml file defines a Maven project.

3.2. The POM

Maven projects, dependencies, builds, artifacts: all of these are objects to be modeled and described.
These objects are described by an XML file called a Project Object Model. The POM tells Maven what
sort of project it is dealing with and how to modify default behavior to generate output from source.
In the same way a Java web application has a web.xml that describes, configures, and customizes the
application, a Maven project is defined by the presence of a pom.xml. It is a descriptive declaration
of a project for Maven; it is the figurative “map” that Maven needs to understand what it is looking at
when it builds your project.

You could also think of the pom.xml as analogous to a Makefile or an Ant build.xml. When you
are using GNU make to build something like MySQL, you’ll usually have a file named Makefile
that contains explicit instructions for building a binary from source. When you are using Apache Ant,
you likely have a file named build.xml that contains explicit instructions for cleaning, compiling,
packaging, and deploying an application. make, Ant, and Maven are similar in that they rely on the
presence of a commonly named file such as Makefile, build.xml, or pom.xml, but that is where
the similarities end. If you look at a Maven pom.xml, the majority of the POM is going to deal with
descriptions: Where is the source code? Where are the resources? What is the packaging? If you look at
an Ant build.xml file, you’ll see something entirely different. You’ll see explicit instructions for tasks
such as compiling a set of Java classes. The Maven POM is declarative, and although you can certainly
choose to include some procedural customizations via the Maven Ant plugin, for the most part you will
not need to get into the gritty procedural details of your project’s build.

The POM is also not specific to building Java projects. While most of the examples in this book are
geared towards Java applications, there is nothing Java-specific in the definition of a Maven Project
Object Model. While Maven's default plugins are targeted at building JAR artifacts from a set of source,
tests, and resources, there is nothing preventing you from defining a POM for a project that contains
C# sources and produces some proprietary Microsoft binary using Microsoft tools. Similarly, there is
nothing stopping you from defining a POM for a technical book. In fact, the source for this book and
this book's examples is captured in a multi-module Maven project which uses one of the many Maven
Docbook plugins to apply the standard Docbook XSL to a series of chapter XML files. Others have
created Maven plugins to build Adobe Flex code into SWCs and SWFs, and yet others have used Maven
to build projects written in C.

18

We've established that the POM describes and declares, it is unlike Ant or Make in that it doesn't provide
explicit instructions, and we've noted that POM concepts are not specific to Java. Diving into more
specifics, take a look at Figure 3.1, “The Project Object Model” for a survey of the contents of a POM.

 POM

POM Relationships

General Project Information

Build Settings
Coordinate

Multi-Module

Inheritance

Dependencies

General

Contributors

Licenses

Build Environment
Environment Information

Maven Environment
Profiles

build
directories

extensions

resources

plugins

reporting

groupId
artifactId
version

Figure 3.1. The Project Object Model

The POM contains four categories of description and configuration:

General project information
This includes a project’s name, the URL for a project, the sponsoring organization, and a list of
developers and contributors along with the license for a project.

Build settings
In this section, we customize the behavior of the default Maven build. We can change the location
of source and tests, we can add new plugins, we can attach plugin goals to the lifecycle, and we
can customize the site generation parameters.

Build environment
The build environment consists of profiles that can be activated for use in different environments.
For example, during development you may want to deploy to a development server, whereas in
production you want to deploy to a production server. The build environment customizes the
build settings for specific environments and is often supplemented by a custom settings.xml

19

in ~/.m2. This settings file is discussed in Chapter 5, Build Profiles and in the section
Section A.2, “Settings Details”.

POM relationships
A project rarely stands alone; it depends on other projects, inherits POM settings from parent
projects, defines its own coordinates, and may include submodules.

3.2.. The Super POM

Before we dive into some examples of POMs, let's take a quick look at the Super POM. All Maven
project POMs extend the Super POM, which defines a set of defaults shared by all projects. This Super
POM is a part of the Maven installation and can be found in the maven-2.2.1-uber.jar file in
${M2_HOME}/lib. If you look in this JAR file, you will find a file named pom-4.0.0.xml under the
org.apache.maven.project package. The Super POM for Maven is shown in Example 3.1, “The Super
POM”.

Example 3.1. The Super POM

<project>
 <modelVersion>4.0.0</modelVersion>
 <name>Maven Default Project</name>

 <repositories>
 <repository>

 <id>central</id>
 <name>Maven Repository Switchboard</name>
 <layout>default</layout>
 <url>http://repo1.maven.org/maven2</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>

 <pluginRepositories>
 <pluginRepository>

 <id>central</id>
 <name>Maven Plugin Repository</name>
 <url>http://repo1.maven.org/maven2</url>
 <layout>default</layout>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <updatePolicy>never</updatePolicy>
 </releases>
 </pluginRepository>
 </pluginRepositories>

 <build>
 <directory>/usr/local/hudson/hudson-home/jobs/maven-reference-en-to-production/workspace/mvnref-book-content/target</directory>

20

 <outputDirectory>
 /usr/local/hudson/hudson-home/jobs/maven-reference-en-to-production/workspace/mvnref-book-content/target/classes
 </outputDirectory>
 <finalName>mvnref-book-content-0.3.1</finalName>
 <testOutputDirectory>
 /usr/local/hudson/hudson-home/jobs/maven-reference-en-to-production/workspace/mvnref-book-content/target/test-classes
 </testOutputDirectory>
 <sourceDirectory>
 /usr/local/hudson/hudson-home/jobs/maven-reference-en-to-production/workspace/mvnref-book-content/src/main/java
 </sourceDirectory>
 <scriptSourceDirectory>src/main/scripts</scriptSourceDirectory>
 <testSourceDirectory>
 /usr/local/hudson/hudson-home/jobs/maven-reference-en-to-production/workspace/mvnref-book-content/src/test/java
 </testSourceDirectory>
 <resources>
 <resource>
 <directory>/usr/local/hudson/hudson-home/jobs/maven-reference-en-to-production/workspace/mvnref-book-content/src/main/resources</directory>
 </resource>
 </resources>
 <testResources>
 <testResource>
 <directory>/usr/local/hudson/hudson-home/jobs/maven-reference-en-to-production/workspace/mvnref-book-content/src/test/resources</directory>
 </testResource>
 </testResources>

 <pluginManagement>
 <plugins>
 <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.3</version>
 </plugin>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-2</version>
 </plugin>
 <plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <version>2.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.0.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.0</version>
 </plugin>
 <plugin>
 <artifactId>maven-deploy-plugin</artifactId>
 <version>2.4</version>
 </plugin>
 <plugin>
 <artifactId>maven-ear-plugin</artifactId>
 <version>2.3.1</version>

21

 </plugin>
 <plugin>
 <artifactId>maven-ejb-plugin</artifactId>
 <version>2.1</version>
 </plugin>
 <plugin>
 <artifactId>maven-install-plugin</artifactId>
 <version>2.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-javadoc-plugin</artifactId>
 <version>2.5</version>
 </plugin>
 <plugin>
 <artifactId>maven-plugin-plugin</artifactId>
 <version>2.4.3</version>
 </plugin>
 <plugin>
 <artifactId>maven-rar-plugin</artifactId>
 <version>2.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.0-beta-8</version>
 </plugin>
 <plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <version>2.3</version>
 </plugin>
 <plugin>
 <artifactId>maven-site-plugin</artifactId>
 <version>2.0-beta-7</version>
 </plugin>
 <plugin>
 <artifactId>maven-source-plugin</artifactId>
 <version>2.0.4</version>
 </plugin>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.4.3</version>
 </plugin>
 <plugin>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.1-alpha-2</version>
 </plugin>
 </plugins>
 </pluginManagement>

 <reporting>
 <outputDirectory>target/site</outputDirectory>
 </reporting>

22

</project>

The Super POM defines some standard configuration variables that are inherited by all projects. Those
values are captured in the annotated sections:

The default Super POM defines a single remote Maven repository with an ID of central. This
is the central Maven repository that all Maven clients are configured to read from by default.
This setting can be overridden by a custom settings.xml file. Note that the default Super
POM has disabled snapshot artifacts on the central Maven repository. If you need to use a
snapshot repository, you will need to customize repository settings in your pom.xml or in your
settings.xml. Settings and profiles are covered in Chapter 5, Build Profiles and in Section A.2,
“Settings Details”.
The central Maven repository also contains Maven plugins. The default plugin repository is the
central Maven repository. Snapshots are disabled, and the update policy is set to “never,” which
means that Maven will never automatically update a plugin if a new version is released.
The build element sets the default values for directories in the Maven Standard Directory layout.
Starting in Maven 2.0.9, default versions of core plugins have been provided in the Super POM.
This was done to provide some stability for users that are not specifying versions in their POMs.

com.mycomany
killerapp
1.0-SNAPSHOT

com.mycomany
killerapp-model
1.0-SNAPSHOT

com.mycomany
killerapp-stores
1.0-SNAPSHOT

com.mycomany
killerapp-api
1.0-SNAPSHOT

Super POM

= Inherits from

Figure 3.2. The Super POM is always the base Parent

3.2.2. The Simplest POM

All Maven POMs inherit defaults from the Super POM (introduced earlier in the section Section 3.2.,
“The Super POM”). If you are just writing a simple project that produces a JAR from some source
in src/main/java, want to run your JUnit tests in src/test/java, and want to build a project
site using mvn site, you don’t have to customize anything. All you would need, in this case, is the

23

simplest possible POM shown in Example 3.2, “The Simplest POM”. This POM defines a groupId,
artifactId, and version: the three required coordinates for every project.

Example 3.2. The Simplest POM

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.ch08</groupId>
 <artifactId>simplest-project</artifactId>
 <version>1</version>
</project>

Such a simple POM would be more than adequate for a simple project—e.g., a Java library that produces
a JAR file. It isn’t related to any other projects, it has no dependencies, and it lacks basic information
such as a name and a URL. If you were to create this file and then create the subdirectory src/main/
java with some source code, running mvn package would produce a JAR in target/simple-
project-1.jar.

3.2.3. The Effective POM

This simplest POM brings us to the concept of the “effective POM.” Since POMs can inherit
configuration from other POMs, you must always think of a Maven POM in terms of the combination
of the Super POM, plus any parent POMs, and finally the current project’s POM. Maven starts with the
Super POM and then overrides default configuration with one or more parent POMs. Then it overrides
the resulting configuration with the current project’s POM. You end up with an effective POM that
is a mixture of various POMs. If you want to see a project’s effective POM, you’ll need to run the
effective-pom goal in the Maven Help plugin, which was introduced earlier in the section Section 6.3,
“Using the Maven Help Plugin”. To run the effective-pom goal, execute the following in a directory
with a pom.xml file:

$ mvn help:effective-pom

Executing the effective-pom goal should print out an XML document capturing the merge between
the Super POM and the POM from Example 3.2, “The Simplest POM”.

3.2.4. Real POMs

Maven is something of a chameleon; you can pick and choose the features you want to take advantage
of. Some open source projects may value the ability to list developers and contributors, generate clean
project documentation, and manage releases automatically using the Maven Release plugin. On the
other hand, someone working in a corporate environment on a small team might not be interested in
the distribution management capabilities of Maven nor the ability to list developers. The remainder of
this chapter is going to discuss features of the POM in isolation. Instead of bombarding you with a 10-
page listing of a set of related POMs, we’re going to focus on creating a good reference for specific
sections of the POM. In this chapter, we discuss relationships between POMs, but we don’t illustrate
such a project here.

24

3.3. POM Syntax
The POM is always in a file named pom.xml in the base directory of a Maven project. This XML
document can start with the XML declaration, or you can choose to omit it. All values in a POM are
captured as XML elements.

3.3.1. Project Versions

A Maven project’s version encodes a release version number that is used to group and order releases.
Maven versions contain the following parts: major version, minor version, incremental version, and
qualifier. In a version, these parts correspond to the following format:

<major version>.<minor version>.<incremental version>-<qualifier>

For example, the version "1.3.5" has a major version of 1, a minor version of 3, and an incremental
version of 5. The version "5" has a major version of 5 and no minor or incremental version. The qualifier
exists to capture milestone builds: alpha and beta releases, and the qualifier is separated from the major,
minor, and incremental versions by a hyphen. For example, the version "1.3-beta-01" has a major version
of 1, a minor version of 3, and a qualifier of "beta-01".

Keeping your version numbers aligned with this standard will become very important when you want
to start using version ranges in your POMs. Version ranges, introduced in Section 3.4.3, “Dependency
Version Ranges”, allow you to specify a dependency on a range of versions, and they are only supported
because Maven has the ability to sort versions based on the version release number format introduced
in this section.

If your version release number matches the format <major>.<minor>.<incremental>-

<qualifier> then your versions will be compared properly; "1.2.3" will be evaluated as a more recent
build than "1.0.2", and the comparison will be made using the numeric values of the major, minor, and
incremental versions. If your version release number does not fit the standard introduced in this section,
then your versions will be compared as strings; "1.0.1b" will be compared to "1.2.0b" using a String
comparison.

3.3.1.1. Version Build Numbers

One gotcha for release version numbers is the ordering of the qualifiers. Take the version release
numbers “1.2.3-alpha-2” and “1.2.3-alpha-10,” where the “alpha-2” build corresponds to the 2nd alpha
build, and the “alpha-10” build corresponds to the 10th alpha build. Even though “alpha-10” should be
considered more recent than “alpha-2,” Maven is going to sort “alpha-10” before “alpha-2” due to a
known issue in the way Maven handles version numbers.

Maven is supposed to treat the number after the qualifier as a build number. In other words, the
qualifier should be "alpha", and the build number should be 2. Even though Maven has been designed
to separate the build number from the qualifier, this parsing is currently broken. As a result, "alpha-2"
and "alpha-10" are compared using a String comparison, and "alpha-10" comes before "alpha-2"
alphabetically. To get around this limitation, you will need to left-pad your qualified build numbers. If

25

you use "alpha-02" and "alpha-10" this problem will go away, and it will continue to work once Maven
properly parses the version build number.

3.3.1.2. SNAPSHOT Versions

Maven versions can contain a string literal to signify that a project is currently under active development.
If a version contains the string “SNAPSHOT,” then Maven will expand this token to a date and time
value converted to UTC (Coordinated Universal Time) when you install or release this component. For
example, if your project has a version of “1.0-SNAPSHOT” and you deploy this project’s artifacts to a
Maven repository, Maven would expand this version to “1.0-20080207-230803-1” if you were to deploy
a release at 11:08 PM on February 7th, 2008 UTC. In other words, when you deploy a snapshot, you
are not making a release of a software component; you are releasing a snapshot of a component at a
specific time.

Why would you use this? SNAPSHOT versions are used for projects under active development. If
your project depends on a software component that is under active development, you can depend on
a SNAPSHOT release, and Maven will periodically attempt to download the latest snapshot from a
repository when you run a build. Similarly, if the next release of your system is going to have a version
"1.4", your project would have a version "1.4-SNAPSHOT" until it was formally released.

As a default setting, Maven will not check for SNAPSHOT releases on remote repositories. To depend
on SNAPSHOT releases, users must explicitly enable the ability to download snapshots using a
repository or pluginRepository element in the POM.

When releasing a project, you should resolve all dependencies on SNAPSHOT versions to dependencies
on released versions. If a project depends on a SNAPSHOT, it is not stable as the dependencies
may change over time. Artifacts published to non-snapshot Maven repositories such as http://
repo1.maven.org/maven2 cannot depend on SNAPSHOT versions, as Maven's Super POM has
snapshot's disabled from the Central repository. SNAPSHOT versions are for development only.

3.3.2. Property References

A POM can include references to properties preceded by a dollar sign and surrounded by two curly
braces. For example, consider the following POM:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>project-a</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <build>
 <finalName>${project.groupId}-${project.artifactId}</finalName>
 </build>
</project>

If you put this XML in a pom.xml and run mvn help:effective-pom, you will see that the output
contains the line:

http://repo1.maven.org/maven2
http://repo1.maven.org/maven2

26

...
<finalName>org.sonatype.mavenbook-project-a</finalName>
...

When Maven reads a POM, it replaces references to properties when it loads the POM XML. Maven
properties occur frequently in advanced Maven usage, and are similar to properties in other systems
such as Ant or Velocity. They are simply variables delimited by ${...}. Maven provides three implicit
variables which can be used to access environment variables, POM information, and Maven Settings:

env
The env variable exposes environment variables exposed by your operating system or shell. For
example, a reference to ${env.PATH} in a Maven POM would be replaced by the ${PATH}
environment variable (or %PATH% in Windows).

project
The project variable exposes the POM. You can use a dot-notated (.) path to reference the
value of a POM element. For example, in this section we used the groupId and artifactId
to set the finalName element in the build configuration. The syntax for this property reference
was: ${project.groupId}-${project.artifactId}.

settings
The settings variable exposes Maven settings information. You can use a dot-notated
(.) path to reference the value of an element in a settings.xml file. For example,
${settings.offline} would reference the value of the offline element in ~/.m2/
settings.xml.

Note
You may see older builds that use ${pom.xxx} or just ${xxx} to reference POM
properties. These methods have been deprecated and only ${project.xxx} should be
used.

In addition to the three implicit variables, you can reference system properties and any custom properties
set in the Maven POM or in a build profile:

Java System Properties
All properties accessible via getProperties() on java.lang.System are exposed as
POM properties. Some examples of system properties are: ${user.name}, ${user.home},
${java.home}, and ${os.name}. A full list of system properties can be found in the Javadoc
for the java.lang.System class.

x
Arbitrary properties can be set with a properties element in a pom.xml or settings.xml,
or properties can be loaded from external files. If you set a property named fooBar in your
pom.xml, that same property is referenced with ${fooBar}. Custom properties come in handy

27

when you are building a system that filters resources and targets different deployment platforms.
Here is the syntax for setting ${foo}=bar in a POM:
<properties>
 <foo>bar</foo>
</properties>

For a more comprehensive list of available properties, see Chapter 9, Properties and Resource Filtering.

3.4. Project Dependencies
Maven can manage both internal and external dependencies. An external dependency for a Java project
might be a library such as Plexus, the Spring Framework, or Log4J. An internal dependency is illustrated
by a web application project depending on another project that contains service classes, model objects, or
persistence logic. Example 3.3, “Project Dependencies” shows some examples of project dependencies.

Example 3.3. Project Dependencies

<project>
 ...
 <dependencies>
 <dependency>
 <groupId>org.codehaus.xfire</groupId>
 <artifactId>xfire-java5</artifactId>
 <version>1.2.5</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.4</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 ...
</project>

The first dependency is a compile dependency on the XFire SOAP library from Codehaus. You would
use this type of dependency if your project depended on this library for compilation, testing, and during
execution. The second dependency is a test-scoped dependency on JUnit. You would use a test-
scoped dependency when you need to reference this library only during testing. The last dependency
in Example 3.3, “Project Dependencies” is a dependency on the Servlet 2.4 API. The last dependency
is scoped as a provided dependency. You would use a provided scope when the application you are

28

developing needs a library for compilation and testing, but this library is supplied by a container at
runtime.

3.4.1. Dependency Scope

Example 3.3, “Project Dependencies” briefly introduced three of the five dependency scopes: compile,
test, and provided. Scope controls which dependencies are available in which classpath, and which
dependencies are included with an application. Let’s explore each scope in detail:

compile
compile is the default scope; all dependencies are compile-scoped if a scope is not supplied.
compile dependencies are available in all classpaths, and they are packaged.

provided
provided dependencies are used when you expect the JDK or a container to provide them. For
example, if you were developing a web application, you would need the Servlet API available on
the compile classpath to compile a servlet, but you wouldn’t want to include the Servlet API in the
packaged WAR; the Servlet API JAR is supplied by your application server or servlet container.
provided dependencies are available on the compilation classpath (not runtime). They are not
transitive, nor are they packaged.

runtime
runtime dependencies are required to execute and test the system, but they are not required for
compilation. For example, you may need a JDBC API JAR at compile time and the JDBC driver
implementation only at runtime.

test
test-scoped dependencies are not required during the normal operation of an application, and
they are available only during test compilation and execution phases.

system
The system scope is similar to provided except that you have to provide an explicit path to
the JAR on the local file system. This is intended to allow compilation against native objects
that may be part of the system libraries. The artifact is assumed to always be available and is
not looked up in a repository. If you declare the scope to be system, you must also provide
the systemPath element. Note that this scope is not recommended (you should always try to
reference dependencies in a public or custom Maven repository).

3.4.2. Optional Dependencies

Assume that you are working on a library that provides caching behavior. Instead of writing a caching
system from scratch, you want to use some of the existing libraries that provide caching on the file
system and distributed caches. Also assume that you want to give the end user an option to cache on the
file system or to use an in-memory distributed cache. To cache on the file system, you’ll want to use a
freely available library called EHCache (http://ehcache.sourceforge.net/), and to cache in a distributed

http://ehcache.sourceforge.net/

29

in-memory cache, you want to use another freely available caching library named SwarmCache (http://
swarmcache.sourceforge.net/). You’ll code an interface and create a library that can be configured to use
either EHCache or SwarmCache, but you want to avoid adding a dependency on both caching libraries
to any project that depends on your library.

In other words, you need both libraries to compile this library project, but you don't want both libraries
to show up as transitive runtime dependencies for the project that uses your library. You can accomplish
this by using optional dependencies as shown in Example 3.4, “Declaring Optional Dependencies”.

Example 3.4. Declaring Optional Dependencies

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>my-project</artifactId>
 <version>1.0.0</version>
 <dependencies>
 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache</artifactId>
 <version>1.4.1</version>
 <optional>true</optional>
 </dependency>
 <dependency>
 <groupId>swarmcache</groupId>
 <artifactId>swarmcache</artifactId>
 <version>1.0RC2</version>
 <optional>true</optional>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.13</version>
 </dependency>
 </dependencies>
</project>

Once you've declared these dependencies as optional, you are required to include them explicitly in the
project that depends on my-project. For example, if you were writing an application which depended
on my-project and wanted to use the EHCache implementation, you would need to add the following
dependency element to your project.

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>my-application</artifactId>
 <version>1.0.0</version>
 <dependencies>
 <dependency>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>my-project</artifactId>

http://swarmcache.sourceforge.net/
http://swarmcache.sourceforge.net/

30

 <version>1.0.0</version>
 </dependency>
 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>swarmcache</artifactId>
 <version>1.4.1</version>
 </dependency>
 </dependencies>
</project>

In an ideal world, you wouldn’t have to use optional dependencies. Instead of having one large project
with a series of optional dependencies, you would separate the EHCache-specific code to a my-
project-ehcache submodule and the SwarmCache-specific code to a my-project-swarmcache
submodule. This way, instead of requiring projects that reference my-project to specifically add
a dependency, projects can just reference a particular implementation project and benefit from the
transitive dependency.

3.4.3. Dependency Version Ranges

You don’t just have to depend on a specific version of a dependency; you can specify a range of versions
that would satisfy a given dependency. For example, you can specify that your project depends on
version 3.8 or greater of JUnit, or anything between versions 1.2.10 and 1.2.14 of JUnit. You do this by
surrounding one or more version numbers with the following characters:

(,)
Exclusive quantifiers

[,]
Inclusive quantifiers

For example, if you wished to access any JUnit version greater than or equal to 3.8 but less than 4.0,
your dependency would be as shown in Example 3.5, “Specifying a Dependency Range: JUnit 3.8 -
JUnit 4.0”.

Example 3.5. Specifying a Dependency Range: JUnit 3.8 - JUnit 4.0

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>[3.8,4.0)</version>
 <scope>test</scope>
</dependency>

If you want to depend on any version of JUnit no higher than 3.8.1, you would specify only an upper
inclusive boundary, as shown in Example 3.6, “Specifying a Dependency Range: JUnit <= 3.8.1”.

Example 3.6. Specifying a Dependency Range: JUnit <= 3.8.1

<dependency>

31

 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>[,3.8.1]</version>ex-de
 <scope>test</scope>
</dependency>

A version before or after the comma is not required, and means +/- infinity. For example, "[4.0,)" means
any version greater than or equal to 4.0. "(,2.0)" is any version less than 2.0. "[1.2]" means only version
1.2, and nothing else.

Note
When declaring a "normal" version such as 3.8.2 for Junit, internally this is represented
as "allow anything, but prefer 3.8.2." This means that when a conflict is detected, Maven
is allowed to use the conflict algorithms to choose the best version. If you specify [3.8.2],
it means that only 3.8.2 will be used and nothing else. If somewhere else there is a
dependency that specifies [3.8.1], you would get a build failure telling you of the conflict.
We point this out to make you aware of the option, but use it sparingly and only when
really needed. The preferred way to resolve this is via dependencyManagement.

3.4.4. Transitive Dependencies

A transitive dependency is a dependency of a dependency. If project-a depends on project-b,
which in turn depends on project-c, then project-c is considered a transitive dependency of
project-a. If project-c depended on project-d, then project-d would also be considered
a transitive dependency of project-a. Part of Maven’s appeal is that it can manage transitive
dependencies and shield the developer from having to keep track of all of the dependencies required to
compile and run an application. You can just depend on something like the Spring Framework and not
have to worry about tracking down every last dependency of the Spring Framework.

Maven accomplishes this by building a graph of dependencies and dealing with any conflicts and
overlaps that might occur. For example, if Maven sees that two projects depend on the same groupId
and artifactId, it will sort out which dependency to use automatically, always favoring the more
recent version of a dependency. Although this sounds convenient, there are some edge cases where
transitive dependencies can cause some configuration issues. For these scenarios, you can use a
dependency exclusion.

3.4.4.1. Transitive Dependencies and Scope

Each of the scopes outlined earlier in the section Section 3.4.1, “Dependency Scope” affects not just the
scope of the dependency in the declaring project, but also how it acts as a transitive dependency. The
easiest way to convey this information is through a table, as in Table 3.1, “How Scope Affects Transitive
Dependencies”. Scopes in the top row represent the scope of a transitive dependency. Scopes in the
leftmost column represent the scope of a direct dependency. The intersection of the row and column is
the scope that is assigned to a transitive dependency. A blank cell in this table means that the transitive
dependency will be omitted.

32

Table 3.1. How Scope Affects Transitive Dependencies

Direct Scope Transitive Scope

compile provided runtime test

compile compile - runtime -

provided provided provided provided -

runtime runtime - runtime -

test test - test -

To illustrate the relationship of transitive dependency scope to direct dependency scope, consider the
following example. If project-a contains a test scoped dependency on project-b which contains a
compile scoped dependency on project-c. project-c would be a test-scoped transitive dependency
of project-a.

You can think of this as a transitive boundary which acts as a filter on dependency scope. Transitive
dependencies which are provided and test scope usually do not affect a project. The exception to this
rule is that a provided scoped transitive dependency to a provided scope direct dependency is still
a provided dependency of a project. Transitive dependencies which are compile and runtime scoped
usually affect a project regardless of the scope of a direct dependency. Transitive dependencies which
are compile scoped will have the same scope regardless of the scope of the direct dependency. Transitive
dependencies which are runtime scoped will generally have the same scope of the direct dependency
except when the direct dependency has a scope of compile. When a transitive dependency is runtime
scoped and a direct is compile scoped the direct dependency the transitive dependency will have an
effective scope of runtime.

3.4.5. Conflict Resolution

There will be times when you need to exclude a transitive dependency, such as when you are depending
on a project that depends on another project, but you would like to either exclude the dependency
altogether or replace the transitive dependency with another dependency that provides the same
functionality. Example 3.7, “Excluding a Transitive Dependency” shows an example of a dependency
element that adds a dependency on project-a, but excludes the transitive dependency project-b.

Example 3.7. Excluding a Transitive Dependency

<dependency>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>project-a</artifactId>
 <version>1.0</version>
 <exclusions>
 <exclusion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>project-b</artifactId>
 </exclusion>
 </exclusions>

33

</dependency>

Often, you will want to replace a transitive dependency with another implementation. For example, if
you are depending on a library that depends on the Sun JTA API, you may want to replace the declared
transitive dependency. Hibernate is one example. Hibernate depends on the Sun JTA API JAR, which
is not available in the central Maven repository because it cannot be freely redistributed. Fortunately,
the Apache Geronimo project has created an independent implementation of this library that can be
freely redistributed. To replace a transitive dependency with another dependency, you would exclude
the transitive dependency and declare a dependency on the project you wanted instead. Example 3.8,
“Excluding and Replacing a Transitive Dependency” shows an example of a such replacement.

Example 3.8. Excluding and Replacing a Transitive Dependency

<dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 <version>3.2.5.ga</version>
 <exclusions>
 <exclusion>
 <groupId>javax.transaction</groupId>
 <artifactId>jta</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-jta_1.1_spec</artifactId>
 <version>1.1</version>
 </dependency>
</dependencies>

In Example 3.8, “Excluding and Replacing a Transitive Dependency”, there is nothing marking the
dependency on geronimo-jta_1.1_spec as a replacement, it just happens to be a library which
provides the same API as the original JTA dependency. Here are some other reasons you might want
to exclude or replace transitive dependencies:

1. The groupId or artifactId of the artifact has changed, where the current project requires an
alternately named version from a dependency's version - resulting in 2 copies of the same project in
the classpath. Normally Maven would capture this conflict and use a single version of the project,
but when groupId or artifactId are different, Maven will consider this to be two different
libraries.

2. An artifact is not used in your project and the transitive dependency has not been marked as
an optional dependency. In this case, you might want to exclude a dependency because it isn't
something your system needs and you are trying to cut down on the number of libraries distributed
with an application.

34

3. An artifact which is provided by your runtime container thus should not be included with your
build. An example of this is if a dependency depends on something like the Servlet API and
you want to make sure that the dependency is not included in a web application's WEB-INF/lib
directory.

4. To exclude a dependency which might be an API with multiple implementations. This is the
situation illustrated by Example 3.8, “Excluding and Replacing a Transitive Dependency”; there is
a Sun API which requires click-wrap licensing and a time-consuming manual install into a custom
repository (Sun's JTA JAR) versus a freely distributed version of the same API available in the
central Maven repository (Geronimo's JTA implementation).

3.4.6. Dependency Management

Once you've adopted Maven at your super complex enterprise and you have two hundred and twenty
inter-related Maven projects, you are going to start wondering if there is a better way to get a handle
on dependency versions. If every single project that uses a dependency like the MySQL Java connector
needs to independently list the version number of the dependency, you are going to run into problems
when you need to upgrade to a new version. Because the version numbers are distributed throughout your
project tree, you are going to have to manually edit each of the pom.xml files that reference a dependency
to make sure that you are changing the version number everywhere. Even with find, xargs, and awk,
you are still running the risk of missing a single POM.

Luckily, Maven provides a way for you to consolidate dependency version numbers in the
dependencyManagement element. You'll usually see the dependencyManagement element in
a top-level parent POM for an organization or project. Using the dependencyManagement
element in a pom.xml allows you to reference a dependency in a child project without having
to explicitly list the version. Maven will walk up the parent-child hierarchy until it finds a
project with a dependencyManagement element, it will then use the version specified in this
dependencyManagement element.

For example, if you have a large set of projects which make use of the MySQL Java connector version
5.1.2, you could define the following dependencyManagement element in your multi-module project's
top-level POM.

Example 3.9. Defining Dependency Versions in a Top-level POM

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>a-parent</artifactId>
 <version>1.0.0</version>
 ...
 <dependencyManagement>
 <dependencies>
 <dependency>

35

 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.2</version>
 </dependency>
 ...
 <dependencies>
 </dependencyManagement>

Then, in a child project, you can add a dependency to the MySQL Java Connector using the following
dependency XML:

<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>a-parent</artifactId>
 <version>1.0.0</version>
 </parent>
 <artifactId>project-a</artifactId>
 ...
 <dependencies>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 </dependency>
 </dependencies>
</project>

You should notice that the child project did not have to explicitly list the version of the mysql-
connector-java dependency. Because this dependency was defined in the top-level POM's
dependencyManagement element, the version number is going to propagate to the child project's
dependency on mysql-connector-java. Note that if this child project did define a version, it would
override the version listed in the top-level POM's dependencyManagement section. That is, the
dependencyManagement version is only used when the child does not declare a version directly.

Dependency management in a top-level POM is different from just defining a dependency on a
widely shared parent POM. For starters, all dependencies are inherited. If mysql-connector-java
were listed as a dependency of the top-level parent project, every single project in the hierarchy
would have a reference to this dependency. Instead of adding in unnecessary dependencies, using
dependencyManagement allows you to consolidate and centralize the management of dependency
versions without adding dependencies which are inherited by all children. In other words, the
dependencyManagement element is equivalent to an environment variable which allows you to declare
a dependency anywhere below a project without specifying a version number.

3.5. Project Relationships
One of the compelling reasons to use Maven is that it makes the process of tracking down dependencies
(and dependencies of dependencies) very easy. When a project depends on an artifact produced by

36

another project we say that this artifact is a dependency. In the case of a Java project, this can be as
simple as a project depending on an external dependency like Log4J or JUnit. While dependencies can
model external dependencies, they can also manage the dependencies between a set of related projects.
If project-a depends on project-b, Maven is smart enough to know that project-b must be built
before project-a.

Relationships are not only about dependencies and figuring out what one project needs to be able to
build an artifact. Maven can model the relationship of a project to a parent, and the relationship of a
project to submodules. This section gives an overview of the various relationships between projects and
how such relationships are configured.

3.5.1. More on Coordinates

Coordinates define a unique location for a project. Projects are related to one another using Maven
Coordinates. project-a doesn't just depend on project-b; a project with a groupId, artifactId,
and version depends on another project with a groupId, artifactId, and version. To review, a
Maven Coordinate is made up of three components:

groupId
A groupId groups a set of related artifacts. Group identifiers generally resemble a Java package
name. For example, the groupId org.apache.maven is the base groupId for all artifacts
produced by the Apache Maven project. Group identifiers are translated into paths in the
Maven Repository; for example, the org.apache.maven groupId can be found in /maven2/org/
apache/maven on repo1.maven.org1.

artifactId
The artifactId is the project's main identifier. When you generate an artifact, this artifact
is going to be named with the artifactId. When you refer to a project, you are going to
refer to it using the artifactId. The artifactId, groupId combination must be unique. In
other words, you can't have two separate projects with the same artifactId and groupId;
artifactIds are unique within a particular groupId.

Note

While '.'s are commonly used in groupIds, you should try to avoid using them in
artifactIds. This can cause issues when trying to parse a fully qualified name
down into the subcomponents.

version
When an artifact is released, it is released with a version number. This version number is a
numeric identifier such as "1.0", "1.1.1", or "1.1.2-alpha-01". You can also use what is known as
a snapshot version. A snapshot version is a version for a component which is under development,

1 http://repo1.maven.org/maven2/org/apache/maven

http://repo1.maven.org/maven2/org/apache/maven
http://repo1.maven.org/maven2/org/apache/maven

37

snapshot version numbers always end in SNAPSHOT; for example, "1.0-SNAPSHOT", "1.1.1-
SNAPSHOT", and "1-SNAPSHOT". Section 3.3.1.1, “Version Build Numbers” introduces
versions and version ranges.

There is a fourth, less-used qualifier:

classifier
You would use a classifier if you were releasing the same code but needed to produce two
separate artifacts for technical reasons. For example, if you wanted to build two separate artifacts
of a JAR, one compiled with the Java 1.4 compiler and another compiled with the Java 6
compiler, you might use the classifier to produce two separate JAR artifacts under the same
groupId:artifactId:version combination. If your project uses native extensions, you might use
the classifier to produce an artifact for each target platform. Classifiers are commonly used to
package up an artifact's sources, JavaDocs or binary assemblies.

When we talk of dependencies in this book, we often use the following shorthand notation to describe
a dependency: groupId:artifactId:version. To refer to the 2.5 release of the Spring Framework,
we would refer to it as org.springframework:spring:2.5. When you ask Maven to print out a list
of dependencies with the Maven Dependency plugin, you will also see that Maven tends to print out log
messages with this shorthand dependency notation.

3.5.2. Project Inheritance

There are going to be times when you want a project to inherit values from a parent POM. You might
be building a large system, and you don't want to have to repeat the same dependency elements over
and over again. You can avoid repeating yourself if your projects make use of inheritance via the parent
element. When a project specifies a parent, it inherits the information in the parent project's POM. It
can then override and add to the values specified in this parent POM.

All Maven POMs inherit values from a parent POM. If a POM does not specify a direct parent using
the parent element, that POM will inherit values from the Super POM. Example 3.10, “Project
Inheritance” shows the parent element of project-a which inherits the POM defined by the a-
parent project.

Example 3.10. Project Inheritance

<project>
 <parent>
 <groupId>com.training.killerapp</groupId>
 <artifactId>a-parent</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <artifactId>project-a</artifactId>
 ...
</project>

38

Running mvn help:effective-pom in project-a would show a POM that is the result of merging
the Super POM with the POM defined by a-parent and the POM defined in project-a. The implicit
and explicit inheritance relationships for project-a are shown in Figure 3.3, “Project Inheritance for
a-parent and project-a”.

com.sonatype.maven
a-parent

com.sonatype.maven
project-a

Super POM

(implicit) a-parent inherits
 from the Super POM

(explicit) project-a inherits
 from a-parent

Figure 3.3. Project Inheritance for a-parent and project-a

When a project specifies a parent project, Maven uses that parent POM as a starting point before it
reads the current project's POM. It inherits everything, including the groupId and version number.
You'll notice that project-a does not specify either, both groupId and version are inherited from
a-parent. With a parent element, all a POM really needs to define is an artifactId. This isn't
mandatory, project-a could have a different groupId and version, but by not providing values,
Maven will use the values specified in the parent POM. If you start using Maven to manage and build
large multi-module projects, you will often be creating many projects which share a common groupId
and version.

When you inherit a POM, you can choose to live with the inherited POM information or to selectively
override it. The following is a list of items a Maven POM inherits from its parent POM:

• identifiers (at least one of groupId or artifactId must be overridden.)

• dependencies

• developers and contributors

• plugin lists

• reports lists

• plugin executions (executions with matching ids are merged)

39

• plugin configuration

When Maven inherits dependencies, it will add dependencies of child projects to the dependencies
defined in parent projects. You can use this feature of Maven to specify widely used dependencies across
all projects which inherit from a top-level POM. For example, if your system makes universal use of
the Log4J logging framework, you can list this dependency in your top-level POM. Any projects which
inherit POM information from this project will automatically have Log4J as a dependency. Similarly, if
you need to make sure that every project is using the same version of a Maven plugin, you can list this
Maven plugin version explicitly in a top-level parent POM's pluginManagement section.

Maven assumes that the parent POM is available from the local repository, or available in the parent
directory (../pom.xml) of the current project. If neither location is valid this default behavior may
be overridden via the relativePath element. For example, some organizations prefer a flat project
structure where a parent project's pom.xml isn't in the parent directory of a child project. It might be in
a sibling directory to the project. If your child project were in a directory ./project-a and the parent
project were in a directory named ./a-parent, you could specify the relative location of parent-a's
POM with the following configuration:

<project>
 <parent>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>a-parent</artifactId>
 <version>1.0-SNAPSHOT</version>
 <relativePath>../a-parent/pom.xml</relativePath>
 </parent>
 <artifactId>project-a</artifactId>
</project>

3.6. POM Best Practices
Maven can be used to manage everything from simple, single-project systems to builds that involve
hundreds of inter-related submodules. Part of the learning process with Maven isn't just figuring out
the syntax for configuring Maven, it is learning the "Maven Way"—the current set of best practices for
organizing and building projects using Maven. This section attempts to distill some of this knowledge
to help you adopt best practices from the start without having to wade through years of discussions on
the Maven mailing lists.

3.6.1. Grouping Dependencies

If you have a set of dependencies which are logically grouped together. You can create a project with
pom packaging that groups dependencies together. For example, let's assume that your application uses
Hibernate, a popular Object-Relational mapping framework. Every project which uses Hibernate might
also have a dependency on the Spring Framework and a MySQL JDBC driver. Instead of having to
include these dependencies in every project that uses Hibernate, Spring, and MySQL you could create
a special POM that does nothing more than declare a set of common dependencies. You could create a

40

project called persistence-deps (short for Persistence Dependencies), and have every project that
needs to do persistence depend on this convenience project:

Example 3.11. Consolidating Dependencies in a Single POM Project

<project>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>persistence-deps</artifactId>
 <version>1.0</version>
 <packaging>pom</packaging>
 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 <version>${hibernateVersion}</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>${hibernateAnnotationsVersion}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-hibernate3</artifactId>
 <version>${springVersion}</version>
 </dependency>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>${mysqlVersion}</version>
 </dependency>
 </dependencies>
 <properties>
 <mysqlVersion>(5.1,)</mysqlVersion>
 <springVersion>(2.0.6,)</springVersion>
 <hibernateVersion>3.2.5.ga</hibernateVersion>
 <hibernateAnnotationsVersion>3.3.0.ga</hibernateAnnotationsVersion>
 </properties>
</project>

If you create this project in a directory named persistence-deps, all you need to do is create this
pom.xml and run mvn install. Since the packaging type is pom, this POM is installed in your local
repository. You can now add this project as a dependency and all of its dependencies will be added to
your project. When you declare a dependency on this persistence-deps project, don't forget to specify
the dependency type as pom.

Example 3.12. Declaring a Dependency on a POM

<project>

41

 <description>This is a project requiring JDBC</description>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>persistence-deps</artifactId>
 <version>1.0</version>
 <type>pom</type>
 </dependency>
 </dependencies>
</project>

If you later decide to switch to a different JDBC driver (for example, JTDS), just replace the
dependencies in the persistence-deps project to use net.sourceforge.jtds:jtds instead
of mysql:mysql-java-connector and update the version number. All projects depending on
persistence-deps will use JTDS if they decide to update to the newer version. Consolidating
related dependencies is a good way to cut down on the length of pom.xml files that start having
to depend on a large number of dependencies. If you need to share a large number of dependencies
between projects, you could also just establish parent-child relationships between projects and refactor
all common dependencies to the parent project, but the disadvantage of the parent-child approach is that a
project can have only one parent. Sometimes it makes more sense to group similar dependencies together
and reference a pom dependency. This way, your project can reference as many of these consolidated
dependency POMs as it needs.

Note

Maven uses the depth of a dependency in the tree when resolving conflicts using a
nearest-wins approach. Using the dependency grouping technique above pushes those
dependencies one level down in the tree. Keep this in mind when choosing between
grouping in a pom or using dependencyManagement in a parent POM

3.6.2. Multi-module vs. Inheritance

There is a difference between inheriting from a parent project and being managed by a multimodule
project. A parent project is one that passes its values to its children. A multimodule project simply
manages a group of other subprojects or modules. The multimodule relationship is defined from the
topmost level downwards. When setting up a multimodule project, you are simply telling a project that
its build should include the specified modules. Multimodule builds are to be used to group modules
together in a single build. The parent-child relationship is defined from the leaf node upwards. The
parent-child relationship deals more with the definition of a particular project. When you associate a
child with its parent, you are telling Maven that a project’s POM is derived from another.

To illustrate the decision process that goes into choosing a design that uses inheritance vs. multi-module
or both approaches consider the following two examples: the Maven project used to generate this book
and a hypothetical project that contains a number of logically grouped modules.

42

3.6.2.1. Simple Project

First, let's take a look at the maven-book project. The inheritance and multi-module relationships are
shown in Figure 3.4, “maven-book Multi-module vs. Inheritance”.

com.sonatype
sonatype

com.sonatype.maven
maven-book

Super POM

com.sonatype.maven
book-examples

com.sonatype.maven
book-chapters

Submodule Relationship
Parent/Child Relationship

Figure 3.4. maven-book Multi-module vs. Inheritance

When we build this Maven book you are reading, we run mvn package in a multi-module project named
maven-book. This multi-module project includes two submodules: book-examples and book-
chapters. Neither of these projects share the same parent, they are related only in that they are modules
in the maven-book project. book-examples builds the ZIP and TGZ archives you downloaded to get
this book's example. When we run the book-examples build from book-examples/ directory with
mvn package, it has no knowledge that it is a part of the larger maven-book project. book-examples
doesn't really care about maven-book, all it knows in life is that its parent is the top-most sonatype
POM and that it creates an archive of examples. In this case, the maven-book project exists only as a
convenience and as a aggregator of modules.

Each of the three projects: maven-book, book-examples, and book-chapters all list a shared
"corporate" parent — sonatype. This is a common practice in organizations which have adopted
Maven, instead of having every project extend the Super POM by default, some organizations define a
top-level corporate POM that serves as the default parent when a project doesn't have any good reason
to depend on another. In this book example, there is no compelling reason to have book-examples and
book-chapters share the same parent POM, they are entirely different projects which have a different
set of dependencies, a different build configuration, and use drastically different plugins to create the
content you are now reading. The sonatype POM gives the organization a change to customize the
default behavior of Maven and supply some organization-specific information to configure deployment
settings and build profiles.

43

3.6.2.2. Multi-module Enterprise Project

Let's take a look at an example that provides a more accurate picture of a real-world project where
inheritance and multi-module relationships exist side by side. Figure 3.5, “Enterprise Multi-module
vs. Inheritance” shows a collection of projects that resemble a typical set of projects in an enterprise
application. There is a top-level POM for the corporation with an artifactId of sonatype. There is a
multi-module project named big-system which references sub-modules server-side and client-
side.

com.sonatype.maven
sonatype
1.0-SNAPSHOT

Super POM

com.sonatype.maven
big-system
1.0-SNAPSHOT

com.sonatype.maven
server-side
1.0-SNAPSHOT

com.sonatype.maven
web-apps
1.0-SNAPSHOT

com.sonatype.maven
server-lib
1.0-SNAPSHOT

com.sonatype.maven
client-side
1.0-SNAPSHOT

com.sonatype.maven
swing-app
1.0-SNAPSHOT

com.sonatype.maven
client-lib
1.0-SNAPSHOT

Submodule Relationship

Parent/Child Relationship

com.sonatype.maven
client-web
1.0-SNAPSHOT

com.sonatype.maven
admin-web
1.0-SNAPSHOT

com.sonatype.maven
trading-client
1.0-SNAPSHOT

com.sonatype.maven
streaming-client
1.0-SNAPSHOT

Figure 3.5. Enterprise Multi-module vs. Inheritance

What's going on here? Let's try to deconstruct this confusing set of arrows. First, let's take a look at
big-system. The big-system might be the project that you would run mvn package on to build and
test the entire system. big-system references submodules client-side and server-side. Each of
these projects effectively rolls up all of the code that runs on either the server or on the client. Let's focus
on the server-side project. Under the server-side project we have a project called server-lib

44

and a multi-module project named web-apps. Under web-apps we have two Java web applications:
client-web and admin-web.

Let's start with the parent/child relationships from client-web and admin-web to web-apps. Since
both of the web applications are implemented in the same web application framework (let's say Wicket),
both projects would share the same set of core dependencies. The dependencies on the Servlet API, the
JSP API, and Wicket would all be captured in the web-apps project. Both client-web and admin-
web also need to depend on server-lib, this dependency would be defined as a dependency between
web-apps and server-lib. Because client-web and admin-web share so much configuration by
inheriting from web-apps, both client-web and admin-web will have very small POMs containing
little more than identifiers, a parent declaration, and a final build name.

Next we focus on the parent/child relationship from web-apps and server-lib to server-side. In
this case, let's just assume that there is a separate working group of developers which work on the server-
side code and another group of developers that work on the client-side code. The list of developers
would be configured in the server-side POM and inherited by all of the child projects underneath
it: web-apps, server-lib, client-web, and admin-web. We could also imagine that the server-
side project might have different build and deployment settings which are unique to the development
for the server side. The server-side project might define a build profile that only makes sense for
all of the server-side projects. This build profile might contain the database host and credentials, or
the server-side project's POM might configure a specific version of the Maven Jetty plugin which
should be universal across all projects that inherit the server-side POM.

In this example, the main reason to use parent/child relationships is shared dependencies and common
configuration for a group of projects which are logically related. All of the projects below big-system
are related to one another as submodules, but not all submodules are configured to point back to parent
project that included it as a submodule. Everything is a submodule for reasons of convenience, to build
the entire system just go to the big-system project directory and run mvn package. Look more closely
at the figure and you'll see that there is no parent/child relationship between server-side and big-
system. Why is this? POM inheritance is very powerful, but it can be overused. When it makes sense to
share dependencies and build configuration, a parent/child relationship should be used. When it doesn't
make sense is when there are distinct differences between two projects. Take, for example, the server-
side and client-side projects. It is possible to create a system where client-side and server-
side inherited a common POM from big-system, but as soon as a significant divergence between
the two child projects develops, you then have to figure out creative ways to factor out common build
configuration to big-system without affecting all of the children. Even though client-side and
server-side might both depend on Log4J, they also might have distinct plugin configurations.

There's a certain point defined more by style and experience where you decide that minimal duplication
of configuration is a small price to pay for allowing projects like client-side and server-side to
remain completely independent. Designing a huge set of thirty plus projects which all inherit five levels
of POM configuration isn't always the best idea. In such a setup, you might not have to duplicate your
Log4J dependency more than once, but you'll also end up having to wade through five levels of POM
just figure out how Maven calculated your effective POM. All of this complexity to avoid duplicating

45

five lines of dependency declaration. In Maven, there is a "Maven Way", but there are also many ways
to accomplish the same thing. It all boils down to preference and style. For the most part, you won't go
wrong if all of your submodules turn out to define back-references to the same project as a parent, but
your use of Maven may evolve over time.

Chapter 4. The Build Lifecycle
4.1. Introduction
Maven models projects as nouns which are described by a POM. The POM captures the identity of a
project: What does a project contain? What type of packaging a project needs? Does the project have
a parent? What are the dependencies? We've explored the idea of describing a project in the previous
chapters, but we haven't introduced the mechanism that allows Maven to act upon these objects. In
Maven the "verbs" are goals packaged in Maven plugins which are tied to a phases in a build lifecycle.
A Maven lifecycle consists of a sequence of named phases: prepare-resources, compile, package, and
install among other. There is phase that captures compilation and a phase that captures packaging. There
are pre- and post- phases which can be used to register goals which must run prior to compilation,
or tasks which must be run after a particular phase. When you tell Maven to build a project, you are
telling Maven to step through a defined sequence of phases and execute any goals which may have been
registered with each phase.

A build lifecycle is an organized sequence of phases that exist to give order to a set of goals. Those goals
are chosen and bound by the packaging type of the project being acted upon. There are three standard
lifecycles in Maven: clean, default (sometimes called build) and site. In this chapter, you are going to
learn how Maven ties goals to lifecycle phases and how the lifecycle can be customized. You will also
learn about the default lifecycle phases.

4.1.1. Clean Lifecycle (clean)

The first lifecycle you'll be interested in is the simplest lifecycle in Maven. Running mvn clean invokes
the clean lifecycle which consists of three lifecycle phases:

• pre-clean

• clean

• post-clean

The interesting phase in the clean lifecycle is the clean phase. The Clean plugin's clean goal
(clean:clean) is bound to the clean phase in the clean lifecycle. The clean:clean goal deletes
the output of a build by deleting the build directory. If you haven't customized the location of the build
directory it will be the ${basedir}/target directory as defined by the Super POM. When you execute
the clean:clean goal you do not do so by executing the goal directly with mvn clean:clean, you
do so by executing the clean phase of the clean lifecycle. Executing the clean phase gives Maven an
opportunity to execute any other goals which may be bound to the pre-clean phase.

For example, suppose you wanted to trigger an antrun:run goal task to echo a notification on pre-
clean, or to make an archive of a project's build directory before it is deleted. Simply running the
clean:clean goal will not execute the lifecycle at all, but specifying the clean phase will use

48

the clean lifecycle and advance through the three lifecycle phases until it reaches the clean phase.
Example 4.1, “Triggering a Goal on pre-clean” shows an example of build configuration which binds
the antrun:run goal to the pre-clean phase to echo an alert that the project artifact is about to be
deleted. In this example, the antrun:run goal is being used to execute some arbitrary Ant commands
to check for an existing project artifact. If the project's artifact is about to be deleted it will print this
to the screen

Example 4.1. Triggering a Goal on pre-clean

<project>
 ...
 <build>
 <plugins>... <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <executions>
 <execution>
 <id>file-exists</id>
 <phase>pre-clean</phase>
 <goals>
 <goal>run</goal>
 </goals>
 <configuration>
 <tasks>
 <!-- adds the ant-contrib tasks (if/then/else used below) -->
 <taskdef resource="net/sf/antcontrib/antcontrib.properties" />
 <available
 file="${project.build.directory}/${project.build.finalName}.${project.packaging}"
 property="file.exists" value="true" />

 <if>
 <not>
 <isset property="file.exists" />
 </not>
 <then>
 <echo>No
 ${project.build.finalName}.${project.packaging} to
 delete</echo>
 </then>
 <else>
 <echo>Deleting
 ${project.build.finalName}.${project.packaging}</echo>
 </else>
 </if>
 </tasks>
 </configuration>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>ant-contrib</groupId>
 <artifactId>ant-contrib</artifactId>
 <version>1.0b2</version>

49

 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>
</project>

Running mvn clean on a project with this build configuration will produce output similar to the
following:

[INFO] Scanning for projects...
[INFO] --
[INFO] Building Your Project
[INFO] task-segment: [clean]
[INFO] --
[INFO] [antrun:run {execution: file-exists}]
[INFO] Executing tasks
 [echo] Deleting your-project-1.0-SNAPSHOT.jar
[INFO] Executed tasks
[INFO] [clean:clean]
[INFO] Deleting directory ~/corp/your-project/target
[INFO] Deleting directory ~/corp/your-project/target/classes
[INFO] Deleting directory ~/corp/your-project/target/test-classes
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 1 second
[INFO] Finished at: Wed Nov 08 11:46:26 CST 2006
[INFO] Final Memory: 2M/5M
[INFO] --

In addition to configuring Maven to run a goal during the pre-clean phase, you can also customize
the Clean plugin to delete files in addition to the build output directory. You can configure the plugin
to remove specific files in a fileSet. The example below configures clean to remove all .class files
in a directory named target-other/ using standard Ant file wildcards: * and **.

Example 4.2. Customizing Behavior of the Clean Plugin

<project>
 <modelVersion>4.0.0</modelVersion>
 ...
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <configuration>
 <filesets>
 <fileset>
 <directory>target-other</directory>
 <includes>
 <include>*.class</include>
 </includes>
 </fileset>

50

 </filesets>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

4.1.2. Default Lifecycle (default)

Most Maven users will be familiar with the default lifecycle. It is a general model of a build process
for a software application. The first phase is validate and the last phase is deploy. The phases in the
default Maven lifecycle are shown in Table 4.1, “Maven Lifecycle Phases”.

Table 4.1. Maven Lifecycle Phases

Lifecycle Phase Description

validate Validate the project is correct and all necessary
information is available to complete a build

generate-sources Generate any source code for inclusion in
compilation

process-sources Process the source code, for example to filter
any values

generate-resources Generate resources for inclusion in the package

process-resources Copy and process the resources into the
destination directory, ready for packaging

compile Compile the source code of the project

process-classes Post-process the generated files from
compilation, for example to do bytecode
enhancement on Java classes

generate-test-sources Generate any test source code for inclusion in
compilation

process-test-sources Process the test source code, for example to
filter any values

generate-test-resources Create resources for testing

process-test-resources Copy and process the resources into the test
destination directory

test-compile Compile the test source code into the test
destination directory

test Run tests using a suitable unit testing
framework. These tests should not require the
code be packaged or deployed

51

Lifecycle Phase Description

prepare-package Perform any operations necessary to prepare
a package before the actual packaging. This
often results in an unpacked, processed version
of the package (coming in Maven 2.1+)

package Take the compiled code and package it in its
distributable format, such as a JAR, WAR, or
EAR

pre-integration-test Perform actions required before integration
tests are executed. This may involve things
such as setting up the required environment

integration-test Process and deploy the package if necessary
into an environment where integration tests can
be run

post-integration-test Perform actions required after integration tests
have been executed. This may include cleaning
up the environment

verify Run any checks to verify the package is valid
and meets quality criteria

install Install the package into the local repository, for
use as a dependency in other projects locally

deploy Copies the final package to the remote
repository for sharing with other developers
and projects (usually only relevant during a
formal release)

4.1.3. Site Lifecycle (site)

Maven does more than build software artifacts from project, it can also generate project documentation
and reports about the project, or a collection of projects. Project documentation and site generation have
a dedicated lifecycle which contains four phases:

1. pre-site

2. site

3. post-site

4. site-deploy

The default goals bound to the site lifecycle is:

52

1. site - site:site

2. site-deploy -site:deploy

The packaging type does not usually alter this lifecycle since packaging types are concerned primarily
with artifact creation, not with the type of site generated. The Site plugin kicks off the execution of
Doxia1 document generation and other report generation plugins. You can generate a site from a Maven
project by running the following command:

$ mvn site

For more information about Maven Site generation, see Chapter 10, Site Generation.

4.2. Package-specific Lifecycles
The specific goals bound to each phase default to a set of goals specific to a project's packaging. A project
with packaging jar has a different set of default goals from a project with a packaging of war. The
packaging element affects the steps required to build a project. For an example of how the packaging
affects the build, consider two projects: one with pom packaging and the other with jar packaging. The
project with pom packaging will run the site:attach-descriptor goal during the package phase,
and the project with jar packaging will run the jar:jar goal instead.

The following sections describe the lifecycle for all built-in packaging types in Maven. Use these
sections to find out what default goals are mapped to default lifecycle phases.

4.2.1. JAR

JAR is the default packaging type, the most common, and thus the most commonly encountered lifecycle
configuration. The default goals for the JAR lifecycle are shown in Table 4.2, “Default Goals for JAR
Packaging”.

Table 4.2. Default Goals for JAR Packaging

Lifecycle Phase Goal

process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

package jar:jar

install install:install

1 http://maven.apache.org/doxia/

http://maven.apache.org/doxia/
http://maven.apache.org/doxia/

53

Lifecycle Phase Goal

deploy deploy:deploy

4.2.2. POM

POM is the simplest packaging type. The artifact that it generates is itself only, rather than a JAR, SAR,
or EAR. There is no code to test or compile, and there are no resources the process. The default goals
for projects with POM packaging are shown in Table 4.3, “Default Goals for POM Packaging”.

Table 4.3. Default Goals for POM Packaging

Lifecycle Phase Goal

package site:attach-descriptor

install install:install

deploy deploy:deploy

4.2.3. Maven Plugin

This packaging type is similar to JAR packaging type with three additions: plugin:descriptor,
plugin:addPluginArtifactMetadata, and plugin:updateRegistry. These goals generate a
descriptor file and perform some modifications to the repository data. The default goals for projects
with plugin packaging are shown in Table 4.4, “Default Goals for Plugin Packaging”.

Table 4.4. Default Goals for Plugin Packaging

Lifecycle Phase Goal

generate-resources plugin:descriptor

process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

package jar:jar, plugin:addPluginArtifactMetadata

install install:install, plugin:updateRegistry

deploy deploy:deploy

4.2.4. EJB

EJBs, or Enterprise Java Beans, are a common data access mechanism for model-driven development in
Enterprise Java. Maven provides support for EJB 2 and 3. Though you must configure the EJB plugin to

54

specifically package for EJB3, else the plugin defaults to 2.1 and looks for the presence of certain EJB
configuration files. The default goals for projects with EJB packaging are shown in Table 4.5, “Default
Goals for EJB Packaging”.

Table 4.5. Default Goals for EJB Packaging

Lifecycle Phase Goal

process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

package ejb:ejb

install install:install

deploy deploy:deploy

4.2.5. WAR

The WAR packaging type is similar to the JAR and EJB types. The exception being the package
goal of war:war. Note that the war:war plugin requires a web.xml configuration in your src/
main/webapp/WEB-INF directory. The default goals for projects with WAR packaging are shown in
Table 4.6, “Default Goals for WAR Packaging”.

Table 4.6. Default Goals for WAR Packaging

Lifecycle Phase Goal

process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

package war:war

install install:install

deploy deploy:deploy

4.2.6. EAR

EARs are probably the simplest Java EE constructs, consisting primarily of the deployment descriptor
application.xml file, some resources and some modules. The EAR plugin has a goal named

55

generate-application-xml which generates the application.xml based upon the configuration
in the EAR project's POM. The default goals for projects with EAR packaging are shown in Table 4.7,
“Default Goals for EAR Packaging”.

Table 4.7. Default Goals for EAR Packaging

Lifecycle Phase Goal

generate-resources ear:generate-application-xml

process-resources resources:resources

package ear:ear

install install:install

deploy deploy:deploy

4.2.7. Other Packaging Types

This is not an exhaustive list of every packaging type available for Maven. There are a number of
packaging formats available through external projects and plugins: the NAR (native archive) packaging
type, the SWF and SWC packaging types for projects that produce Adobe Flash and Flex content, and
many others. You can also define a custom packaging type and customize the default lifecycle goals to
suit your own project packaging requirements.

To use one of these custom packaging types, you need two things: a plugin which defines the lifecycle
for a custom packaging type and a repository which contains this plugin. Some custom packaging types
are defined in plugins available from the central Maven repository. Here is an example of a project
which references the Israfil Flex plugin and uses a custom packaging type of SWF to produce output
from Adobe Flex source.

Example 4.3. Custom Packaging Type for Adobe Flex (SWF)

<project>
 ...
 <packaging>swf</packaging>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>net.israfil.mojo</groupId>
 <artifactId>maven-flex2-plugin</artifactId>
 <version>1.4-SNAPSHOT</version>
 <extensions>true</extensions>
 <configuration>
 <debug>true</debug>
 <flexHome>${flex.home}</flexHome>
 <useNetwork>true</useNetwork>
 <main>org/sonatype/mavenbook/Main.mxml</main>
 </configuration>

56

 </plugin>
 </plugins>
 </build>
 ...
</project>

In Section 11.6, “Plugins and the Maven Lifecycle”, we show you how to create your own packaging
type with a customized lifecycle. This example should give you an idea of what you'll need to do
to reference a custom packaging type. All you need to do is reference the plugin which supplies the
custom packaging type. The Israfil Flex plugin is a third-party Maven plugin hosted at Google Code,
for more information about this plugin and how to use Maven to compile Adobe Flex go to http://
code.google.com/p/israfil-mojo. This plugin supplies the following lifecycle for the SWF packaging
type:

Table 4.8. Default Lifecycle for SWF Packaging

Lifecycle Phase Goal

compile flex2:compile-swc

install install

deploy deploy

4.3. Common Lifecycle Goals
Many of the packaging lifecycles have similar goals. If you look at the goals bound to the WAR
and JAR lifecycles, you'll see that they differ only in the package phase. The package phase of the
WAR lifecycle calls war:war and the package phase of the JAR lifecycle calls jar:jar. Most of
the lifecycles you will come into contact share some common lifecycle goals for managing resources,
running tests, and compiling source code. In this section, we'll explore some of these common lifecycle
goals in detail.

4.3.1. Process Resources

Most lifecycles bind the resources:resources goal to the process-resources phase. The
process-resources phase "processes" resources and copies them to the output directory. If you
haven't customized the default directory locations defined in the Super POM, this means that Maven will
copy the files from ${basedir}/src/main/resources to ${basedir}/target/classes or the
directory defined in ${project.build.outputDirectory}. In addition to copying the resources to
the output directory, Maven can also apply a filter to the resources that allows you to replace tokens
within resource file. Just like variables are referenced in a POM using ${...} notation, you can
reference variables in your project's resources using the same syntax. Coupled with build profiles, such
a facility can be used to produce build artifacts which target different deployment platforms. This is
something that is common in environments which need to produce output for development, testing,
staging, and production platforms from the same project. For more information about build profiles, see
Chapter 5, Build Profiles.

http://code.google.com/p/israfil-mojo
http://code.google.com/p/israfil-mojo

57

To illustrate resource filtering, assume that you have a project with an XML file in src/main/
resources/META-INF/service.xml. You want to externalize some configuration variables to a
properties file. In other words, you might want to reference a JDBC URL, username, and password for
your database, and you don't want to put these values directly into the service.xml file. Instead, you
would like to use a properties file to capture all of the configuration points for your program. Doing this
will allow you to consolidate all configuration into a single properties file and make it easier to change
configuration values when you need to target a new deployment environment. First, take a look at the
contents of service.xml in src/main/resources/META-INF.

Example 4.4. Using Properties in Project Resources

<service>
 <!-- This URL was set by project version ${project.version} -->
 <url>${jdbc.url}</url>
 <user>${jdbc.username}</user>
 <password>${jdbc.password}</password>
</service>

This XML file uses the same property reference syntax you can use in the POM. In fact, the first variable
referenced is the project variable which is also an implicit variable made available in the POM.
The project variable provides access to POM information. The next three variable references are
jdbc.url, jdbc.username, and jdbc.password. These custom variables are defined in a properties
file src/main/filters/default.properties.

Example 4.5. default.properties in src/main/filters

jdbc.url=jdbc:hsqldb:mem:mydb
jdbc.username=sa
jdbc.password=

To configure resource filtering with this default.properties file, we need to specify two things in
a project's POM: a list of properties files in the filters element of the build configuration, and a flag
to Maven that the resources directory is to be filtered. The default Maven behavior is to skip filtering
and just copy the resources to the output directory; you'll need to explicitly configure resource filter, or
Maven will skip the step altogether. This default ensures that Maven's resource filtering feature doesn't
surprise you out of nowhere and clobbering any ${...} references you didn't want it to replace.

Example 4.6. Filter Resources (Replacing Properties)

<build>
 <filters>
 <filter>src/main/filters/default.properties</filter>
 </filters>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 <filtering>true</filtering>
 </resource>

58

 </resources>
</build>

As with all directories in Maven, the resources directory does not need to be in src/main/resources.
This is just the default value defined in the Super POM. You should also note that you don't need to
consolidate all of your resources into a single directory. You can always separate resources into separate
directories under src/main. Assume that you have project which contains hundreds of XML documents
and hundreds of images. Instead of mixing the resources in the src/main/resources directory, you
might want to create two directories src/main/xml and src/main/images to hold this content. To
add directories to the list of resource directories, you would add the following resource elements to
your build configuration.

Example 4.7. Configuring Additional Resource Directories

<build>
 ...
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 </resource>
 <resource>
 <directory>src/main/xml</directory>
 </resource>
 <resource>
 <directory>src/main/images</directory>
 </resource>
 </resources>
 ...
</build>

When you are building a project that produces a console application or a command-line tool, you'll often
find yourself writing simple shell scripts that need to reference the JAR produced by a build. When
you are using the assembly plugin to produce a distribution for an application as a ZIP or TAR, you
might place all of you scripts in a directory like src/main/command. In the following POM resource
configuration, you'll see how we can use resource filtering and a reference to the project variable to
capture the final output name of the JAR. For more information about the Maven Assembly plugin, see
Chapter 8, Maven Assemblies.

Example 4.8. Filtering Script Resources

<build>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>simple-cmd</artifactId>
 <version>2.3.1</version>
 ...
 <resources>
 <resource>
 <filtering>true</filtering>
 <directory>${basedir}/src/main/command</directory>

59

 <includes>
 <include>run.bat</include>
 <include>run.sh</include>
 </includes>
 <targetPath>${basedir}</targetPath>
 </resource>
 <resource>
 <directory>${basedir}/src/main/resources</directory>
 </resource>
 </resources>
 ...
</build>

If you run mvn process-resources in this project, you will end up with two files, run.sh and
run.bat, in ${basedir}. We've singled out these two files in a resource element, configuring
filtering, and set the targetPath to be ${basedir}. In a second resource element, we've configured
the default resources path to be copied to the default output directory without any filtering. Example 4.8,
“Filtering Script Resources” shows you how to declare two resource directories and supply them with
different filtering and target directory preferences. The project from Example 4.8, “Filtering Script
Resources” would contain a run.bat file in src/main/command with the following content:

@echo off
java -jar ${project.build.finalName}.jar %*

After running mvn process-resources, a file named run.bat would appear in ${basedir} with
the following content:

@echo off
java -jar simple-cmd-2.3.1.jar %*

The ability to customize filtering for specific subsets of resources is another reason why complex
projects with many different kinds of resources often find it advantageous to separate resources into
multiple directories. The alternative to storing different kinds of resources with different filtering
requirements in different directories is to use a more complex set of include and exclude patterns to
match all resource files which match a certain pattern.

4.3.2. Compile

Most lifecycles bind the Compiler plugin's compile goal to the compile phase. This phase calls
out to compile:compile which is configured to compile all of the source code and copy the
bytecode to the build output directory. If you haven't customized the values defined in the Super POM,
compile:compile is going to compile everything from src/main/java to target/classes. The
Compiler plugin calls out to javac and uses default source and target settings of 1.3 and 1.1. In other
words, the compiler plugin assumes that your Java source conforms to Java 1.3 and that you are targeting
a Java 1.1 JVM. If you would like to change these settings, you'll need to supply the target and source
configuration to the Compiler plugin in your project's POM as shown in Example 4.9, “Setting the
Source and Target Versions for the Compiler Plugin”.

60

Example 4.9. Setting the Source and Target Versions for the Compiler Plugin

<project>
 ...
 <build>
 ...
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 ...
 </build>
 ...
</project>

Notice we are configuring the Compiler plugin, and not the specific compile:compile goal. If
we were going to configure the source and target for just the compile:compile goal, we would
place the configuration element below an execution element for the compile:compile goal.
We've configured the target and source for the plugin because compile:compile isn't the only goal
we're interested in configuring. The Compiler plugin is reused when Maven compiles tests using the
compile:testCompile goal, and configuring target and source at the plugin level allows us to define
it once for all goals in a plugin.

If you need to customize the location of the source code, you can do so by changing the build
configuration. If you wanted to store your project's source code in src/java instead of src/main/
java and if you wanted build output to go to classes instead of target/classes, you could always
override the default sourceDirectory defined by the Super POM.

Example 4.10. Overriding the Default Source Directory

<build>
 ...
 <sourceDirectory>src/java</sourceDirectory>
 <outputDirectory>classes</outputDirectory>
 ...
</build>

Warning
While it might seem necessary to bend Maven to your own idea of project directory
structure, we can't emphasize enough that you should sacrifice your own ideas of directory
structure in favor of the Maven defaults. This isn't because we're trying to brainwash you
into accepting the Maven Way, but it will be easier for people to understand your project
if it adheres to the most basic conventions. Just forget about this. Don't do it.

61

4.3.3. Process Test Resources

The process-test-resources phase is almost indistinguishable from the process-resources
phase. There are some trivial differences in the POM, but most everything the same. You can filter test
resources just as you filter regular resources. The default location for test resources is defined in the
Super POM as src/test/resources, and the default output directory for test resources is target/
test-classes as defined in ${project.build.testOutputDirectory}.

4.3.4. Test Compile

The test-compile phase is almost identical to the compile phase. The only difference is that test-
compile is going to invoke compile:testCompile to compile source from the test source directory
to the test build output directory. If you haven't customized the default directories from the Super POM,
compile:testCompile is going to compile the source in src/test/java to the target/test-
classes directory.

As with the source code directory, if you want to customize the location of the test source code and
the output of test compilation, you can do so by overriding the testSourceDirectory and the
testOutputDirectory. If you wanted to store test source in src-test/ instead of src/test/java and
you wanted to save test bytecode to classes-test/ instead of target/test-classes, you would
use the following configuration.

Example 4.11. Overriding the Location of Test Source and Output

<build>
 ...
 <testSourceDirectory>src-test</testSourceDirectory>
 <testOutputDirectory>classes-test</testOutputDirectory>
 ...
</build>

4.3.5. Test

Most lifecycles bind the test goal of the Surefire plugin to the test phase. The Surefire plugin is Maven's
unit testing plugin, the default behavior of Surefire is to look for all classes ending in *Test in the test
source directory and to run them as JUnit2 tests. The Surefire plugin can also be configured to run
TestNG3 unit tests.

After running mvn test, you should also notice that the Surefire produces a number of reports in
target/surefire-reports. This reports directory will have two files for each test executed by
the Surefire plugin: an XML document containing execution information for the test, and a text file
containing the output of the unit test. If there is a problem during the test phase and a unit test has failed,
you can use the output of Maven and the contents of this directory to track down the cause of a test

2 http://www.junit.org
3 http://www.testng.org

http://www.junit.org
http://www.testng.org
http://www.junit.org
http://www.testng.org

62

failure. This surefire-reports/ directory is also used during site generation to create an easy to
read summary of all the unit tests in a project.

If you are working on a project that has some failing unit tests, but you want the project to produce
output, you'll need to configure the Surefire plugin to continue a build even if it encounters a failure. The
default behavior is to stop a build whenever a unit test failure is encountered. To override this behavior,
you'll need to set the testFailureIgnore configuration property on the Surefire plugin to true.

Example 4.12. Configuring Surefire to Ignore Test Failures

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <testFailureIgnore>true</testFailureIgnore>
 </configuration>
 </plugin>
 ...
 </plugins>
</build>

If you would like to skip tests altogether, you can do so by executing the following command:

$ mvn install -Dmaven.test.skip=true

The maven.test.skip variable controls both the Compiler and the Surefire plugin, if you pass in
maven.test.skip you've told Maven to ignore tests altogether.

4.3.6. Install

The install goal of the Install plugin is almost always bound to the install lifecycle phase.
This install:install goal simply installs a project's main artifact to the local repository. If
you have a project with a groupId of org.sonatype.mavenbook, an artifactId of simple-
test, and a version of 1.0.2, the install:install goal is going to copy the JAR file
from target/simple-test-1.0.2.jar to ~/.m2/repository/org/sonatype/mavenbook/
simple-test/1.0.2/simple-test-1.0.2.jar. If the project has POM packaging, this goal will
copy the POM to the local repository.

4.3.7. Deploy

The deploy goal of the Deploy plugin is usually bound to the deploy lifecycle phase. This phase is
used to deploy an artifact to a remote Maven repository, this is usually required to update a remote
repository when you are performing a release. The deployment procedure can be as simple as copying
a file to another directory or as complex as transferring a file over SCP using a public key. Deployment
settings usually involve credentials to a remote repository, and, as such, deployment settings are usually

63

not stored in a pom.xml. Instead, deployment settings are more frequently found in an individual user's
~/.m2/settings.xml. For now, all you need to know is that the deploy:deploy goal is bound to
the deploy phase and it takes care of transporting an artifact to a published repository and updating any
repository information which might be affected by such a deployment.

Chapter 5. Build Profiles
5.1. What Are They For?

Profiles allow for the ability to customize a particular build for a particular environment; profiles enable
portability between different build environments.

What do we mean by different build environments? Two example build environments are production and
development. When you are working in a development environment, your system might be configured
to read from a development database instance running on your local machine while in production, your
system is configured to read from the production database. Maven allows you to define any number
of build environments (build profiles) which can override any of the settings in the pom.xml. You
could configure your application to read from your local, development instance of a database in your
"development" profile, and you can configure it to read from the production database in the "production"
profile. Profiles can also be activated by the environment and platform, you can customize a build to run
differently depending the Operating System or the installed JDK version. Before we talk about using
and configuring Maven profiles, we need to define the concept of Build Portability.

5.1.1. What is Build Portability

A build's "portability" is a measure of how easy it is to take a particular project and build it in different
environments. A build which works without any custom configuration or customization of properties
files is more portable than a build which requires a great deal of work to build from scratch. The most
portable projects tend to be widely used open source projects like Apache Commons of Apache Velocity
which ship with Maven builds which require little or no customization. Put simply, the most portable
project builds tend to just work, out of the box, and the least portable builds require you to jump through
hoops and configure platform specific paths to locate build tools. Before we show you how to achieve
build portability, let's survey the different kinds of portability we are talking about.

5.1.1.1. Non-Portable Builds

The lack of portability is exactly what all build tools are made to prevent - however, any tool can be
configured to be non-portable (even Maven). A non-portable project is buildable only under a specific
set of circumstances and criteria (e.g., your local machine). Unless you are working by yourself and you
have no plans on ever deploying your application to another machine, it is best to avoid non-portability
entirely. A non-portable build only runs on a single machine, it is a "one-off". Maven is designed to
discourage non-portable builds by offering the ability to customize builds using profiles.

When a new developer gets the source for a non-portable project, they will not be able to build the
project without rewriting large portions of a build script.

66

5.1.1.2. Environment Portability

A build exhibits environment portability if it has a mechanism for customizing behavior and
configuration when targeting different environments. A project that contains a reference to a test
database in a test environment, for example, and a production database in a production environment, is
environmentally portable. It is likely that this build has a different set of properties for each environment.
When you move to a different environment, one that is not defined and has no profile created for it, the
project will not work. Hence, it is only portable between defined environments.

When a new developer gets the source for an environmentally portable project, they will have to run
the build within a defined environment or they will have to create a custom environment to successfully
build the project.

5.1.1.3. Organizational (In-House) Portability

The center of this level of portability is a project's requirement that only a select few may access internal
resources such as source control or an internally-maintained Maven repository. A project at a large
corporation may depend on a database available only to in-house developers, or an open source project
might require a specific level of credentials to publish a web site and deploy the products of a build
to a public repository.

If you attempt to build an in-house project from scratch outside of the in-house network (for example,
outside of a corporate firewall), the build will fail. It may fail because certain required custom plugins are
unavailable, or project dependencies cannot be found because you don't have the appropriate credentials
to retrieve dependencies from a custom remote repository. Such a project is portable only across
environments in a single organization.

5.1.1.4. Wide (Universal) Portability

Anyone may download a widely portable project's source, compile, and install it without customizing
a build for a specific environment. This is the highest level of portability; anything less requires extra
work for those who wish to build your project. This level of portability is especially important for open
source projects, which depend on the ability for would-be contributors to easily download and build
from source.

Any developer could download the source for a widely portable project.

5.1.2. Selecting an Appropriate Level of Portability

Clearly, you'll want to avoid creating the worst-case scenario: the non-portable build. You may have had
the misfortune to work or study at an organization that had critical applications with non-portable builds.
In such organizations, you cannot deploy an application without the help of a specific individual on a
specific machine. In such an organization, it is also very difficult to introduce new project dependencies
or changes without coordinating the change with the single person who maintains such a non-portable
build. Non-portable builds tend to grow in highly political environments when one individual or group

67

needs to exert control over how and when a project is built and deployed. "How do we build the system?
Oh, we've got to call Jack and ask him to build it for us, no one else deploys to production." That is
a dangerous situation which is more common that you would think. If you work for this organization,
Maven and Maven profiles provide a way out of this mess.

On the opposite end of the portability spectrum are widely portable builds. Widely portable builds are
generally the most difficult build systems to attain. These builds restrict your dependencies to those
projects and tools that may be freely distributed and are publicly available. Many commercial software
packages might be excluded from the most-portable builds because they cannot be downloaded before
you have accepted a certain license. Wide portability also restricts dependencies to those pieces of
software that may be distributed as Maven artifacts. For example, if you depend upon Oracle JDBC
drivers, your users will have to download and install them manually; this is not widely portable as you
will have to distribute a set of environment setup instructions for people interested in building your
application. On the other hand, you could use a JDBC driver which is available from the public Maven
repositories like MySQL or HSQLDB.

As stated previously, open source projects benefit from having the most widely portable build possible.
Widely portable builds reduce the inefficiencies associated with contributing to a project. In an open
source project (such as Maven) there are two distinct groups: end-users and developers. When an end-
user uses a project like Maven and decides to contribute a patch to Maven, they have to make the
transition from using the output of a build to running a build. They have to first become a developer,
and if it is difficult to learn how to build a project, this end-user has a disincentive to take the time to
contribute to a project. In a widely portable project, an end-user doesn't have to follow a set or arcane
build instructions to start becoming a developer, they can download the source, modify the source, build,
and submit a contribution without asking someone to help them set up a build environment. When the
cost of contributing source back to an open-source project is lower, you'll see an increase in source code
contributions, especially casual contributions which can make the difference between a project's success
and a project's failure. One side-effect of Maven's adoption across a wide group of open source projects
is that it has made it easier for developers to contribute code to various open source projects.

5.2. Portability through Maven Profiles
A profile in Maven is an alternative set of configuration values which set or override default values.
Using a profile, you can customize a build for different environments. Profiles are configured in the
pom.xml and are given an identifier. Then you can run Maven with a command-line flag that tells
Maven to execute goals in a specific profile. The following pom.xml uses a production profile to
override the default settings of the Compiler plugin.

Example 5.1. Using a Maven Profile to Override Production Compiler Settings

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">

68

 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>simple</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>simple</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <profiles>
 <profile>

 <id>production</id>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>

 <debug>false</debug>
 <optimize>true</optimize>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>
</project>

In this example, we've added a profile named production that overrides the default configuration of
the Maven Compiler plugin. Let's examine the syntax of this profile in detail.

The profiles element is in the pom.xml, it contains one or more profile elements. Since
profiles override the default settings in a pom.xml, the profiles element is usually listed as the
last element in a pom.xml.
Each profile has to have an id element. This id element contains the name which is used to
invoke this profile from the command-line. A profile is invoked by passing the -P<profile_id>
command-line argument to Maven.
A profile element can contain many of the elements which can appear under the project
element of a POM XML Document. In this example, we're overriding the behavior of the Compiler
plugin and we have to override the plugin configuration which is normally enclosed in a build
and a plugins element.
We're overriding the configuration of the Maven Compiler plugin. We're making sure that the
bytecode produced by the production profile doesn't contain debug information and that the
bytecode has gone through the compiler's optimization routines.

69

To execute mvn install under the production profile, you need to pass the -Pproduction
argument on the command-line. To verify that the production profile overrides the default Compiler
plugin configuration, execute Maven with debug output enabled (-X) as follows:

~/examples/profile $ mvn clean install -Pproduction -X
... (omitting debugging output) ...
[DEBUG] Configuring mojo 'o.a.m.plugins:maven-compiler-plugin:2.0.2:testCompile'
[DEBUG] (f) basedir = ~\examples\profile
[DEBUG] (f) buildDirectory = ~\examples\profile\target
...
[DEBUG] (f) compilerId = javac
[DEBUG] (f) debug = false
[DEBUG] (f) failOnError = true
[DEBUG] (f) fork = false
[DEBUG] (f) optimize = true
[DEBUG] (f) outputDirectory = \
 ~\svnw\sonatype\examples\profile\target\test-classes
[DEBUG] (f) outputFileName = simple-1.0-SNAPSHOT
[DEBUG] (f) showDeprecation = false
[DEBUG] (f) showWarnings = false
[DEBUG] (f) staleMillis = 0
[DEBUG] (f) verbose = false
[DEBUG] -- end configuration --
... (omitting debugging output) ...

This excerpt from the debug output of Maven shows the configuration of the Compiler plugin under the
production profile. As shown in the output, debug is set to false and optimize is set to true.

5.2.1. Overriding a Project Object Model

While the previous example showed you how to override the default configuration properties of a single
Maven plugin, you still don't know exactly what a Maven profile is allowed to override. The short-
answer to that question is that a Maven profile can override almost everything that you would have in a
pom.xml. The Maven POM contains an element under project called profiles containing a project's
alternate configurations, and under this element are profile elements which define each profile. Each
profile must have an id, and other than that, it can contain almost any of the elements one would expect
to see under project. The following XML document shows all of the elements, a profile is allowed to
override.

Example 5.2. Elements Allowed in a Profile

<project>
 <profiles>
 <profile>
 <build>
 <defaultGoal>...</defaultGoal>
 <finalName>...</finalName>
 <resources>...</resources>
 <testResources>...</testResources>
 <plugins>...</plugins>

70

 </build>
 <reporting>...</reporting>
 <modules>...</modules>
 <dependencies>...</dependencies>
 <dependencyManagement>...</dependencyManagement>
 <distributionManagement>...</distributionManagement>
 <repositories>...</repositories>
 <pluginRepositories>...</pluginRepositories>
 <properties>...</properties>
 </profile>
 </profiles>
</project>

A profile can override an element shown with ellipses. A profile can override the final name of a project's
artifact in a profile, the dependencies, and the behavior of a project's build via plugin configuration. A
profile can also override the configuration of distribution settings depending on the profile; for example,
if you need to publish an artifact to a staging server in a staging profile, you would create a staging
profile which overrides the distributionManagement element in a profile.

5.3. Profile Activation
In the previous section we showed you how to create a profile that overrides default behavior for a
specific target environment. In the previous build the default build was designed for development and
the production profile exists to provide configuration for a production environment. What happens
when you need to provide customizations based on variables like operating systems or JDK version?
Maven provides a way to "activate" a profile for different environmental parameters, this is called profile
activation.

Take the following example, assume that we have a Java library that has a specific feature only available
in the Java 6 release: the Scripting Engine as defined in JSR-2231. You've separated the portion of the
library that deals with the scripting library into a separate Maven project, and you want people running
Java 5 to be able to build the project without attempting to build the Java 6 specific library extension.
You can do this by using a Maven profile that adds the script extension module to the build only when
the build is running within a Java 6 JDK. First, let's take a look at our project's directory layout and how
we want developers to build the system.

When someone runs mvn install with a Java 6 JDK, you want the build to include the simple-
script project's build, when they are running in Java 5, you would like to skip the simple-script
project build. If you failed to skip the simple-script project build in Java 5, your build would fail
because Java 5 does not have the ScriptEngine on the classpath. Let's take a look at the library
project's pom.xml:

Example 5.3. Dynamic Inclusion of Submodules Using Profile Activation

<project xmlns="http://maven.apache.org/POM/4.0.0"

1 http://jcp.org/en/jsr/detail?id=223

http://jcp.org/en/jsr/detail?id=223
http://jcp.org/en/jsr/detail?id=223

71

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>simple</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>simple</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <profiles>
 <profile>
 <id>jdk16</id>

 <activation>
 <jdk>1.6</jdk>
 </activation>

 <modules>
 <module>simple-script</module>
 </modules>
 </profile>
 </profiles>
</project>

If you run mvn install under Java 1.6, you will see Maven descending into the simple-script
subdirectory to build the simple-script project. If you are running mvn install in Java 1.5, the
build will not try to build the simple-script submodule. Exploring this activation configuration in
more detail:

The activation element lists the conditions for profile activation. In this example, we've
specified that this profile will be activated by Java versions that begin with "1.6". This would
include "1.6.0_03", "1.6.0_02", or any other string that began with "1.6". Activation parameters
are not limited to Java version, for a full list of activation parameters, see Activation Configuration.
In this profile we are adding the module simple-script. Adding this module will cause Maven
to look in the simple-script/ subdirectory for a pom.xml.

5.3.1. Activation Configuration

Activations can contain one of more selectors including JDK versions, Operating System parameters,
files, and properties. A profile is activated when all activation criteria has been satisfied. For example,
a profile could list an Operating System family of Windows, and a JDK version of 1.4, this profile will
only be activated when the build is executed on a Windows machine running Java 1.4. If the profile is

72

active then all elements override the corresponding project-level elements as if the profile were included
with the -P command-line argument. The following example, lists a profile which is activated by a very
specific combination of operating system parameters, properties, and a JDK version.

Example 5.4. Profile Activation Parameters: JDK Version, OS Parameters, and Properties

<project>
 ...
 <profiles>
 <profile>
 <id>dev</id>
 <activation>

 <activeByDefault>false</activeByDefault>

 <jdk>1.5</jdk>
 <os>

 <name>Windows XP</name>
 <family>Windows</family>
 <arch>x86</arch>
 <version>5.1.2600</version>
 </os>
 <property>

 <name>mavenVersion</name>
 <value>2.0.5</value>
 </property>
 <file>

 <exists>file2.properties</exists>
 <missing>file1.properties</missing>
 </file>
 </activation>
 ...
 </profile>
 </profiles>
</project>

This previous example defines a very narrow set of activation parameters. Let's examine each activation
criterion in detail:

The activeByDefault element controls whether this profile is considered active by default.
This profile will only be active for JDK versions that begin with "1.5". This includes "1.5.0_01",
"1.5.1".
This profile targets a very specific version of Windows XP, version 5.1.2600 on a 32-bit platform.
If your project uses the native plugin to build a C program, you might find yourself writing projects
for specific platforms.
The property element tells Maven to activate this profile if the property mavenVersion is set
to the value 2.0.5. mavenVersion is an implicit property that is available to all Maven builds.
The file element allows us to activate a profile based on the presence (or absence) of files. The
dev profile will be activated if a file named file2.properties exists in the base directory of

73

the project. The dev profile will only be activated if there is no file named file1.properties
file in the base directory of the project.

5.3.2. Activation by the Absence of a Property

You can activate a profile based on the value of a property like environment.type. You can
activate a development profile if environment.type equals dev, or a production profile if
environment.type equals prod. You can also activate a profile in the absence of a property. The
following configuration activates a profile if the property environment.type is not present during
Maven execution.

Example 5.5. Activating Profiles in the Absence of a Property

<project>
 ...
 <profiles>
 <profile>
 <id>development</id>
 <activation>
 <property>
 <name>!environment.type</name>
 </property>
 </activation>
 </profile>
 </profiles>
</project>

Note the exclamation point prefixing the property name. The exclamation point is often referred to as
the "bang" character and signifies "not". This profile is activated when no ${environment.type}
property is set.

5.4. Listing Active Profiles
Maven profiles can be defined in either pom.xml, profiles.xml, ~/.m2/settings.xml, or
${M2_HOME}/conf/settings.xml. With these four levels, there's no good way of keeping track of
profiles available to a particular project without remembering which profiles are defined in these four
files. To make it easier to keep track of which profiles are available, and where they have been defined,
the Maven Help plugin defines a goal, active-profiles, which lists all the active profiles and where
they have been defined. You can run the active-profiles goal, as follows:

$ mvn help:active-profiles
Active Profiles for Project 'My Project':

The following profiles are active:

 - my-settings-profile (source: settings.xml)
 - my-external-profile (source: profiles.xml)

74

 - my-internal-profile (source: pom.xml)

5.5. Tips and Tricks
Profiles can encourage build portability. If your build needs subtle customizations to work on different
platforms or if you need your build to produce different results for different target platforms, project
profiles increase build portability. Settings profiles generally decrease build portability by adding extra-
project information that must be communicated from developer to developer. The following sections
provide some guidelines and some ideas for applying Maven profiles to your project.

5.5.1. Common Environments

One of the core motivations for Maven project profiles was to provide for environment-specific
configuration settings. In a development environment, you might want to produce bytecode with debug
information and you might want to configure your system to use a development database instance. In
a production environment you might want to produce a signed JAR and configure the system to use
a production database. In this chapter, we defined a number of environments with identifiers like dev
and prod. A simpler way to do this would be to define profiles that are activated by environment
properties and to use these common environment properties across all of your projects. For example,
if every project had a development profile activated by a property named environment.type
having a value of dev, and if those same projects had a production profile activated by a property
named environment.type having a value of prod, you could create a default profile in your
settings.xml that always set environment.type to dev on your development machine. This way,
each project defines a dev profile activated by the same environment variable. Let's see how this
is done, the following settings.xml defines a profile in ~/.m2/settings.xml which sets the
environment.type property to dev.

Example 5.6. ~/.m2/settings.xml defines a default profile setting environment.type

<settings>
 <profiles>
 <profile>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <environment.type>dev</environment.type>
 </properties>
 </profile>
 </profiles>
</settings>

This means that every time you run Maven on your machine, this profile will be activated and the
property environment.type will have the value dev. You can then use this property to activate
profiles defined in a project's pom.xml as follows. Let's take a look at how a project's pom.xml would
define a profile activated by environment.type having the value dev.

75

Example 5.7. Project Profile Activated by setting environment.type to 'dev'

<project>
 ...
 <profiles>
 <profile>
 <id>development</id>
 <activation>
 <property>
 <name>environment.type</name>
 <value>dev</value>
 </property>
 </activation>
 <properties>
 <database.driverClassName>com.mysql.jdbc.Driver</database.driverClassName>
 <database.url>
 jdbc:mysql://localhost:3306/app_dev
 </database.url>
 <database.user>development_user</database.user>
 <database.password>development_password</database.password>
 </properties>
 </profile>
 <profile>
 <id>production</id>
 <activation>
 <property>
 <name>environment.type</name>
 <value>prod</value>
 </property>
 </activation>
 <properties>
 <database.driverClassName>com.mysql.jdbc.Driver</database.driverClassName>
 <database.url>jdbc:mysql://master01:3306,slave01:3306/app_prod</database.url>
 <database.user>prod_user</database.user>
 </properties>
 </profile>
 </profiles>
</project>

This project defines some properties like database.url and database.user which might be used
to configure another Maven plugin configured in the pom.xml. There are plugins available that can
manipulate the database, run SQL, and plugins like the Maven Hibernate3 plugin which can generate
annotated model objects for use in persistence frameworks. A few of these plugins, can be configured
in a pom.xml using these properties. These properties could also be used to filter resources. In this
example, because we've defined a profile in ~/.m2/settings.xml which sets environment.type
to dev, the development profile will always be activated when we run Maven on our development
machine. Alternatively, if we wanted to override this default, we could set a property on the command-
line. If we need to activate the production profile, we could always run Maven with:

~/examples/profiles $ mvn install -Denvironment.type=prod

76

Setting a property on the command-line would override the default property set in ~/.m2/
settings.xml. We could have just defined a profile with an id of "dev" and invoked it directly with
the -P command-line argument, but using this environment.type property allows us to code other
project pom.xml files to this standard. Every project in your codebase could have a profile which is
activated by the same environment.type property set in every user's ~/.m2/settings.xml. In this
way, developers can share common configuration for development without defining this configuration
in non-portable settings.xml files.

5.5.2. Protecting Secrets

This best practice builds upon the previous section. In Project Profile Activated by setting
environment.type to 'dev', the production profile does not contain the database.password property.
I've done this on purpose to illustrate the concept of putting secrets in you user-specific settings.xml.
If you were developing an application at a large organization which values security, it is likely that
the majority of the development group will not know the password to the production database. In an
organization that draws a bold line between the development group and the operations group, this will
be the norm. Developers may have access to a development and a staging environment, but they might
not have (or want to have) access to the production database. There are a number of reasons why this
makes sense, particularly if an organization is dealing with extremely sensitive financial, intelligence,
or medical information. In this scenario, the production environment build may only be carried out by a
lead developer or by a member of the production operations group. When they run this build using the
prod environment.type, they will need to define this variable in their settings.xml as follows:

Example 5.8. Storing Secrets in a User-specific Settings Profile

<settings>
 <profiles>
 <profile>
 <activeByDefault>true</activeByDefault>
 <properties>
 <environment.type>prod</environment.type>
 <database.password>m1ss10nimp0ss1bl3</database.password>
 </properties>
 </profile>
 </profiles>
</settings>

This user has defined a default profile which sets the environment.type to prod and which also
sets the production password. When the project is executed, the production profile is activated by the
environment.type property and the database.password property is populated. This way, you can
put all of the production-specific configuration into a project's pom.xml and leave out only the single
secret necessary to access the production database.

Note
Secrets usually conflict with wide portability, but this makes sense. You wouldn't want to
share your secrets openly.

77

5.5.3. Platform Classifiers

Let's assume that you have a library or a project that produces platform-specific customizations. Even
though Java is platform-neutral, there are times when you might need to write some code that invokes
platform-specific native code. Another possibility is that you've written some C code which is compiled
by the Maven Native plugin and you want to produce a qualified artifact depending on the build
platform. You can set a classifier with the Maven Assembly plugin or with the Maven Jar plugin. The
following pom.xml produces a qualified artifact using profiles which are activated by Operating System
parameters. For more information about the Maven Assembly plugin, see Chapter 8, Maven Assemblies.

Example 5.9. Qualifying Artifacts with Platform Activated Project Profiles

<project>
 ...
 <profiles>
 <profile>
 <id>windows</id>
 <activation>
 <os>
 <family>windows</family>
 </os>
 </activation>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <classifier>win</classifier>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 <profile>
 <id>linux</id>
 <activation>
 <os>
 <family>unix</family>
 </os>
 </activation>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <classifier>linux</classifier>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>

78

 </profiles>
</project>

If the Operating System is in the Windows family, this pom.xml qualifies the JAR artifact with "-win".
If the Operating System is in the Unix family, the artifact is qualified with "-linux". This pom.xml
successfully adds the qualifiers to the artifacts, but it is more verbose than it need to be due to the
redundant configuration of the Maven Jar plugin in both profiles. This example could be rewritten to
use variable substitution to minimize redundancy as follows:

Example 5.10. Qualifying Artifacts with Platform Activated Project Profiles and Variable Substitution

<project>
 ...
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <classifier>${envClassifier}</classifier>
 </configuration>
 </plugin>
 </plugins>
 </build>
 ...
 <profiles>
 <profile>
 <id>windows</id>
 <activation>
 <os>
 <family>windows</family>
 </os>
 </activation>
 <properties>
 <envClassifier>win</envClassifier>
 </properties>
 </profile>
 <profile>
 <id>linux</id>
 <activation>
 <os>
 <family>unix</family>
 </os>
 </activation>
 <properties>
 <envClassifier>linux</envClassifier>
 </properties>
 </profile>
 </profiles>
</project>

In this pom.xml, each profile doesn't need to include a build element to configure the Jar plugin.
Instead, each profile is activated by the Operating System family and sets the envClassifier property

79

to either win or linux. This envClassifier is then referenced in the default pom.xml build element
to add a classifier to the project's JAR artifact. The JAR artifact will be named ${finalName}-
${envClassifier}.jar and included as a dependency using the following dependency syntax:

Example 5.11. Depending on a Qualified Artifact

<dependency>
 <groupId>com.mycompany</groupId>
 <artifactId>my-project</artifactId>
 <version>1.0</version>
 <classifier>linux</classifier>
 </dependency>

5.6. Summary
When used judiciously, profiles can make it very easy to customize a build for different platforms.
If something in your build needs to define a platform-specific path for something like an application
server, you can put these configuration points in a profile which is activated by an operating system
parameter. If you have a project which needs to produce different artifacts for different environments,
you can customize the build behavior for different environments and platforms via profile-specific
plugin behavior. Using profiles, builds can become portable, there is no need to rewrite your build
logic to support a new environment, just override the configuration that needs to change and share the
configuration points which can be shared.

Chapter 6. Running Maven
This chapter focuses on the various ways in which Maven can be customized at runtime. It also provides
some documentation of special features such as the ability to customize the behavior of the Maven
Reactor and how to use the Maven Help plugin to obtain information about plugins and plugin goals.

6.1. Maven Command Line Options
The following sections detail Maven's command line options.

6.1.1. Defining Properties

To define a property use the following option on the command line:

-D, --define <arg>
Defines a system property

This is the option most frequently used to customized the behavior of Maven plugins. Some examples
of using the -D command line argument:

$ mvn help:describe -Dcmd=compiler:compile
$ mvn install -Dmaven.test.skip=true

Properties defined on the command line are also available as properties to be used in a Maven POM or
Maven Plugin. Form more information about referencing Maven properties, see Chapter 9, Properties
and Resource Filtering.

Properties can also be used to activate build profiles. For more information about Maven build profiles,
see Chapter 5, Build Profiles.

6.1.2. Getting Help

To list the available command line parameters, use the following command line option:

-h, --help
Display help information

Executing Maven with this option produces the following output:

$ mvn --help

usage: mvn [options] [<goal(s)>] [<phase(s)>]

Options:
 -am,--also-make If project list is specified, also
 build projects required by the
 list
 -amd,--also-make-dependents If project list is specified, also

82

 build projects that depend on
 projects on the list
 -B,--batch-mode Run in non-interactive (batch)
 mode
 -C,--strict-checksums Fail the build if checksums don't
 match
 -c,--lax-checksums Warn if checksums don't match
 -cpu,--check-plugin-updates Force upToDate check for any
 relevant registered plugins
 -D,--define <arg> Define a system property
 -e,--errors Produce execution error messages
 -emp,--encrypt-master-password <arg> Encrypt master security password
 -ep,--encrypt-password <arg> Encrypt server password
 -f,--file Force the use of an alternate POM
 file.
 -fae,--fail-at-end Only fail the build afterwards;
 allow all non-impacted builds to
 continue
 -ff,--fail-fast Stop at first failure in
 reactorized builds
 -fn,--fail-never NEVER fail the build, regardless
 of project result
 -gs,--global-settings <arg> Alternate path for the global
 settings file
 -h,--help Display help information
 -N,--non-recursive Do not recurse into sub-projects
 -npr,--no-plugin-registry Don't use
 ~/.m2/plugin-registry.xml for
 plugin versions
 -npu,--no-plugin-updates Suppress upToDate check for any
 relevant registered plugins
 -o,--offline Work offline
 -P,--activate-profiles <arg> Comma-delimited list of profiles
 to activate
 -pl,--projects <arg> Build specified reactor projects
 instead of all projects
 -q,--quiet Quiet output - only show errors
 -r,--reactor Dynamically build reactor from
 subdirectories
 -rf,--resume-from <arg> Resume reactor from specified
 project
 -s,--settings <arg> Alternate path for the user
 settings file
 -U,--update-snapshots Forces a check for updated
 releases and snapshots on remote
 repositories
 -up,--update-plugins Synonym for cpu
 -V,--show-version Display version information
 WITHOUT stopping build
 -v,--version Display version information
 -X,--debug Produce execution debug output

If you are looking for information about the goals and parameters available from a specific Maven
plugin, see Section 6.3, “Using the Maven Help Plugin”.

83

6.1.3. Using Build Profiles

To activate one or more build profiles from the command line, use the following option:

-P, --activate-profiles <arg>
Comma-delimited list of profiles to activate

For more information about build profiles, see Chapter 5, Build Profiles.

6.1.4. Displaying Version Information

To display Maven version information, use one of the following options on the command line:

-V, --show-version
Display version information WITHOUT stopping build

-v, --version
Display version information

Both of these options produce the same version information output, but the -v option will terminate the
Maven process after printing out the version. You would use the -V option if you wanted to have the
Maven version information present at the beginning of your build's output. This can come in handy if
you are running Maven in a continuous build environment and you need to know what version of Maven
was used for a particular build.

Example 6.1. Maven Version Information

$ mvn -v
Apache Maven 2.2.1 (r801777; 2009-08-06 14:16:01-0500)
Java version: 1.6.0_15
Java home: /System/Library/Frameworks/JavaVM.framework/Versions/1.6.0/Home
Default locale: en_US, platform encoding: MacRoman
OS name: "mac os x" version: "10.6.1" arch: "x86_64" Family: "mac"

6.1.5. Running in Offline Mode

If you ever need to use Maven without having access to a network, you should use the following option
to prevent any attempt to check for updates to plugins or dependencies over a network:

-o, --offline
Work offline

When running with the offline option enabled, Maven will not attempt to connect to a remote repository
to retrieve artifacts.

6.1.6. Using a Custom POM or Custom Settings File

If you don't like the pom.xml file name, the location of your user-specific Maven settings, or the default
location of your global settings file, you can customize any of these things with the following options:

84

-f, --file <file>
Forces the use of an alternate POM file

-s,--settings <arg>
Alternate path for the user settings file

-gs, --global-settings <file>
Alternate path for the global settings file

6.1.7. Encrypting Passwords

The following commands allow you to use Maven to encrypt passwords for storage in a Maven settings
file:

-emp, --encrypt-master-password <password>
Encrypt master security password

-ep, --encrypt-password <password>
Encrypt server password

Encrypting passwords is documented in Section A.2.11, “Encrypting Passwords in Maven Settings”.

6.1.8. Dealing with Failure

The following options control how Maven reacts to a build failure in the middle of a multi-module
project build:

-fae, --fail-at-end
Only fail the build afterwards; allow all non-impacted builds to continue

-ff, --fail-fast
Stop at first failure in reactorized builds

-fn, --fail-never
NEVER fail the build, regardless of project result

The -fn and -fae options are useful options for multi-module builds that are running within a
continuous integration tool like Hudson. The -ff option is very useful for developers running interactive
builds who want to have rapid feedback during the development cycle.

6.1.9. Controlling Maven's Verbosity

If you want to control Maven's logging level, you can use one of the following three command line
options:

-e, --errors
Produce execution error messages

85

-X, --debug
Produce execution debug output

-q, --quiet
Quiet output - only show errors

The -q option only prints a message to the output if there is an error or a problem.

The -X option will print an overwhelming amount of debugging log messages to the output. This option
is primarily used by Maven developers and by Maven plugin developers to diagnose problems with
Maven code during development. This -X option is also very useful if you are attempting to diagnose
a difficult problem with a dependency or a classpath.

The -e option will come in handy if you are a Maven developer, or if you need to diagnose an error in
a Maven plugin. If you are reporting an unexpected problem with Maven or a Maven plugin, you will
want to pass both the -X and -e options to your Maven process.

6.1.10. Running Maven in Batch Mode

To run Maven in batch mode use the following option:

-B, --batch-mode
Run in non-interactive (batch) mode

Batch mode is essential if you need to run Maven in a non-interactive, continuous integration
environment. When running in non-interactive mode, Maven will never stop to accept input from the
user. Instead, it will use sensible default values when it requires input.

6.1.11. Downloading and Verifying Dependencies

The following command line options affect the way that Maven will interact with remote repositories
and how it verifies downloaded artifacts:

-C, --strict-checksums
Fail the build if checksums don't match

-c, --lax-checksums
Warn if checksums don't match

-U, --update-snapshots
Forces a check for updated releases and snapshots on remote repositories

If you are concerned about security, you will want to run Maven with the -C option. Maven repositories
maintain an MD5 and SHA1 checksum for every artifact stored in a repository. Maven is configured
to warn the end-user if an artifact's checksum doesn't match the downloaded artifact. Passing in the -C
option will cause Maven to fail the build if it encounters an artifact with a bad checksum.

86

The -U option is useful if you want to make sure that Maven is checking for the latest versions of all
SNAPSHOT dependencies.

6.1.12. Controlling Plugin Updates

The following command line options tell Maven how it should update (or not update) Maven plugins
from remote repositories:

-npu, --no-plugin-updates
Suppress upToDate check for any relevant registered plugins. Providing this option will have the
affect of stabilizing Maven on all of the plugins versions that are currently available in a local
Maven repository. With -npu active, Maven will not consult the remote repository for newer
Maven versions.

-cpu, --check-plugin-updates
Force upToDate check for any relevant registered plugins. Forces Maven to check for the latest
released version of a Maven plugin. Not that this will not affect your build if you are explicitly
specifying versions for Maven plugins in your project's POM.

-up, --update-plugins
Synonym for cpu.

There following command line option that affects the way Maven downloads plugins from a remote
repository:

-npr, --no-plugin-registry
Don't use ~/.m2/plugin-registry.xml for plugin versions.

When preset, the -npr command line option will tell Maven not to consult the Plugin Registry.
For more information about the Plugin Registry, go here: http://maven.apache.org/guides/introduction/
introduction-to-plugin-registry.html.

6.1.13. Non-recursive Builds

There will be times when you simply want to run a Maven build without having Maven descend into
all of a project's submodules. You can do this by using the following command line option:

-N, --non-recursive
Prevents Maven from building submodules. Only builds the project contained in the current
directory.

Running this will only cause Maven to execute a goal or step through the lifecycle for the project in
the current directory. Maven will not attempt to build all of the projects in a multi-module project when
you use the -N command line option.

http://maven.apache.org/guides/introduction/introduction-to-plugin-registry.html
http://maven.apache.org/guides/introduction/introduction-to-plugin-registry.html

87

6.2. Using Advanced Reactor Options
Starting with the Maven 2.1 release, there are new Maven command line options which allow you to
manipulate the way that Maven will build multimodule projects. These new options are:

-rf, --resume-from
Resume reactor from specified project

-pl, --projects
Build specified reactor projects instead of all projects

-am, --also-make
If project list is specified, also build projects required by the list

-amd, --also-make-dependents
If project list is specified, also build projects that depend on projects on the list

6.2.1. Advanced Reactor Options Example Project

The example in this section is a skeleton of a complex multimodule project that is used to illustrate the
advanced reactor options. While it is possible to read this section without the example code, you might
want to download the example code and follow along, experimenting with the various options as you
learn how to use the advanced reactor options. This section’s example project may be downloaded with
the book’s example code at:

http://www.sonatype.com/books/maven-book/mvnref-book-examples-0.3.1-project.zip

Unzip this archive in any directory, and then go to the ch-running/ directory. There you will
see a directory named sample-parent/. All of the examples in this section will be executed from
the examples/ch-running/sample-parent/ directory in the examples distribution. The sample-
parent/ directory contains the multimodule project structure shown in Figure 6.1, “Directory Structure
of Sample Multi-module Project”.

Figure 6.1. Directory Structure of Sample Multi-module Project

88

This project approximates the structure of a real-world enterprise project: the sample-model project
contains a set of foundational model objects used throughout the system, the sample-util project
would contain utility code, the sample-persist project would contain logic that deals with persisting
objects to a database, and the other projects would all be combined to produce the various GUI and
Web-based interfaces that comprise a very complex system. Figure 6.2, “Dependencies within Sample
Multi-module Project” captures the dependencies between each of these sample modules.

model

util

admin-gui guiadmin-
webapp webapp

client-
connector

persist

rest

securityservices

Depends on

Figure 6.2. Dependencies within Sample Multi-module Project

If you go into the sample-parent/ project directory and run mvn clean, you will see that the Maven
Reactor reads all of the project dependencies and comes up with the following build order for these
projects as shown in Example 6.2, “Order of Project Builds in Maven Reactor”.

Example 6.2. Order of Project Builds in Maven Reactor

[INFO] Reactor build order:
[INFO] sample-parent
[INFO] sample-model
[INFO] sample-persist
[INFO] sample-services
[INFO] sample-util
[INFO] sample-security
[INFO] sample-admin-webapp
[INFO] sample-webapp

89

[INFO] sample-rest
[INFO] sample-client-connector
[INFO] sample-gui
[INFO] sample-admin-gui

6.2.2. Resuming Builds

The -rf or --resume-from option can come in handy if you want to tell the Maven Reactor to resume
a build from a particular project. This can be useful if you are working with a large multimodule project
and you want to restart a build at a particular project in the Reactor without running through all of the
projects that precede it in the build order.

Assume that you are working on the multi-module project with the build order shown in Example 6.2,
“Order of Project Builds in Maven Reactor” and that your build ran successfully up until Maven
encountered a failing unit test in sample-client-connector. With the -rf option, you can fix the
unit test in simple-client-connector and then run mvn -rf sample-client-connect from
the sample-parent/ directory to resume the build with the final three projects.

$ mvn --resume-from sample-client-connector install
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] sample-client-connector
[INFO] sample-gui
[INFO] sample-admin-gui
...

6.2.3. Specifying a Subset of Projects

The -pl or --projects option allows you to select a list of projects from a multimodule project. This
option can be useful if you are working on a specific set of projects, and you'd rather not wait through
a full build of a multi-module project during a development cycle.

Assume that you are working on the multi-module project with the build order shown in Example 6.2,
“Order of Project Builds in Maven Reactor” and that you are a developer focused on the sample-rest
and sample-client-connector projects. If you only wanted Maven to build the sample-rest and
sample-client-connector project, you would use the following syntax from the sample-parent/
directory:

$ mvn --projects sample-client-connector,sample-rest install
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] sample-rest
[INFO] sample-client-connector

6.2.4. Making a Subset of Projects

If you wanted to run a portion of the larger build, you would use the -pl or --projects option with the
-am or --also-make option. When you specify a project with the -am option, Maven will build all of

90

the projects that the specified project depends upon (either directly or indirectly). Maven will examine
the list of projects and walk down the dependency tree, finding all of the projects that it needs to build.

If you are working on the multi-module project with the build order shown in Example 6.2, “Order of
Project Builds in Maven Reactor” and you were only interested in working on the sample-services
project, you would run mvn -pl simple-services -am to build only those projects

$ mvn --projects sample-services --also-make install
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] sample-parent
[INFO] sample-model
[INFO] sample-persist
[INFO] sample-services

6.2.5. Making Project Dependents

While the -am command makes all of the projects required by a particular project in a multi-module
build, the -amd or --also-make-dependents option configures Maven to build a project and any
project that depends on that project. When using --also-make-dependents, Maven will examine all
of the projects in our reactor to find projects that depend on a particular project. It will automatically
build those projects and nothing else.

If you are working on the multi-module project with the build order shown in Example 6.2, “Order of
Project Builds in Maven Reactor” and you wanted to make sure that your changes to sample-services
did not introduce any errors into the projects that directly or indirectly depend on sample-services,
you would run the following command:

$ mvn --projects sample-services --also-make-dependents install
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] sample-services
[INFO] sample-admin-webapp
[INFO] sample-webapp
[INFO] sample-rest

6.2.6. Resuming a "make" build

When using --also-make, Maven will execute a subset of the larger build as shown in Section 6.2.4,
“Making a Subset of Projects”. Combining --project, --also-make, and --resume-from provides
you with the ability to refine your build even further. The -rf or --resume-from resumes the build
from a specific point in the Reactor build order.

$ mvn --projects sample-webapp --also-make \
 --resume-from sample-services install
[INFO] Scanning for projects...
[INFO] Reactor build order:

91

[INFO] sample-services
[INFO] sample-util
[INFO] sample-security
[INFO] sample-webapp

In this example, the build is resumed from sample-services which omits the sample-persist and
sample-model projects from the build. If you are focused on individual components and you need to
accelerate your build times, using these advanced reactor options together is a great way to skip portions
of your large multi-module project build. The --resume-from argument also works with --also-
make-dependents.

6.3. Using the Maven Help Plugin
Throughout this book, we introduce Maven plugins, talking about Maven Project Object Model (POM)
files, settings files, and profiles. There are going to be times when you need a tool to help you make
sense of some of the models that Maven is using and what goals are available on a specific plugin.
The Maven Help plugin allows you to list active Maven profiles, display an effective POM, print the
effective settings, or list the attributes of a Maven plugin.

The Maven Help plugin has four goals. The first three goals—active-profiles, effective-pom,
and effective-settings—describe a particular project and must be run in the base directory of a
project. The last goal—describe—is slightly more complex, showing you information about a plugin
or a plugin goal. The following commands provide some general information about the four goals:

help:active-profiles
Lists the profiles (project, user, global) which are active for the build.

help:effective-pom
Displays the effective POM for the current build, with the active profiles factored in.

help:effective-settings
Prints out the calculated settings for the project, given any profile enhancement and the
inheritance of the global settings into the user-level settings.

help:describe
Describes the attributes of a plugin. This need not run under an existing project directory. You
must at least give the groupId and artifactId of the plugin you wish to describe.

6.3.1. Describing a Maven Plugin

Once you start using Maven, you'll spend most of your time trying to get more information about
Maven Plugins: How do plugins work? What are the configuration parameters? What are the goals? The
help:describe goal is something you'll be using very frequently to retrieve this information. With
the plugin parameter you can specify a plugin you wish to investigate, passing in either the plugin
prefix (e.g. maven-help-plugin as help) or the groupId:artifact[:version], where version

92

is optional. For example, the following command uses the Help plugin's describe goal to print out
information about the Maven Help plugin.

$ mvn help:describe -Dplugin=help
...
Group Id: org.apache.maven.plugins
Artifact Id: maven-help-plugin
Version: 2.0.1
Goal Prefix: help
Description:

The Maven Help plugin provides goals aimed at helping to make sense out of
 the build environment. It includes the ability to view the effective
 POM and settings files, after inheritance and active profiles
 have been applied, as well as a describe a particular plugin goal to give
 usage information.
...

Executing the describe goal with the plugin parameter printed out the Maven coordinates for the
plugin, the goal prefix, and a brief description of the plugin. While this information is helpful, you'll
usually be looking for more detail than this. If you want the Help plugin to print a full list of goals with
parameters, execute the help:describe goal with the parameter full as follows:

$ mvn help:describe -Dplugin=help -Dfull
...
Group Id: org.apache.maven.plugins
Artifact Id: maven-help-plugin
Version: 2.0.1
Goal Prefix: help
Description:

The Maven Help plugin provides goals aimed at helping to make sense out of
 the build environment. It includes the ability to view the effective
 POM and settings files, after inheritance and active profiles
 have been applied, as well as a describe a particular plugin goal to
 give usage information.

Mojos:

===
Goal: 'active-profiles'
===
Description:

Lists the profiles which are currently active for this build.

Implementation: org.apache.maven.plugins.help.ActiveProfilesMojo
Language: java

Parameters:

[0] Name: output

93

Type: java.io.File
Required: false
Directly editable: true
Description:

This is an optional parameter for a file destination for the output of
this mojo...the listing of active profiles per project.

[1] Name: projects
Type: java.util.List
Required: true
Directly editable: false
Description:

This is the list of projects currently slated to be built by Maven.

This mojo doesn't have any component requirements.
===

... removed the other goals ...

This option is great for discovering all of a plugin's goals as well as their parameters. But sometimes this
is far more information than necessary. To get information about a single goal, set the mojo parameter as
well as the plugin parameter. The following command lists all of the information about the Compiler
plugin's compile goal.

$ mvn help:describe -Dplugin=compiler -Dmojo=compile -Dfull

Chapter 7. Maven Configuration
7.1. Configuring Maven Plugins
To customize the behavior of a Maven Plugin, you will need to configure the plugin in a project's
POM. The following sections outline the various methods available for customizing a Maven plugin's
configuration.

7.1.1. Plugin Configuration Parameters

Maven plugins are configured using properties that are defined by goals within a plugin. If you look at a
goal like the compile goal in the Maven Compiler Plugin you will see a list of configuration parameters
like source, target, compilerArgument, fork, optimize, and many others. If you look at the
testCompile goal you will see a different list of configuration parameters for the testCompile goal.
If you are looking for details on the available plugin goal configuration parameters, you can use the
Maven Help Plugin to describe a particular plugin or a particular plugin goal.

To describe a particular plugin, use the help:describe goal from the command line as follows:

$ mvn help:describe -Dcmd=compiler:compile
[INFO] [help:describe {execution: default-cli}]
[INFO] 'compiler:compile' is a plugin goal (aka mojo).
Mojo: 'compiler:compile'
compiler:compile
 Description: Compiles application sources
 Deprecated. No reason given

For more information about the available configuration parameters, run the same command with the -
Ddetail argument:

$ mvn help:describe -Dcmd=compiler:compile -Ddetail
[INFO] [help:describe {execution: default-cli}]
[INFO] 'compiler:compile' is a plugin goal (aka mojo).
Mojo: 'compiler:compile'
compiler:compile
 Description: Compiles application sources
 Deprecated. No reason given
 Implementation: org.apache.maven.plugin.CompilerMojo
 Language: java
 Bound to phase: compile

 Available parameters:

 compilerArgument
 Sets the unformatted argument string to be passed to the compiler if fork
 is set to true.

 This is because the list of valid arguments passed to a Java compiler
 varies based on the compiler version.

96

 Deprecated. No reason given

 compilerArguments
 Sets the arguments to be passed to the compiler (prepending a dash) if
 fork is set to true.

 This is because the list of valid arguments passed to a Java compiler
 varies based on the compiler version.
 Deprecated. No reason given

 compilerId (Default: javac)
 The compiler id of the compiler to use. See this guide for more
 information.
 Deprecated. No reason given

 compilerVersion
 Version of the compiler to use, ex. '1.3', '1.5', if fork is set to true.
 Deprecated. No reason given

 debug (Default: true)
 Set to true to include debugging information in the compiled class files.
 Deprecated. No reason given

 encoding
 The -encoding argument for the Java compiler.
 Deprecated. No reason given

 excludes
 A list of exclusion filters for the compiler.
 Deprecated. No reason given

 executable
 Sets the executable of the compiler to use when fork is true.
 Deprecated. No reason given

 failOnError (Default: true)
 Indicates whether the build will continue even if there are compilation
 errors; defaults to true.
 Deprecated. No reason given

 fork (Default: false)
 Allows running the compiler in a separate process. If 'false' it uses the
 built in compiler, while if 'true' it will use an executable.
 Deprecated. No reason given

 includes
 A list of inclusion filters for the compiler.
 Deprecated. No reason given

 maxmem
 Sets the maximum size, in megabytes, of the memory allocation pool, ex.
 '128', '128m' if fork is set to true.
 Deprecated. No reason given

 meminitial

97

 Initial size, in megabytes, of the memory allocation pool, ex. '64',
 '64m' if fork is set to true.
 Deprecated. No reason given

 optimize (Default: false)
 Set to true to optimize the compiled code using the compiler's
 optimization methods.
 Deprecated. No reason given

 outputFileName
 Sets the name of the output file when compiling a set of sources to a
 single file.
 Deprecated. No reason given

 showDeprecation (Default: false)
 Sets whether to show source locations where deprecated APIs are used.
 Deprecated. No reason given

 showWarnings (Default: false)
 Set to true to show compilation warnings.
 Deprecated. No reason given

 source
 The -source argument for the Java compiler.
 Deprecated. No reason given

 staleMillis (Default: 0)
 Sets the granularity in milliseconds of the last modification date for
 testing whether a source needs recompilation.
 Deprecated. No reason given

 target
 The -target argument for the Java compiler.
 Deprecated. No reason given

 verbose (Default: false)
 Set to true to show messages about what the compiler is doing.
 Deprecated. No reason given

If you need to get a list of plugin goals which are contained in a plugin, you can run the help:describe
goal and pass in the plugin parameter. The plugin parameter accepts a plugin prefix or a groupId and
an artifactId for a plugin as shown in the following examples:

$ mvn help:describe -Dplugin=compiler
[INFO] [help:describe {execution: default-cli}]
[INFO] org.apache.maven.plugins:maven-compiler-plugin:2.0.2

Name: Maven Compiler Plugin
Description: Maven Plugins
Group Id: org.apache.maven.plugins
Artifact Id: maven-compiler-plugin
Version: 2.0.2
Goal Prefix: compiler

98

This plugin has 2 goals:

compiler:compile
 Description: Compiles application sources
 Deprecated. No reason given

compiler:testCompile
 Description: Compiles application test sources
 Deprecated. No reason given

You can use the groupId and the artifactId of the plugin and get the same list of plugin goals.

$ mvn help:describe -Dplugin=org.apache.maven.plugins:maven-compiler-plugin

Passing the -Ddetail argument to the help:describe goal with the plugin parameter will cause
Maven to print out all of the goals and all of the goal parameters for the entire plugin.

7.1.2. Adding Plugin Dependencies

If you need to configure a plugin to use specific versions of dependencies, you can define these
dependencies under a dependencies element under plugin. When the plugin executes, it will execute
with a classpath that contains these dependencies. Example 7.1, “Adding Dependencies to a Plugin”
is an example of a plugin configuration that overrides default dependency versions and adds new
dependencies to facilitate goal execution.

Example 7.1. Adding Dependencies to a Plugin

<plugin>
 <groupId>com.agilejava.docbkx</groupId>
 <artifactId>docbkx-maven-plugin</artifactId>
 <version>2.0.9</version>
 <dependencies>
 <dependency>
 <groupId>docbook</groupId>
 <artifactId>docbook-xml</artifactId>
 <version>4.5</version>
 </dependency>
 <dependency>
 <groupId>org.apache.fop</groupId>
 <artifactId>fop-pdf-images</artifactId>
 <version>1.3</version>
 </dependency>
 <dependency>
 <groupId>org.apache.fop</groupId>
 <artifactId>fop-pdf-images-res</artifactId>
 <version>1.3</version>
 <classifier>res</classifier>
 </dependency>
 <dependency>
 <groupId>pdfbox</groupId>
 <artifactId>pdfbox</artifactId>
 <version>0.7.4-dev</version>

99

 <classifier>dev</classifier>
 </dependency>
 </dependencies>
</plugin>

7.1.3. Setting Global Plugin Parameters

To set a value for a plugin configuration parameter in a particular project, use the XML shown in
Example , “Configuring a Maven Plugin”. Unless this configuration is overridden by a more specific
plugin parameter configuration, Maven will use the values defined directly under the plugin element
for all goals which are executed in this plugin.

Example . Configuring a Maven Plugin

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
</plugin>

7.1.4. Setting Execution Specific Parameters

You can configure plugin parameters for specific executions of a plugin goal. Example 7.3, “Setting
Configuration Parameters in an Execution” shows an example of configuration parameters being passed
to the execution of the run goal of the AntRun plugin during the validate phase. This specific execution
will inherit the configuration parameters from the plugin's configuration element and merge them with
the values defined for this particular execution.

Example 7.3. Setting Configuration Parameters in an Execution

<plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <executions>
 <execution>
 <phase>validate</phase>
 <goals>
 <goal>run</goal>
 </goals>
 <configuration>
 <tasks>
 <echo>/usr/local/bin:/usr/local/maven/bin:/usr/kerberos/sbin:/usr/kerberos/bin:/usr/java/latest/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/usr/bin:/usr/local/bin=/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0/bin:/usr/local/bin:/usr/local/maven/bin:/usr/kerberos/sbin:/usr/kerberos/bin:/usr/java/latest/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/usr/bin:/usr/local/bin</echo>
 <echo>User's Home Directory: /home/hudson</echo>
 <echo>Project's Base Director: /usr/local/hudson/hudson-home/jobs/maven-reference-en-to-production/workspace/mvnref-book-content</echo>
 </tasks>
 </configuration>
 </execution>
 </executions>

100

</plugin>

7.1.5. Setting Default Command Line Execution Parameters

Starting with Maven 2.2.0, you can now supply configuration parameters for goals which are executed
from the command-line. To do this, use the special execution id value of "default-cli". Example ,
“Configuring Plugin Parameters for Command Line Execution” shows an example that binds the single
goal to the package phase of the lifecycle which produces a binary distribution. This example also
configures the default-cli execution for the assembly plugin to use the jar-with-dependencies
assembly descriptor. The bin.xml descriptor will be used during the lifecycle, and jar-with-
dependencies will be used when you execute mvn assembly:assembly from the command line.

Example . Configuring Plugin Parameters for Command Line Execution

<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <appendAssemblyId>false</appendAssemblyId>
 </configuration>
 <executions>
 <execution>
 <id>assemble-binary</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <descriptors>
 <descriptor>src/main/assembly/bin.xml</descriptor>
 </descriptors>
 </configuration>
 </execution>
 <execution>
 <id>default-cli</id>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 </configuration>
 </execution>
 </executions>
</plugin>

7.1.6. Setting Parameters for Goals Bound to Default Lifecycle

Starting with Maven 2.2.0, if you need to customize the behavior of a goal which is already bound to
the default lifecycle, you can use the execution id "default-<goal>". You can customize the behavior
of the Jar plugin's jar goal which is bound to the package phase in the default lifecycle, and you can
customize the configuration parameters of a separate goal execution if you follow the example shown
in Example , “Setting a Parameter for a Default Goal Execution”.

101

Example . Setting a Parameter for a Default Goal Execution

<plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <executions>
 <execution>
 <id>default-jar</id>
 <configuration>
 <excludes>
 <exclude>**/somepackage/*</exclude>
 </excludes>
 </configuration>
 </execution>
 <execution>
 <id>special-jar</id>
 <phase>package</phase>
 <goals>
 <goal>jar</goal>
 </goals>
 <configuration>
 <includes>
 <include>**/sompackage/*</include>
 </includes>
 <classifier>somepackage</classifier>
 </configuration>
 </execution>
 </executions>
</plugin>

In this example, the default jar goal is customized to exclude contents in a specific package. Another jar
goal is bound to the package phase to create a JAR file which contains only the contents of a particular
package in a classified JAR file.

Configuring the default goal execution parameters can also come in handy if you need to configure
two goals bound to the default lifecycle with separate settings for the same configuration parameter.
Example 7.6, “Setting Two Default Goal Plugin Configuration Parameters” shows an example that
configures the default resources:resources goal to exclude empty directories while configuring the
default resources:testResources goal to include empty directories.

Example 7.6. Setting Two Default Goal Plugin Configuration Parameters

<plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <executions>
 <execution>
 <id>default-resources</id>
 <configuration>
 <includeEmptyDirs>false</includeEmptyDirs>
 </configuration>
 </execution>
 <execution>
 <id>default-testResources</id>

102

 <configuration>
 <includeEmptyDirs>true</includeEmptyDirs>
 </configuration>
 </execution>
 </executions>
</plugin>

Chapter 8. Maven Assemblies
8.1. Introduction

Maven provides plugins that are used to create the most common archive types, most of which are
consumable as dependencies of other projects. Some examples include the JAR, WAR, EJB, and EAR
plugins. As discussed in Chapter 4, The Build Lifecycle these plugins correspond to different project
packaging types each with a slightly different build process. While Maven has plugins and customized
lifecycles to support standard packaging types, there are times when you'll need to create an archive or
directory with a custom layout. Such custom archives are called Maven Assemblies.

There are any number of reasons why you may want to build custom archives for your project. Perhaps
the most common is the project distribution. The word ‘distribution’ means many different things to
different people (and projects), depending on how the project is meant to be used. Essentially, these
are archives that provide a convenient way for users to install or otherwise make use of the project’s
releases. In some cases, this may mean bundling a web application with an application server like Jetty.
In others, it could mean bundling API documentation alongside source and compiled binaries like jar
files. Assemblies usually come in handy when you are building the final distribution of a product. For
example, products like Nexus introduced in Repository Management with Nexus1, are the product of
large multi-module Maven products, and the final archive you download from Sonatype was created
using a Maven Assembly.

In most cases, the Assembly plugin is ideally suited to the process of building project distributions.
However, assemblies don’t have to be distribution archives; assemblies are intended to provide Maven
users with the flexibility they need to produce customized archives of all kinds. Essentially, assemblies
are intended to fill the gaps between the standard archive formats provided by project package types.
Of course, you could write an entire Maven plugin simply to generate your own custom archive format,
along with a new lifecycle mapping and artifact-handling configuration to tell Maven how to deploy it.
But the Assembly plugin makes this unnecessary in most cases by providing generalized support for
creating your own archive recipe without spending so much time writing Maven code.

8.2. Assembly Basics

Before we go any further, it’s best to take a minute and talk about the two main goals in the Assembly
plugin: assembly:assembly, and the single mojo. I list these two goals in different ways because it
reflects the difference in how they’re used. The assembly:assembly goal is designed to be invoked
directly from the command line, and should never be bound to a build lifecycle phase. In contrast, the
single mojo is designed to be a part of your everyday build, and should be bound to a phase in your
project’s build lifecycle.

1 http://www.sonatype.com/books/nexus-book/reference/

http://www.sonatype.com/books/nexus-book/reference/
http://www.sonatype.com/books/nexus-book/reference/

104

The main reason for this difference is that the assembly:assembly goal is what Maven terms an
aggregator mojo; that is, a mojo which is designed to run at most once in a build, regardless of how
many projects are being built. It draws its configuration from the root project - usually the top-level
POM or the command line. When bound to a lifecycle, an aggregator mojo can have some nasty side-
effects. It can force the execution of the package lifecycle phase to execute ahead of time, and can
result in builds which end up executing the package phase twice.

Because the assembly:assembly goal is an aggregator mojo, it raises some issues in multi-module
Maven builds, and it should only be called as a stand-alone mojo from the command-line. Never bind an
assembly:assembly execution to a lifecycle phase. assembly:assembly was the original goal in
the Assembly plugin, and was never designed to be part of the standard build process for a project. As it
became clear that assembly archives were a legitimate requirement for projects to produce, the single
mojo was developed. This mojo assumes that it has been bound to the correct part of the build process,
so that it will have access to the project files and artifacts it needs to execute within the lifecycle of a
large multi-module Maven project. In a multi-module environment, it will execute as many times as it
is bound to the different module POMs. Unlike assembly:assembly, single will never force the
execution of another lifecycle phase ahead of itself.

The Assembly plugin provides several other goals in addition to these two. However, discussion of
these other mojos is beyond the scope of this chapter, because they serve exotic or obsolete use cases,
and because they are almost never needed. Whenever possible, you should definitely stick to using
assembly:assembly for assemblies generated from the command line, and to single for assemblies
bound to lifecycle phases.

8.2.1. Predefined Assembly Descriptors

While many people opt to create their own archive recipes - called assembly descriptors - this isn’t
strictly necessary. The Assembly plugin provides built-in descriptors for several common archive types
that you can use immediately without writing a line of configuration. The following assembly descriptors
are predefined in the Maven Assembly plugin:

bin

The bin descriptor is used to bundle project LICENSE, README, and NOTICE files with the
project’s main artifact, assuming this project builds a jar as its main artifact. Think of this as the
smallest possible binary distribution for completely self-contained projects.

jar-with-dependencies

The jar-with-dependencies descriptor builds a JAR archive with the contents of the main
project jar along with the unpacked contents of all the project’s runtime dependencies. Coupled
with an appropriate Main-Class Manifest entry (discussed in “Plugin Configuration” below),
this descriptor can produce a self-contained, executable jar for your project, even if the project
has dependencies.

105

project

The project descriptor simply archives the project directory structure as it exists in your file-
system and, most likely, in your version control system. Of course, the target directory is omitted,
as are any version-control metadata files like the CVS and .svn directories we’re all used to
seeing. Basically, the point of this descriptor is to create a project archive that, when unpacked,
can be built using Maven.

src

The src descriptor produces an archive of your project source and pom.xml files, along with
any LICENSE, README, and NOTICE files that are in the project’s root directory. This precursor
to the project descriptor produces an archive that can be built by Maven in most cases. However,
because of its assumption that all source files and resources reside in the standard src directory,
it has the potential to leave out non-standard directories and files that are nonetheless critical to
some builds.

8.2.2. Building an Assembly

The Assembly plugin can be executed in two ways: you can invoke it directly from the command line,
or you can configure it as part of your standard build process by binding it to a phase of your project’s
build lifecycle. Direct invocation has its uses, particularly for one-off assemblies that are not considered
part of your project’s core deliverables. In most cases, you’ll probably want to generate the assemblies
for your project as part of its standard build process. Doing this has the effect of including your custom
assemblies whenever the project is installed or deployed into Maven’s repositories, so they are always
available to your users.

As an example of the direct invocation of the Assembly plugin, imagine that you wanted to ship off a
copy of your project which people could build from source. Instead of just deploying the end-product
of the build, you wanted to include the source as well. You won’t need to do this often, so it doesn’t
make sense to add the configuration to your POM. Instead, you can use the following command:

$ mvn -DdescriptorId=project assembly:single
...
[INFO] [assembly:single]
[INFO] Building tar : /Users/~/mvn-examples-1.0/assemblies/direct-invocation/\
 target/direct-invocation-1.0-SNAPSHOT-project.tar.gz
[INFO] Building tar : /Users/~/mvn-examples-1.0/assemblies/direct-invocation/\
 target/direct-invocation-1.0-SNAPSHOT-project.tar.bz2
[INFO] Building zip: /Users/~/mvn-examples-1.0/assemblies/direct-invocation/\
 target/direct-invocation-1.0-SNAPSHOT-project.zip
...

Imagine you want to produce an executable JAR from your project. If your project is totally self-
contained with no dependencies, this can be achieved with the main project artifact using the archive
configuration of the JAR plugin. However, most projects have dependencies, and those dependencies
must be incorporated in any executable JAR. In this case, you want to make sure that every time the
main project JAR is installed or deployed, your executable JAR goes along with it.

106

Assuming the main class for the project is org.sonatype.mavenbook.App, the following POM
configuration will create an executable JAR:

Example 8.1. Assembly Descriptor for Executable JAR

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <artifactId>executable-jar</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <name>Assemblies Executable Jar Example</name>
 <url>http://sonatype.com/book</url>
 <dependencies>
 <dependency>
 <groupId>commons-lang</groupId>
 <artifactId>commons-lang</artifactId>
 <version>2.4</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-2</version>
 <executions>
 <execution>
 <id>create-executable-jar</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <descriptorRefs>
 <descriptorRef>
 jar-with-dependencies
 </descriptorRef>
 </descriptorRefs>
 <archive>
 <manifest>
 <mainClass>org.sonatype.mavenbook.App</mainClass>
 </manifest>
 </archive>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>

107

 </build>
</project>

There are two things to notice about the configuration above. First, we’re using the descriptorRefs
configuration section instead of the descriptorId parameter we used last time. This allows multiple
assembly types to be built from the same Assembly plugin execution, while still supporting our use case
with relatively little extra configuration. Second, the archive element under configuration sets the
Main-Class manifest attribute in the generated JAR. This section is commonly available in plugins
that create JAR files, such as the JAR plugin used for the default project package type.

Now, you can produce the executable JAR simply by executing mvn package. Afterward, we’ll also get
a directory listing for the target directory, just to verify that the executable JAR was generated. Finally,
just to prove that we actually do have an executable JAR, we’ll try executing it:

$ mvn package
... (output omitted) ...
[INFO] [jar:jar]
[INFO] Building jar: ~/mvn-examples-1.0/assemblies/executable-jar/target/\
 executable-jar-1.0-SNAPSHOT.jar
[INFO] [assembly:single {execution: create-executable-jar}]
[INFO] Processing DependencySet (output=)
[INFO] Building jar: ~/mvn-examples-1.0/assemblies/executable-jar/target/\
 executable-jar-1.0-SNAPSHOT-jar-with-dependencies.jar
... (output omitted) ...
$ ls -1 target
... (output omitted) ...
executable-jar-1.0-SNAPSHOT-jar-with-dependencies.jar
executable-jar-1.0-SNAPSHOT.jar
... (output omitted) ...
$ java -jar \
 target/executable-jar-1.0-SNAPSHOT-jar-with-dependencies.jar
Hello, World!

From the output shown above, you can see that the normal project build now produces a new artifact
in addition to the main JAR file. The new one has a classifier of jar-with-dependencies. Finally,
we verified that the new JAR actually is executable, and that executing the JAR produced the desired
output of “Hello, World!”

8.2.3. Assemblies as Dependencies

When you generate assemblies as part of your normal build process, those assembly archives will be
attached to your main project’s artifact. This means they will be installed and deployed alongside the
main artifact, and are then resolvable in much the same way. Each assembly artifact is given the same
basic coordinates (groupId, artifactId, and version) as the main project. However, these artifacts
are attachments, which in Maven means they are derivative works based on some aspect of the main
project build. To provide a couple of examples, source assemblies contain the raw inputs for the project
build, and jar-with-dependencies assemblies contain the project’s classes plus its dependencies.

108

Attached artifacts are allowed to circumvent the Maven requirement of one project, one artifact precisely
because of this derivative quality.

Since assemblies are (normally) attached artifacts, each must have a classifier to distinguish it from the
main artifact, in addition to the normal artifact coordinates. By default, the classifier is the same as the
assembly descriptor’s identifier. When using the built-in assembly descriptors, as above, the assembly
descriptor’s identifier is generally also the same as the identifier used in the descriptorRef for that
type of assembly.

Once you’ve deployed an assembly alongside your main project artifact, how can you use that assembly
as a dependency in another project? The answer is fairly straightforward. Projects depend on other
projects using a combination of four basic elements, referred to as a project’s coordinates: groupId,
artifactId, version, and packaging. In Section 5.5.3, “Platform Classifiers”, multiple platform-
specific variants of a project’s artifact and available, and the project specifies a classifier element
with a value of either win or linux to select the appropriate dependency artifact for the target platform.
Assembly artifacts can be used as dependencies using the required coordinates of a project plus the
classifier under which the assembly was installed or deployed. If the assembly is not a JAR archive,
we also need to declare its type.

8.2.4. Assembling Assemblies via Assembly Dependencies

How's that for a confusing section title? Let's try to set up a scenario which would explain the idea
of assembling assemblies. Imagine you want to create an archive which itself contains some project
assemblies. Assume that you have a multi-module build and you want to deploy an assembly which
contains a set of related project assemblies. In this section's example, we create a bundle of "buildable"
project directories for a set of projects that are commonly used together. For simplicity, we’ll reuse
the two built-in assembly descriptors discussed above - project and jar-with-dependencies. In
this particular example, it is assumed that each project creates the project assembly in addition to
its main JAR artifact. Assume that every project in a multi-module build binds the single goal to
the package phase and uses the project descriptorRef. Every project in a multi-module will
inherit the configuration from a top-level pom.xml whose pluginManagement element is shown in
Example 8.2, “Configuring the project assembly in top-level POM”.

Example 8.2. Configuring the project assembly in top-level POM

<project>
 ...
 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-2</version>
 <executions>
 <execution>

109

 <id>create-project-bundle</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <descriptorRefs>
 <descriptorRef>project</descriptorRef>
 </descriptorRefs>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>
 ...
</project>

Each project POM references the managed plugin configuration from Example 8.2, “Configuring the
project assembly in top-level POM” using a minimal plugin declaration in its build section shown in
Example 8.3, “Activating the Assembly Plugin Configuration in Child Projects”.

Example 8.3. Activating the Assembly Plugin Configuration in Child Projects

<build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 </plugin>
 </plugins>
</build>

To produce the set of project assemblies, run mvn install from the top-level directory. You should
see Maven installing artifacts with classifiers in your local repository.

$ mvn install
...
Installing ~/mvn-examples-1.0/assemblies/as-dependencies/project-parent/\
 second-project/target/second-project-1.0-SNAPSHOT-project.tar.gz to
 ~/.m2/repository/org/sonatype/mavenbook/assemblies/second-project/1.0-SNAPSHOT/\
 second-project-1.0-SNAPSHOT-project.tar.gz
...
Installing ~/mvn-examples-1.0/assemblies/as-dependencies/project-parent/\
 second-project/target/second-project-1.0-SNAPSHOT-project.tar.bz2 to
 ~/.m2/repository/org/sonatype/mavenbook/assemblies/second-project/1.0-SNAPSHOT/\
 second-project-1.0-SNAPSHOT-project.tar.bz2
...
Installing ~/mvn-examples-1.0/assemblies/as-dependencies/project-parent/\

110

 second-project/target/second-project-1.0-SNAPSHOT-project.zip to
 ~/.m2/repository/org/sonatype/mavenbook/assemblies/second-project/1.0-SNAPSHOT/\\
 second-project-1.0-SNAPSHOT-project.zip
...

When you run install, Maven will copy the each project's main artifact and each assembly to your local
Maven repository. All of these artifacts are now available for reference as dependencies in other projects
locally. If your ultimate goal is to create a bundle which includes assemblies from multiple project, you
can do so by creating another project which will include other project's assemblies as dependencies.
This bundling project (aptly named project-bundle) is responsible for creating the bundled assembly.
The POM for the bundling project would resemble the XML document listed in Example 8.4, “POM
for the Assembly Bundling Project”.

Example 8.4. POM for the Assembly Bundling Project

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <artifactId>project-bundle</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>pom</packaging>
 <name>Assemblies-as-Dependencies Example Project Bundle</name>
 <url>http://sonatype.com/book</url>
 <dependencies>
 <dependency>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <artifactId>first-project</artifactId>
 <version>1.0-SNAPSHOT</version>
 <classifier>project</classifier>
 <type>zip</type>
 </dependency>
 <dependency>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <artifactId>second-project</artifactId>
 <version>1.0-SNAPSHOT</version>
 <classifier>project</classifier>
 <type>zip</type>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-2</version>
 <executions>
 <execution>
 <id>bundle-project-sources</id>
 <phase>package</phase>

111

 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <descriptorRefs>
 <descriptorRef>
 jar-with-dependencies
 </descriptorRef>
 </descriptorRefs>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

This bundling project's POM references the two assemblies from first-project and second-
project. Instead of referencing the main artifact of each project, the bundling project's POM specifies
a classifier of project and a type of zip. This tells Maven to resolve the ZIP archive which was created
by the project assembly. Note that the bundling project generates a jar-with-dependencies
assembly. jar-with-dependencies does not create a particularly elegant bundle, it simply creates
a JAR file with the unpacked contents of all of the dependencies. jar-with-dependencies is really
just telling Maven to take all of the dependencies, unpack them, and then create a single archive which
includes the output of the current project. In this project, it has the effect of creating a single JAR file
that puts the two project assemblies from first-project and second-project side-by-side.

This example illustrates how the basic capabilities of the Maven Assembly plugin can be combined
without the need for a custom assembly descriptor. It achieves the purpose of creating a single archive
that contains the project directories for multiple projects side-by-side. This time, the jar-with-
dependencies is just a storage format, so we don’t need to specify a Main-Class manifest attribute.
To build the bundle, we just build the project-bundle project normally:

$ mvn package
...
[INFO] [assembly:single {execution: bundle-project-sources}]
[INFO] Processing DependencySet (output=)
[INFO] Building jar: ~/downloads/mvn-examples-1.0/assemblies/as-dependencies/\
 project-bundle/target/project-bundle-1.0-SNAPSHOT-jar-with-dependencies.jar

To verify that the project-bundle assembly contains the unpacked contents of the assembly
dependencies, run jar tf:

$ jar tf \
 target/project-bundle-1.0-SNAPSHOT-jar-with-dependencies.jar
...
first-project-1.0-SNAPSHOT/pom.xml
first-project-1.0-SNAPSHOT/src/main/java/org/sonatype/mavenbook/App.java

112

first-project-1.0-SNAPSHOT/src/test/java/org/sonatype/mavenbook/AppTest.java
...
second-project-1.0-SNAPSHOT/pom.xml
second-project-1.0-SNAPSHOT/src/main/java/org/sonatype/mavenbook/App.java
second-project-1.0-SNAPSHOT/src/test/java/org/sonatype/mavenbook/AppTest.java

After reading this section, the title should make more sense. You've assembled assemblies from two
projects into an assembly using a bundling project which has a dependency on each of the assemblies.

8.3. Overview of the Assembly Descriptor

When the standard assembly descriptors introduced in Section 8.2, “Assembly Basics” are not adequate,
you will need to define your own assembly descriptor. The assembly descriptor is an XML document
which defines the structure and contents of an assembly. The assembly descriptor contains five main
configuration sections, plus two additional sections: one for specifying standard assembly-descriptor
fragments, called component descriptors, and another for specifying custom file processor classes to
help manage the assembly-production process.

Base Configuration
This section contains the information required by all assemblies, plus some additional
configuration options related to the format of the entire archive, such as the base path to use for
all archive entries. For the assembly descriptor to be valid, you must at least specify the assembly
id, at least one format, and at least one of the other sections shown above.

File Information
The configurations in this segment of the assembly descriptor apply to specific files on the file
system within the project’s directory structure. This segment contains two main sections: files
and fileSets. You use files and fileSets to control the permissions of files in an assembly
and to include or exclude files from an assembly.

Dependency Information
Almost all projects of any size depend on other projects. When creating distribution archives,
project dependencies are usually included in the end-product of an assembly. This section
manages the way dependencies are included in the resulting archive. This section allows you to
specify whether dependencies are unpacked, added directly to the lib/ directory, or mapped to
new file names. This section also allows you to control the permissions of dependencies in the
assembly, and which dependencies are included in an assembly.

Repository Information
At times, it’s useful to isolate the sum total of all artifacts necessary to build a project, whether
they’re dependency artifacts, POMs of dependency artifacts, or even a project’s own POM
ancestry (your parent POM, its parent, and so on). This section allows you to include one or more
artifact-repository directory structures inside your assembly, with various configuration options.
The Assembly plugin does not have the ability to include plugin artifacts in these repositories yet.

113

Module Information
This section of the assembly descriptor allows you to take advantage of these parent-child
relationships when assembling your custom archive, to include source files, artifacts, and
dependencies from your project’s modules. This is the most complex section of the assembly
descriptor, because it allows you to work with modules and sub-modules in two ways: as a series
of fileSets (via the sources section) or as a series of dependencySets (via the binaries
section).

8.4. The Assembly Descriptor
This section is a tour of the assembly descriptor which contains some guidelines for developing a custom
assembly descriptor. The Assembly plugin is one of the largest plugins in the Maven ensemble, and
one of the most flexible.

8.4.1. Property References in Assembly Descriptors

Any property discussed in Section 9.2, “Maven Properties” can be referenced in an assembly descriptor.
Before any assembly descriptor is used by Maven, it is interpolated using information from the POM and
the current build environment. All properties supported for interpolation within the POM itself are valid
for use in assembly descriptors, including POM properties, POM element values, system properties,
user-defined properties, and operating-system environment variables.

The only exceptions to this interpolation step are elements in various sections of the descriptor named
outputDirectory, outputDirectoryMapping, or outputFileNameMapping. The reason these
are held back in their raw form is to allow artifact- or module-specific information to be applied when
resolving expressions in these values, on a per-item basis.

8.4.2. Required Assembly Information

There are two essential pieces of information that are required for every assembly: the id, and the list
of archive formats to produce. In practice, at least one other section of the descriptor is required - since
most archive format components will choke if they don’t have at least one file to include - but without at
least one format and an id, there is no archive to create. The id is used both in the archive’s file name,
and as part of the archive’s artifact classifier in the Maven repository. The format string also controls
the archiver-component instance that will create the final assembly archive. All assembly descriptors
must contain an id and at least one format:

Example 8.5. Required Assembly Descriptor Elements

<assembly>
 <id>bundle</id>
 <formats>
 <format>zip</format>
 </formats>

114

 ...
</assembly>

The assembly id can be any string that does not contain spaces. The standard practice is to use dashes
when you must separate words within the assembly id. If you were creating an assembly to create an
interesting unique package structure, you would give your an id of something like interesting-
unique-package. It also supports multiple formats within a single assembly descriptor, allowing you
to create the familiar .zip, .tar.gz, and .tar.bz2 distribution archive set with ease. If you don't
find the archive format you need, you can also create a custom format. Custom formats are discussed
in Section 8.5.8, “componentDescriptors and containerDescriptorHandlers”. The Assembly
plugin supports several archive formats natively, including:

• jar

• zip

• tar

• bzip2

• gzip

• tar.gz

• tar.bz2

• rar

• war

• ear

• sar

• dir

The id and format are essential because they will become a part of the coordinates for the assembled
archive. The example from Example 8.5, “Required Assembly Descriptor Elements” will create an
assembly artifact of type zip with a classifier of bundle.

8.5. Controlling the Contents of an Assembly
In theory, id and format are the only absolute requirements for a valid assembly descriptor; however,
many assembly archivers will fail if they do not have at least one file to include in the output archive.

115

The task of defining the files to be included in the assembly is handled by the five main sections of
the assembly descriptor: files, fileSets, dependencySets, repositories, and moduleSets.
To explore these sections most effectively, we’ll start by discussing the most elemental section: files.
Then, we’ll move on to the two most commonly used sections, fileSets and dependencySets.
Once you understand the workings of fileSets and dependencySets, it’s easier to understand
repositories and moduleSets.

8.5.1. Files Section

The files section is the simplest part of the assembly descriptor, it is designed for files that have a
definite location relative to your project’s directory. Using this section, you have absolute control over
the exact set of files that are included in your assembly, exactly what they are named, and where they
will reside in the archive.

Example 8.6. Including a JAR file in an Assembly using files

<assembly>
 ...
 <files>
 <file>
 <source>target/my-app-1.0.jar</source>
 <outputDirectory>lib</outputDirectory>
 <destName>my-app.jar</destName>
 <fileMode>0644</fileMode>
 </file>
 </files>
 ...
</assembly>

Assuming you were building a project called my-app with a version of 1.0, Example 8.6, “Including
a JAR file in an Assembly using files” would include your project's JAR in the assembly’s lib/
directory, trimming the version from the file name in the process so the final file name is simply my-
app.jar. It would then make the JAR readable by everyone and writable by the user that owns it (this
is what the mode 0644 means for files, using Unix four-digit Octal permission notation). For more
information about the format of the value in fileMode, please see the Wikipedia's explanation of four-
digit Octal notation2.

You could build a very complex assembly using file entries, if you knew the full list of files to be
included. Even if you didn’t know the full list before the build started, you could probably use a custom
Maven plugin to discover that list and generate the assembly descriptor using references like the one
above. While the files section gives you fine-grained control over the permission, location, and name
of each file in the assembly archive, listing a file element for every file in a large archive would be
a tedious exercise. For the most part, you will be operating on groups of files and dependencies using

2 http://en.wikipedia.org/wiki/File_system_permissions#Octal_notation_and_additional_permissions

http://en.wikipedia.org/wiki/File_system_permissions#Octal_notation_and_additional_permissions
http://en.wikipedia.org/wiki/File_system_permissions#Octal_notation_and_additional_permissions
http://en.wikipedia.org/wiki/File_system_permissions#Octal_notation_and_additional_permissions

116

fileSets. The remaining four file-inclusion sections are designed to help you include entire sets of
files that match a particular criteria.

8.5.2. FileSets Section

Similar to the files section, fileSets are intended for files that have a definite location relative to
your project’s directory structure. However, unlike the files section, fileSets describe sets of files,
defined by file and path patterns they match (or don’t match), and the general directory structure in
which they are located. The simplest fileSet just specifies the directory where the files are located:

<assembly>
 ...
 <fileSets>
 <fileSet>
 <directory>src/main/java</directory>
 </fileSet>
 </fileSets>
 ...
</assembly>

This file set simply includes the contents of the src/main/java directory from our project. It takes
advantage of many default settings in the section, so let’s discuss those briefly.

First, you’ll notice that we haven’t told the file set where within the assembly matching files should
be located. By default, the destination directory (specified with outputDirectory) is the same as
the source directory (in our case, src/main/java). Additionally, we haven’t specified any inclusion
or exclusion file patterns. When these are empty, the file set assumes that all files within the source
directory are included, with some important exceptions. The exceptions to this rule pertain mainly to
source-control metadata files and directories, and are controlled by the useDefaultExcludes flag,
which is defaulted to true. When active, useDefaultExcludes will keep directories like .svn/
and CVS/ from being added to the assembly archive. Section 8.5.3, “Default Exclusion Patterns for
fileSets” provides a detailed list of the default exclusion patterns.

If we want more control over this file set, we can specify it more explicitly. Example 8.7, “Including
Files with fileSet” shows a fileSet element with all of the default elements specified.

Example 8.7. Including Files with fileSet

<assembly>
 ...
 <fileSets>
 <fileSet>
 <directory>src/main/java</directory>
 <outputDirectory>src/main/java</outputDirectory>
 <includes>
 <include>**</include>
 </includes>
 <useDefaultExcludes>true</useDefaultExcludes>

117

 <fileMode>0644</fileMode>
 <directoryMode>0755</directoryMode>
 </fileSet>
 </fileSets>
 ...
</assembly>

The includes section uses a list of include elements, which contain path patterns. These patterns
may contain wildcards such as ‘**’ which matches one or more directories or ‘*’ which matches part
of a file name, and ‘?’ which matches a single character in a file name. Example 8.7, “Including Files
with fileSet” uses a fileMode entry to specify that files in this set should be readable by all, but only
writable by the owner. Since the fileSet includes directories, we also have the option of specifying
a directoryMode that works in much the same way as the fileMode. Since a directories’ execute
permission is what allows users to list their contents, we want to make sure directories are executable
in addition to being readable. Like files, only the owner can write to directories in this set.

The fileSet entry offers some other options as well. First, it allows for an excludes section with
a form identical to the includes section. These exclusion patterns allow you to exclude specific file
patterns from a fileSet. Include patterns take precedence over exclude patterns. Additionally, you
can set the filtering flag to true if you want to substitute property values for expressions within
the included files. Expressions can be delimited either by ${ and } (standard Maven expressions like
${project.groupId}) or by @ and @ (standard Ant expressions like @project.groupId@). You can
adjust the line ending of your files using the lineEnding element; valid values for lineEnding are:

keep
Preserve line endings from original files. (This is the default value.)

unix
Unix-style line endings

lf
Only a Line Feed Character

dos
MS-DOS-style line endings

crlf
Carriage-return followed by a Line Feed

Finally, if you want to ensure that all file-matching patterns are used, you can use the
useStrictFiltering element with a value of true (the default is false). This can be especially
useful if unused patterns may signal missing files in an intermediary output directory. When
useStrictFiltering is set to true, the Assembly plugin will fail if an include pattern is not satisfied.
In other words, if you have an include pattern which includes a file from a build, and that file is not
present, setting useStrictFiltering to true will cause a failure if Maven cannot find the file to
be included.

118

8.5.3. Default Exclusion Patterns for fileSets

When you use the default exclusion patterns, the Maven Assembly plugin is going to be ignoring
more than just SVN and CVS information. By default the exclusion patterns are defined by the
DirectoryScanner3 class in the plexus-utils4 project hosted at Codehaus. The array of exclude patterns
is defined as a static, final String array named DEFAULTEXCLUDES in DirectoryScanner. The
contents of this variable are shown in Example 8.8, “Definition of Default Exclusion Patterns from
Plexus Utils”.

Example 8.8. Definition of Default Exclusion Patterns from Plexus Utils

 public static final String[] DEFAULTEXCLUDES = {
 // Miscellaneous typical temporary files
 "**/*~",
 "**/#*#",
 "**/.#*",
 "**/%*%",
 "**/._*",

 // CVS
 "**/CVS",
 "**/CVS/**",
 "**/.cvsignore",

 // SCCS
 "**/SCCS",
 "**/SCCS/**",

 // Visual SourceSafe
 "**/vssver.scc",

 // Subversion
 "**/.svn",
 "**/.svn/**",

 // Arch
 "**/.arch-ids",
 "**/.arch-ids/**",

 //Bazaar
 "**/.bzr",
 "**/.bzr/**",

 //SurroundSCM
 "**/.MySCMServerInfo",

 // Mac
 "**/.DS_Store"
 };

3 http://svn.codehaus.org/plexus/plexus-utils/trunk/src/main/java/org/codehaus/plexus/util/DirectoryScanner.java
4 http://plexus.codehaus.org/plexus-utils/

http://svn.codehaus.org/plexus/plexus-utils/trunk/src/main/java/org/codehaus/plexus/util/DirectoryScanner.java
http://plexus.codehaus.org/plexus-utils/
http://svn.codehaus.org/plexus/plexus-utils/trunk/src/main/java/org/codehaus/plexus/util/DirectoryScanner.java
http://plexus.codehaus.org/plexus-utils/

119

This default array of patterns excludes temporary files from editors like GNU Emacs5, and other
common temporary files from Macs and a few common source control systems (although Visual
SourceSafe is more of a curse than a source control system). If you need to override these default
exclusion patterns you set useDefaultExcludes to false and then define a set of exclusion patterns
in your own assembly descriptor.

8.5.4. dependencySets Section

One of the most common requirements for assemblies is the inclusion of a project’s dependencies in
an assembly archive. Where files and fileSets deal with files in your project, dependency files
don't have a location in your project. The artifacts your project depends on have to be resolved by
Maven during the build. Dependency artifacts are abstract, they lack a definite location, and are resolved
using a symbolic set of Maven coordinates. Since file and fileSet specifications require a concrete
source path, dependencies are included or excluded from an assembly using a combination of Maven
coordinates and dependency scopes.

The simplest dependencySet is an empty element:

<assembly>
 ...
 <dependencySets>
 <dependencySet/>
 </dependencySets>
 ...
</assembly>

The dependencySet above will match all runtime dependencies of your project (runtime scope
includes the compile scope implicitly), and it will add these dependencies to the root directory of your
assembly archive. It will also copy the current project’s main artifact into the root of the assembly
archive, if it exists.

Note

Wait? I thought dependencySet was about including my project's dependencies, not
my project's main archive? This counterintuitive side-effect was a widely-used bug
in the 2.1 version of the Assembly plugin, and, because Maven puts an emphasis
on backward compatibility, this counterintuitive and incorrect behavior needed to be
preserved between a 2.1 and 2.2 release. You can control this behavior by changing the
useProjectArtifact flag to false.

While the default dependency set can be quite useful with no configuration whatsoever, this section of
the assembly descriptor also supports a wide array of configuration options, allowing your to tailor its
behavior to your specific requirements. For example, the first thing you might do to the dependency set
above is exclude the current project artifact, by setting the useProjectArtifact flag to false (again,

5 http://www.gnu.org/software/emacs/

http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/

120

its default value is true for legacy reasons). This will allow you to manage the current project’s build
output separately from its dependency files. Alternatively, you might choose to unpack the dependency
artifacts using by setting the unpack flag to true (this is false by default). When unpack is set to
true, the Assembly plugin will combine the unpacked contents of all matching dependencies inside the
archive’s root directory.

From this point, there are several things you might choose to do with this dependency set. The next
sections discuss how to define the output location for dependency sets and how include and exclude
dependencies by scope. Finally, we’ll expand on the unpacking functionality of the dependency set by
exploring some advanced options for unpacking dependencies.

8.5.4.1. Customizing Dependency Output Location

There are two configuration options that are used in concert to define the location for a dependency file
within the assembly archive: outputDirectory and outputFileNameMapping. You may want to
customize the location of dependencies in your assembly using properties of the dependency artifacts
themselves. Let's say you want to put all the dependencies in directories that match the dependency
artifact's groupId. In this case, you would use the outputDirectory element of the dependencySet,
and you would supply something like:

<assembly>
 ...
 <dependencySets>
 <dependencySet>
 <outputDirectory>${artifact.groupId}</outputDirectory>
 </dependencySet>
 </dependencySets>
 ...
</assembly>

This would have the effect of placing every single dependency in a subdirectory that matched the name
of each dependency artifact's groupId.

If you wanted to perform a further customization and remove the version numbers from all dependencies.
You could customize the output file name for each dependency using the outputFileNameMapping
element as follows:

<assembly>
 ...
 <dependencySets>
 <dependencySet>
 <outputDirectory>${artifact.groupId}</outputDirectory>
 <outputFileNameMapping>
 ${artifact.artifactId}.${artifact.extension}
 </outputFileNameMapping>
 </dependencySet>
 </dependencySets>
 ...

121

</assembly>

In the previous example, a dependency on commons:commons-codec version 1.3, would end up in
the file commons/commons-codec.jar.

8.5.4.2. Interpolation of Properties in Dependency Output Location

As mentioned in the Assembly Interpolation section above, neither of these elements are interpolated
with the rest of the assembly descriptor, because their raw values have to be interpreted using additional,
artifact-specific expression resolvers.

The artifact expressions available for these two elements vary only slightly. In both cases, all of the
${project.*}, ${pom.*}, and ${*} expressions that are available in the POM and the rest of the
assembly descriptor are also available here. For the outputFileNameMapping element, the following
process is applied to resolve expressions:

1. If the expression matches the pattern ${artifact.*}:

a. Match against the dependency’s Artifact instance (resolves: groupId, artifactId,
version, baseVersion, scope, classifier, and file.*)

b. Match against the dependency’s ArtifactHandler instance (resolves: expression)

c. Match against the project instance associated with the dependency’s Artifact (resolves: mainly
POM properties)

2. If the expression matches the patterns ${pom.*} or ${project.*}:

a. Match against the project instance (MavenProject) of the current build.

3. If the expression matches the pattern ${dashClassifier?} and the Artifact instance contains
a non-null classifier, resolve to the classifier preceded by a dash (-classifier). Otherwise, resolve
to an empty string.

4. Attempt to resolve the expression against the project instance of the current build.

5. Attempt to resolve the expression against the POM properties of the current build.

6. Attempt to resolve the expression against the available system properties.

7. Attempt to resolve the expression against the available operating-system environment variables.

The outputDirectory value is interpolated in much the same way, with the difference being that
there is no available ${artifact.*} information, only the ${project.*} instance for the particular
artifact. Therefore, the expressions listed above associated with those classes (1a, 1b, and 3 in the process
listing above) are unavailable.

122

How do you know when to use outputDirectory and outputFileNameMapping? When
dependencies are unpacked only the outputDirectory is used to calculate the output location.
When dependencies are managed as whole files (not unpacked), both outputDirectory and
outputFileNameMapping can be used together. When used together, the result is the equivalent of:

<archive-root-dir>/<outputDirectory>/<outputFileNameMapping>

When outputDirectory is missing, it is not used. When outputFileNameMapping is missing,
its default value is: ${artifact.artifactId}-${artifact.version}${dashClassifier?}.
${artifact.extension}

8.5.4.3. Including and Excluding Dependencies by Scope

In Section 3.4, “Project Dependencies”, it was noted that all project dependencies have one scope or
another. Scope determines when in the build process that dependency normally would be used. For
instance, test-scoped dependencies are not included in the classpath during compilation of the main
project sources; but they are included in the classpath when compiling unit test sources. This is because
your project’s main source code should not contain any code specific to testing, since testing is not
a function of the project (it’s a function of the project’s build process). Similarly, provided-scoped
dependencies are assumed to be present in the environment of any eventual deployment. However, if a
project depends on a particular provided dependency, it is likely to require that dependency in order to
compile. Therefore, provided-scoped dependencies are present in the compilation classpath, but not in
the dependency set that should be bundled with the project’s artifact or assembly.

Also from Section 3.4, “Project Dependencies”, recall that some dependency scopes imply others.
For instance, the runtime dependency scope implies the compile scope, since all compile-time
dependencies (except for those in the provided scope) will be required for the code to execute. There
are a number of complex relationships between the various dependency scopes which control how
the scope of a direct dependency affects the scope of a transitive dependency. In a Maven Assembly
descriptor, we can use scopes to apply different settings to different sets of dependencies accordingly.

For instance, if we plan to bundle a web application with Jetty6 to create a completely self-contained
application, we’ll need to include all provided-scope dependencies somewhere in the jetty directory
structure we’re including. This ensures those provided dependencies actually are present in the runtime
environment. Non-provided, runtime dependencies will still land in the WEB-INF/lib directory, so these
two dependency sets must be processed separately. These dependency sets might look similar to the
following XML.

Example 8.9. Defining Dependency Sets Using Scope

<assembly>
 ...
 <dependencySets>
 <dependencySet>

6 http://www.mortbay.org/jetty-6/

http://www.mortbay.org/jetty-6/
http://www.mortbay.org/jetty-6/

123

 <scope>provided</scope>
 <outputDirectory>lib/${project.artifactId}</outputDirectory>
 </dependencySet>
 <dependencySet>
 <scope>runtime</scope>
 <outputDirectory>
 webapps/${webContextName}/WEB-INF/lib
 </outputDirectory>
 </dependencySet>
 </dependencySets>
 ...
</assembly>

Provided-scoped dependencies are added to the lib/ directory in the assembly root, which is assumed
to be a libraries directory that will be included in the Jetty global runtime classpath. We’re using a
subdirectory named for the project’s artifactId in order to make it easier to track the origin of a
particular library. Runtime dependencies are included in the WEB-INF/lib path of the web application,
which is located within a subdirectory of the standard Jetty webapps/ directory that is named using a
custom POM property called webContextName. What we've done in the previous example is separate
application-specific dependencies from dependencies which will be present in a Servlet contains global
classpath.

However, simply separating according to scope may not be enough, particularly in the case of a
web application. It’s conceivable that one or more runtime dependencies will actually be bundles of
standardized, non-compiled resources for use in the web application. For example, consider a set of web
application which reuse a common set of Javascript, CSS, SWF, and image resources. To make these
resources easy to standardize, it’s a common practice to bundle them up in an archive and deploy them to
the Maven repository. At that point, they can be referenced as standard Maven dependencies - possibly
with a dependency type of zip - that are normally specified with a runtime scope. Remember, these are
resources, not binary dependencies of the application code itself; therefore, it’s not appropriate to blindly
include them in the WEB-INF/lib directory. Instead, these resource archives should be separated from
binary runtime dependencies, and unpacked into the web application document root somewhere. In order
to achieve this kind of separation, we’ll need to use inclusion and exclusion patterns that apply to the
coordinates of a specific dependency.

In other words, say you have three or four web application which reuse the same resources and you
want to create an assembly that puts provided dependencies into lib/, runtime dependencies into
webapps/<contextName>/WEB-INF/lib, and then unpacks a specific runtime dependency into your
web application's document root. You can do this because the Assembly allows you to define multiple
include and exclude patterns for a given dependencySet element. Read the next section for more
development of this idea.

8.5.4.4. Fine Tuning: Dependency Includes and Excludes

A resource dependency might be as simple as a set of resources (CSS, Javascript, and Images) in a project
that has an assembly which creates a ZIP archive. Depending on the particulars of our web application,

124

we might be able to distinguish resource dependencies from binary dependencies solely according to
type. Most web applications are going to depend on other dependencies of type jar, and it is possible
that we can state with certainty that all dependencies of type zip are resource dependencies. Or, we
might have a situation where resources are stored in jar format, but have a classifier of something like
resources. In either case, we can specify an inclusion pattern to target these resource dependencies
and apply different logic than that used for binary dependencies. We’ll specify these tuning patterns
using the includes and excludes sections of the dependencySet.

Both includes and excludes are list sections, meaning they accept the sub-elements include and
exclude respectively. Each include or exclude element contains a string value, which can contain
wildcards. Each string value can match dependencies in a few different ways. Generally speaking, three
identity pattern formats are supported:

groupId:artifactId - version-less key
You would use this pattern to match a dependency by only the groupId and the artifactId

groupId:artifactId:type[:classifier] - conflict id
The pattern allows you to specify a wider set of coordinates to create a more specific include/
exclude pattern.

groupId:artifactId:type[:classifier]:version - full artifact identity
If you need to get really specific, you can specify all the coordinates.

All of these pattern formats support the wildcard character ‘*’, which can match any subsection of
the identity and is not limited to matching single identity parts (sections between ‘:’ characters). Also,
note that the classifier section above is optional, in that patterns matching dependencies that don’t have
classifiers do not need to account for the classifier section in the pattern.

In the example given above, where the key distinction is the artifact type zip, and none of the
dependencies have classifiers, the following pattern would match resource dependencies assuming that
they were of type zip:

*:zip

The pattern above makes use of the second dependency identity: the dependency’s conflict id. Now that
we have a pattern that distinguishes resource dependencies from binary dependencies, we can modify
our dependency sets to handle resource archives differently:

Example 8.10. Using Dependency Excludes and Includes in dependencySets

<assembly>
 ...
 <dependencySets>
 <dependencySet>
 <scope>provided</scope>
 <outputDirectory>lib/${project.artifactId}</outputDirectory>

125

 </dependencySet>
 <dependencySet>
 <scope>runtime</scope>
 <outputDirectory>
 webapps/${webContextName}/WEB-INF/lib
 </outputDirectory>
 <excludes>
 <exclude>*:zip</exclude>
 </excludes>
 </dependencySet>
 <dependencySet>
 <scope>runtime</scope>
 <outputDirectory>
 webapps/${webContextName}/resources
 </outputDirectory>
 <includes>
 <include>*:zip</include>
 </includes>
 <unpack>true</unpack>
 </dependencySet>
 </dependencySets>
 ...
</assembly>

In Example 8.10, “Using Dependency Excludes and Includes in dependencySets”, the runtime-
scoped dependency set from our last example has been updated to exclude resource dependencies. Only
binary dependencies (non-zip dependencies) should be added to the WEB-INF/lib directory of the
web application. Resource dependencies now have their own dependency set, which is configured to
include these dependencies in the resources directory of the web application. The includes section in
the last dependencySet reverses the exclusion from the previous dependencySet, so that resource
dependencies are included using the same identity pattern (i.e. *:zip). The last dependencySet refers
to the shared resource dependency and it is configured to unpack the shared resource dependency in the
document root of the web application.

Example 8.10, “Using Dependency Excludes and Includes in dependencySets” was based upon the
assumption that our shared resources project dependency had a type which differed from all of the other
dependencies. What if the share resource dependency had the same type as all of the other dependencies?
How could you differentiate the dependency? In this case if the shared resource dependency had been
bundled as a JAR with the classifier resources, you can change to the identity pattern and match those
dependencies instead:

*:jar:resources

Instead of matching on artifacts with a type of zip and no classifier, we’re matching on artifacts with
a classifier of resources and a type of jar.

Just like the fileSets section, dependencySets support the useStrictFiltering flag. When
enabled, any specified patterns that don’t match one or more dependencies will cause the assembly -

126

and consequently, the build - to fail. This can be particularly useful as a safety valve, to make sure your
project dependencies and assembly descriptors are synchronized and interacting as you expect them to.
By default, this flag is set to false for the purposes of backward compatibility.

8.5.4.5. Transitive Dependencies, Project Attachments, and Project Artifacts

The dependencySet section supports two more general mechanisms for tuning the subset of matching
artifacts: transitive selection options, and options for working with project artifacts. Both of these
features are a product of the need to support legacy configurations that applied a somewhat more liberal
definition of the word “dependency”. As a prime example, consider the project’s own main artifact.
Typically, this would not be considered a dependency; yet older versions of the Assembly plugin
included the project artifact in calculations of dependency sets. To provide backward compatibility with
this “feature”, the 2.2 releases (currently at 2.2-beta-2) of the Assembly plugin support a flag in the
dependencySet called useProjectArtifact, whose default value is true. By default, dependency
sets will attempt to include the project artifact itself in calculations about which dependency artifacts
match and which don’t. If you’d rather deal with the project artifact separately, set this flag to false.

Tip

The authors of this book recommend that you always set useProjectArtifact to
false.

As a natural extension to the inclusion of the project artifact, the project’s attached artifacts can also be
managed within a dependencySet using the useProjectAttachments flag (whose default value is
false). Enabling this flag allows patterns that specify classifiers and types to match on artifacts that
are “attached” to the main project artifact; that is, they share the same basic groupId/artifactId/
version identity, but differ in type and classifier from the main artifact. This could be useful for
including JavaDoc or source jars in an assembly.

Aside from dealing with the project’s own artifacts, it’s also possible to fine-tune the dependency set
using two transitive-resolution flags. The first, called useTransitiveDependencies (and set to true
by default) simply specifies whether the dependency set should consider transitive dependencies at all
when determining the matching artifact set to be included. As an example of how this could be used,
consider what happens when your POM has a dependency on another assembly. That assembly (most
likely) will have a classifier that separates it from the main project artifact, making it an attachment.
However, one quirk of the Maven dependency-resolution process is that the transitive-dependency
information for the main artifact is still used when resolving the assembly artifact. If the assembly
bundles its project dependencies inside itself, using transitive dependency resolution here would
effectively duplicate those dependencies. To avoid this, we simply set useTransitiveDependencies
to false for the dependency set that handles that assembly dependency.

The other transitive-resolution flag is far more subtle. It’s called useTransitiveFiltering, and has a
default value of false. To understand what this flag does, we first need to understand what information
is available for any given artifact during the resolution process. When an artifact is a dependency of

127

a dependency (that is, removed at least one level from your own POM), it has what Maven calls a
"dependency trail", which is maintained as a list of strings that correspond to the full artifact identities
(groupId:artifactId:type:[classifier:]version) of all dependencies between your POM
and the artifact that owns that dependency trail. If you remember the three types of artifact identities
available for pattern matching in a dependency set, you’ll notice that the entries in the dependency trail
- the full artifact identity - correspond to the third type. When useTransitiveFiltering is set to
true, the entries in an artifact’s dependency trail can cause the artifact to be included or excluded in
the same way its own identity can.

If you’re considering using transitive filtering, be careful! A given artifact can be included from multiple
places in the transitive-dependency graph, but as of Maven 2.0.9, only the first inclusion’s trail will be
tracked for this type of matching. This can lead to subtle problems when collecting the dependencies
for your project.

Warning

Most assemblies don’t really need this level of control over dependency sets; consider
carefully whether yours truly does. Hint: It probably doesn't.

8.5.4.6. Advanced Unpacking Options

As we discussed previously, some project dependencies may need to be unpacked in order to create a
working assembly archive. In the examples above, the decision to unpack or not was simple. It didn’t take
into account what needed to be unpacked, or more importantly, what should not be unpacked. To gain
more control over the dependency unpacking process, we can configure the unpackOptions element
of the dependencySet. Using this section, we have the ability to choose which file patterns to include
or exclude from the assembly, and whether included files should be filtered to resolve expressions using
current POM information. In fact, the options available for unpacking dependency sets are fairly similar
to those available for including files from the project directory structure, using the file sets descriptor
section.

To continue our web-application example, suppose some of the resource dependencies have been
bundled with a file that details their distribution license. In the case of our web application, we’ll handle
third-party license notices by way of a NOTICES file included in our own bundle, so we don’t want
to include the license file from the resource dependency. To exclude this file, we simply add it to the
unpack options inside the dependency set that handles resource artifacts:

Example 8.11. Excluding Files from a Dependency Unpack

<asembly>
 ...
 <dependencySets>
 <dependencySet>
 <scope>runtime</scope>
 <outputDirectory>

128

 webapps/${webContextName}/resources
 </outputDirectory>
 <includes>
 <include>*:zip</include>
 </includes>
 <unpack>true</unpack>
 <unpackOptions>
 <excludes>
 <exclude>**/LICENSE*</exclude>
 </excludes>
 </unpackOptions>
 </dependencySet>
 </dependencySets>
 ...
</assembly>

Notice that the exclude we’re using looks very similar to those used in fileSet declarations. Here,
we’re blocking any file starting with the word LICENSE in any directory within our resource artifacts.
You can think of the unpack options section as a lightweight fileSet applied to each dependency
matched within that dependency set. In other words, it is a fileSet by way of an unpacked dependency.
Just as we specified an exclusion pattern for files within resource dependencies in order to block
certain files, you can also choose which restricted set of files to include using the includes section.
The same code that processes inclusions and exclusions on fileSets has been reused for processing
unpackOptions.

In addition to file inclusion and exclusion, the unpack options on a dependency set also provides a
filtering flag, whose default value is false. Again, this should be familiar from our discussion of
file sets above. In both cases, expressions using either the Maven syntax of ${property} or the Ant
syntax of @property@ are supported. Filtering is a particularly nice feature to have for dependency sets,
though, since it effectively allows you to create standardized, versioned resource templates that are then
customized to each assembly as they are included. Once you start mastering the use of filtered, unpacked
dependencies which store shared resources, you will be able to start abstracting repeated resources into
common resource projects.

8.5.4.7. Summarizing Dependency Sets

Finally, it’s worth mentioning that dependency sets support the same fileMode and directoryMode
configuration options that file sets do, though you should remember that the directoryMode setting
will only be used when dependencies are unpacked.

8.5.5. moduleSets Sections

Multi-module builds are generally stitched together using the parent and modules sections of interrelated
POMs. Typically, parent POMs specify their children in a modules section, which under normal
circumstances causes the child POMs to be included in the build process of the parent. Exactly how this
relationship is constructed can have important implications for the ways in which the Assembly plugin

129

can participate in this process, but we’ll discuss that more later. For now, it’s enough to keep in mind
this parent-module relationship as we discuss the moduleSets section.

Projects are stitched together into multi-module builds because they are part of a larger system. These
projects are designed to be used together, and single module in a larger build has little practical value
on its own. In this way, the structure of the project’s build is related to the way we expect the project
(and its modules) to be used. If consider the project from the user's perspective, it makes sense that the
ideal end goal of that build would be a single, distributable file that the user can consume directly with
minimum installation hassle. Since Maven multi-module builds typically follow a top-down structure,
where dependency information, plugin configurations, and other information trickles down from parent
to child, it seems natural that the task of rolling all of these modules into a single distribution file should
fall to the topmost project. This is where the moduleSet comes into the picture.

Module sets allow the inclusion of resources that belong to each module in the project structure into the
final assembly archive. Just like you can select a group of files to include in an assembly using a fileSet
and a dependencySet, you can include a set of files and resources using a moduleSet to refer to
modules in a multi-module build. They achieve this by enabling two basic types of module-specific
inclusion: file-based, and artifact-based. Before we get into the specifics and differences between file-
based and artifact-based inclusion of module resources into an assembly, let’s talk a little about selecting
which modules to process.

8.5.5.1. Module Selection

By now, you should be familiar with includes/excludes patterns as they are used throughout the
assembly descriptor to filter files and dependencies. When you are referring to modules in an assembly
descriptor, you will also use the includes/excludes patterns to define rules which apply to different
sets of modules. The difference in moduleSet includes and excludes is that these rules do not
allow for wildcard patterns. (As of the 2.2-beta-2 release, this feature has not really seen much demand,
so it hasn’t been implemented.) Instead, each include or exclude value is simply the groupId and
artifactId for the module, separated by a colon, like this:

groupId:artifactId

In addition to includes and excludes, the moduleSet also supports an additional selection tool: the
includeSubModules flag (whose default value is true). The parent-child relationship in any multi-
module build structure is not strictly limited to two tiers of projects. In fact, you can include any number
of tiers, or layers, in your build. Any project that is a module of a module of the current project is
considered a sub-module. In some cases, you may want to deal with each individual module in the build
separately (including sub-modules). For example, this is often simplest when dealing with artifact-based
contributions from these modules. To do this, you would simply leave the useSubModules flag set to
the default of true.

When you’re trying to include files from each module’s directory structure, you may wish to process
that module’s directory structure only once. If your project directory structure mirrors that of the parent-
module relationships that are included in the POMs, this approach would allow file patterns like **/src/

130

main/java to apply not only to that direct module’s project directory, but also to the directories of its own
modules as well. In this case you don’t want to process sub-modules directly (they will be processed
as subdirectories within your own project’s modules instead), you should set the useSubModules flag
to false.

Once we’ve determined how module selection should proceed for the module set in question, we’re
ready to choose what to include from each module. As mentioned above, this can include files or artifacts
from the module project.

8.5.5.2. Sources Section

Suppose you want to include the source of all modules in your project's assembly, but you would like to
exclude a particular module. Maybe you have a project named secret-sauce which contains secret
and sensitive code that you don't want to distribute with your project. The simplest way to accomplish
this is to use a moduleSet which includes each project's directory in ${module.basedir.name} and
which excludes the secret-sauce module from the assembly.

Example 8.12. Includes and Excluding Modules with a moduleSet

<assembly>
 ...
 <moduleSets>
 <moduleSet>
 <includeSubModules>false</includeSubModules>
 <excludes>
 <exclude>
 com.mycompany.application:secret-sauce
 </exclude>
 </excludes>
 <sources>
 <outputDirectoryMapping>
 ${module.basedir.name}
 </outputDirectoryMapping>
 <excludeSubModuleDirectories>
 false
 </excludeSubModuleDirectories>
 <fileSets>
 <fileSet>
 <directory>/</directory>
 <excludes>
 <exclude>**/target</exclude>
 </excludes>
 </fileSet>
 </fileSets>
 </sources>
 </moduleSet>
 </moduleSets>
 ...
</assembly>

131

In Example 8.12, “Includes and Excluding Modules with a moduleSet”, since we’re dealing with each
module’s sources it’s simpler to deal only with direct modules of the current project, handling sub-
modules using file-path wildcard patterns in the file set. We set the includeSubModules element to
false so we don't have to worry about submodules showing up in the root directory of the assembly
archive. The exclude element will take care of excluding the secret-sauce module. We’re not going
to include the project sources for the secret-sauce module; they’re, well, secret.

Normally, module sources are included in the assembly under a subdirectory named after the module’s
artifactId. However, since Maven allows modules that are not in directories named after the
module project’s artifactId, it’s often better to use the expression ${module.basedir.name}
to preserve the module directory’s actual name (${module.basedir.name} is the same as calling
MavenProject.getBasedir().getName()). It is critical to remember that modules are not required
to be subdirectories of the project that declares them. If your project has a particularly strange directory
structure, you may need to resort to special moduleSet declarations that include specific project and
account for your own project's idiosyncrasies.

Warning

Try to minimize your own project's idiosyncrasies, while Maven is flexible, if you find
yourself doing too much configuration there is likely an easier way.

Continuing through Example 8.12, “Includes and Excluding Modules with a moduleSet”, since we’re
not processing sub-modules explicitly in this module set, we need to make sure sub-module directories
are not excluded from the source directories we consider for each direct module. By setting the
excludeSubModuleDirectories flag to false, this allows us to apply the same file pattern to
directory structures within a sub-module of the one we’re processing. Finally in Example 8.12, “Includes
and Excluding Modules with a moduleSet”, we’re not interested in any output of the build process for
this module set. We exclude the target/ directory from all modules.

It’s also worth mentioning that the sources section supports fileSet-like elements directly within
itself, in addition to supporting nested fileSets. These configuration elements are used to provide
backward compatibility to previous versions of the Assembly plugin (versions 2.1 and under) that didn’t
support multiple distinct file sets for the same module without creating a separate module set declaration.
They are deprecated, and should not be used.

8.5.5.3. Interpolation of outputDirectoryMapping in moduleSets

In Section 8.5.4.1, “Customizing Dependency Output Location”, we used the element
outputDirectoryMapping to change the name of the directory under which each module’s sources
would be included. The expressions contained in this element are resolved in exactly the same way
as the outputFileNameMapping, used in dependency sets (see the explanation of this algorithm in
Section 8.5.4, “dependencySets Section”).

In Example 8.12, “Includes and Excluding Modules with a moduleSet”, we used the expression
${module.basedir.name}. You might notice that the root of that expression, module, is not listed

132

in the mapping-resolution algorithm from the dependency sets section; this object root is specific
to configurations within moduleSets. It works in exactly the same way as the ${artifact.*}
references available in the outputFileNameMapping element, except it is applied to the module’s
MavenProject, Artifact, and ArtifactHandler instances instead of those from a dependency
artifact.

8.5.5.4. Binaries section

Just as the sources section is primarily concerned with including a module in its source form, the
binaries section is primarily concerned with including the module’s build output, or its artifacts.
Though this section functions primarily as a way of specifying dependencySets that apply to each
module in the set, there are a few additional features unique to module artifacts that are worth exploring:
attachmentClassifier and includeDependencies. In addition, the binaries section contains
options similar to the dependencySet section, that relate to the handling of the module artifact
itself. These are: unpack, outputFileNameMapping, outputDirectory, directoryMode, and
fileMode. Finally, module binaries can contain a dependencySets section, to specify how each
module’s dependencies should be included in the assembly archive. First, let’s take a look at how the
options mentioned here can be used to manage the module’s own artifacts.

Suppose we want to include the javadoc jars for each of our modules inside our assembly. In this case,
we don’t care about including the module dependencies; we just want the javadoc jar. However, since
this particular jar is always going to be present as an attachment to the main project artifact, we need
to specify which classifier to use to retrieve it. For simplicity, we won’t cover unpacking the module
javadoc jars, since this configuration is exactly the same as what we used for dependency sets earlier
in this chapter. The resulting module set might look similar to Example 8.13, “Including JavaDoc from
Modules in an Assembly”.

Example 8.13. Including JavaDoc from Modules in an Assembly

<assembly>
 ...
 <moduleSets>
 <moduleSet>
 <binaries>
 <attachmentClassifier>javadoc</attachmentClassifier>
 <includeDependencies>false</includeDependencies>
 <outputDirectory>apidoc-jars</outputDirectory>
 </binaries>
 </moduleSet>
 </moduleSets>
 ...
</assembly>

In Example 8.13, “Including JavaDoc from Modules in an Assembly”, we don’t explicitly set the
includeSubModules flag, since it’s true by default. However, we definitely want to process all
modules - even sub-modules - using this module set, since we’re not using any sort of file pattern

133

that could match on sub-module directory structures within. The attachmentClassifier grabs the
attached artifact with the javadoc classifier for each module processed. The includeDependencies
element tells the Assembly plugin that we're not interested in any of the module's dependencies, just the
javadoc attachment. Finally, the outputDirectory element tells the Assembly plugin to put all of the
javadoc jars into a directory named apidoc-jars/ off of the assembly root directory.

Although we’re not doing anything too complicated in this example, it’s important to understand that
the same changes to the expression-resolution algorithm discussed for the outputDirectoryMapping
element of the sources section also applies here. That is, whatever was available as ${artifact.*}
inside a dependencySet’s outputFileNameMapping configuration is also available here as
${module.*}. The same applies for outputFileNameMapping when used directly within a
binaries section.

Finally, let’s examine an example where we simply want to process the module’s artifact and its
runtime dependencies. In this case, we want to separate the artifact set for each module into separate
directory structures, according to the module’s artifactId and version. The resulting module set
is surprisingly simply, and it looks like the listing in Example 8.14, “Including Module Artifacts and
Dependencies in an Assembly”:

Example 8.14. Including Module Artifacts and Dependencies in an Assembly

<assembly>
 ...
 <moduleSets>
 <moduleSet>
 <binaries>
 <outputDirectory>
 ${module.artifactId}-${module.version}
 </outputDirectory>
 <dependencySets>
 <dependencySet/>
 </dependencySets>
 </binaries>
 </moduleSet>
 </moduleSets>
 ...
</assembly>

In Example 8.14, “Including Module Artifacts and Dependencies in an Assembly”, we’re using the
empty dependencySet element here, since that should include all runtime dependencies by default,
with no configuration. With the outputDirectory specified at the binaries level, all dependencies
should be included alongside the module’s own artifact in the same directory, so we don’t even need
to specify that in our dependency set.

For the most part, module binaries are fairly straightforward. In both parts - the main part, concerned with
handling the module artifact itself, and the dependency sets, concerned with the module’s dependencies

134

- the configuration options are very similar to those in a dependency set. Of course, the binaries section
also provides options for controlling whether dependencies are included, and which main-project artifact
you want to use.

Like the sources section, the binaries section contains a couple of configuration options that are provided
solely for backward compatibility, and should be considered deprecated. These include the includes and
excludes sub-sections.

8.5.5.5. moduleSets, Parent POMs and the binaries Section

Finally, we close the discussion about module handling with a strong warning. There are subtle
interactions between Maven’s internal design as it relates to parent-module relationships and the
execution of a module-set’s binaries section. When a POM declares a parent, that parent must be resolved
in some way or other before the POM in question can be built. If the parent is in the Maven repository,
there is no problem. However, as of Maven 2.0.9 this can cause big problems if that parent is a higher-
level POM in the same build, particularly if that parent POM expects to build an assembly using its
modules’ binaries.

Maven 2.0.9 sorts projects in a multi-module build according to their dependencies, with a given
project’s dependencies being built ahead of itself. The problem is the parent element is considered a
dependency, which means the parent project’s build must complete before the child project is built.
If part of that parent’s build process includes the creation of an assembly that uses module binaries,
those binaries will not exist yet, and therefore cannot be included, causing the assembly to fail. This
is a complex and subtle issue, which severely limits the usefulness of the module binaries section of
the assembly descriptor. In fact, it has been filed in the bug tracker for the Assembly plugin at: http://
jira.codehaus.org/browse/MASSEMBLY-97. Hopefully, future versions of Maven will find a way to
restore this functionality, since the parent-first requirement may not be completely necessary.

8.5.6. Repositories Section

The repositories section represents a slightly more exotic feature in the assembly descriptor, since few
applications other than Maven can take full advantage of a Maven-repository directory structure. For this
reason, and because many of its features closely resemble those in the dependencySets section, we
won’t spend too much time on the repositories section of the assembly descriptor. In most cases, users
who understand dependency sets should have no trouble constructing repositories via the Assembly
plugin. We're not going to motivate the repositories section; we're not going to go through a the
business of setting up a use case and walking you through the process. We're just going to bring up a
few caveats for those of you who find the need to use the repositories section.

Having said that, there are a two features particular to the repositories section that deserve some mention.
The first is the includeMetadata flag. When set to true it includes metadata such as the list of real
versions that correspond to -SNAPSHOT virtual versions, and by default it’s set to false. At present,
the only metadata included when this flag is true is the information downloaded from Maven’s central
repository.

http://jira.codehaus.org/browse/MASSEMBLY-97
http://jira.codehaus.org/browse/MASSEMBLY-97

135

The second feature is called groupVersionAlignments. Again, this section is a list of individual
groupVersionAlignment configurations, whose purpose is to normalize all included artifacts for a
particular groupId to use a single version. Each alignment entry consists of two mandatory elements
- id and version - along with an optional section called excludes that supplies a list of artifactId
string values which are to be excluded from this realignment. Unfortunately, this realignment doesn’t
seem to modify the POMs involved in the repository, neither those related to realigned artifacts nor
those that depend on realigned artifacts, so it’s difficult to imagine what the practical application for
this sort of realignment would be.

In general, it’s simplest to apply the same principles you would use in dependency sets to repositories
when adding them to your assembly descriptor. While the repositories section does support the above
extra options, they are mainly provided for backward compatibility, and will probably be deprecated
in future releases.

8.5.7. Managing the Assembly’s Root Directory

Now that we’ve made it through the main body of the assembly descriptor, we can close the discussion
of content-related descriptor sections with something lighter: root-directory naming and site-directory
handling.

Some may consider it a stylistic concern, but it’s often important to have control over the name of the root
directory for your assembly, or whether the root directory is there at all. Fortunately, two configuration
options in the root of the assembly descriptor make managing the archive root directory simple:
includeBaseDirectory and baseDirectory. In cases like executable jar files, you probably don’t
want a root directory at all. To skip it, simply set the includeBaseDirectory flag to false (it’s true
by default). This will result in an archive that, when unpacked, may create more than one directory in the
unpack target directory. While this is considered bad form for archives that are meant to be unpacked
before use, it’s not so bad for archives that are consumable as-is.

In other cases, you may want to guarantee the name of the archive root directory regardless of the
POM’s version or other information. By default, the baseDirectory element has a value equal to
${project.artifactId}-${project.version}. However, we can easily set this element to any
value that consists of literal strings and expressions which can be interpolated from the current POM,
such as ${project.groupId}-${project.artifactId}. This could be very good news for your
documentation team! (We all have those, right?)

Another configuration available is the includeSiteDirectory flag, whose default value is false. If
your project build has also constructed a website document root using the site lifecycle or the Site plugin
goals, that output can be included by setting this flag to true. However, this feature is a bit limited,
since it only includes the outputDirectory from the reporting section of the current POM (by default,
target/site) and doesn’t take into consideration any site directories that may be available in module
projects. Use it if you want, but a good fileSet specification or moduleSet specification with sources
configured could serve equally well, if not better. This is yet another example of legacy configuration
currently supported by the Assembly plugin for the purpose of backward compatibility. Your mileage

136

may vary. If you really want to include a site that is aggregated from many modules, you'll want to
consider using a fileSet or moduleSet instead of setting includeSiteDirectory to true.

8.5.8. componentDescriptors and containerDescriptorHandlers

To round out our exploration of the assembly descriptor, we should touch briefly on
two other sections: containerDescriptorHandlers and componentDescriptors. The
containerDescriptorHandlers section refers to custom components that you use to extend the
capabilities of the Assembly plugin. Specifically, these custom components allow you to define and
handle special files which may need to be merged from the multiple constituents used to create your
assembly. A good example of this might be a custom container-descriptor handler that merged web.xml
files from constituent war or war-fragment files included in your assembly, in order to create the single
web-application descriptor required for you to use the resulting assembly archive as a war file.

The componentDescriptors section allows you to reference external assembly-descriptor fragments
and include them in the current descriptor. Component references can be any of the following:

1. Relative file paths: src/main/assembly/component.xml

2. Artifact references: groupId:artifactId:version[:type[:classifier]]

3. Classpath resources: /assemblies/component.xml

4. URLs: http://www.sonatype.com/component.xml

Incidentally, when resolving a component descriptor, the Assembly plugin tries those different strategies
in that exact order. The first one to succeed is used.

Component descriptors can contain many of the same content-oriented sections available in the
assembly descriptor itself, with the exception of moduleSets, which is considered so specific to
each project that it’s not a good candidate for reuse. Also included in a component descriptor is the
containerDescriptorHandlers section, which we briefly discussed above. Component descriptors
cannot contain formats, assembly id’s, or any configuration related to the base directory of the assembly
archive, all of which are also considered unique to a particular assembly descriptor. While it may
make sense to allow sharing of the formats section, this has not been implemented as of the 2.2-beta-2
Assembly-plugin release.

8.6. Best Practices
The Assembly plugin provides enough flexibility to solve many problems in a number of different ways.
If you have a unique requirement for your project, there's a good chance that you can use the methods
documented in this chapter to achieve almost any assembly structure. This section of the chapter details
some common best practices which, if adhered to, will make your experiences with the assembly plugin
more productive and less painful.

http://www.sonatype.com/component.xml

137

8.6.1. Standard, Reusable Assembly Descriptors

Up to now, we’ve been talking mainly about one-off solutions for building a particular type of assembly.
But what do you do if you have dozens of projects that all need a particular type of assembly? In short,
how can we reuse the effort we’ve invested to get our assemblies just the way we like them across more
than one project without copying and pasting our assembly descriptor?

The simplest answer is to create a standardized, versioned artifact out of the assembly descriptor, and
deploy it. Once that’s done, you can specify that the Assembly plugin section of your project’s POM
include the assembly-descriptor artifact as a plugin-level dependency, which will prompt Maven to
resolve and include that artifact in the plugin’s classpath. At that point, you can use the assembly
descriptor via the descriptorRefs configuration section in the Assembly plugin declaration. To
illustrate, consider this example assembly descriptor:

<assembly>
 <id>war-fragment</id>
 <formats>
 <format>zip</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <dependencySets>
 <dependencySet>
 <outputDirectory>WEB-INF/lib</outputDirectory>
 </dependencySet>
 </dependencySets>
 <fileSets>
 <fileSet>
 <directory>src/main/webapp</directory>
 <outputDirectory>/</outputDirectory>
 <excludes>
 <exclude>**/web.xml</exclude>
 </excludes>
 </fileSet>
 </fileSets>
</assembly>

Included in your project, this descriptor would be a useful way to bundle the project contents so that it
could be unpacked directly into an existing web application in order to add to it (for adding an extending
feature, say). However, if your team builds more than one of these web-fragment projects, it will likely
want to reuse this descriptor rather than duplicating it. To deploy this descriptor as its own artifact, we’re
going to put it in its own project, under the src/main/resources/assemblies directory.

The project structure for this assembly-descriptor artifact will look similar to the following:

|-- pom.xml
`-- src
 `-- main
 `-- resources
 `-- assemblies
 `-- web-fragment.xml

138

Notice the path of our web-fragment descriptor file. By default, Maven includes the files from
the src/main/resources directory structure in the final jar, which means our assembly descriptor
will be included with no extra configuration on our part. Also, notice the assemblies/ path prefix,
the Assembly plugin expects this path prefix on all descriptors provided in the plugin classpath. It’s
important that we put our descriptor in the appropriate relative location, so it will be picked up by the
Assembly plugin as it executes.

Remember, this project is separate from your actual web-fragment project now; the assembly
descriptor has become its own artifact with its own version and, possibly, its own release cycle. Once
you install this new project using Maven, you’ll be able to reference it in your web-fragment projects.
For clarity, the build process should look something like this:

$ mvn install
(...)
[INFO] [install:install]
[INFO] Installing (...)/web-fragment-descriptor/target/\
 web-fragment-descriptor-1.0-SNAPSHOT.jar
 to /Users/~/.m2/repository/org/sonatype/mavenbook/assemblies/\
 web-fragment-descriptor/1.0-SNAPSHOT/\
 web-fragment-descriptor-1.0-SNAPSHOT.jar
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---
[INFO] Total time: 5 seconds
(...)

Since there are no sources for the web-fragment-descriptor project, the resulting jar artifact will
include nothing but our web-fragment assembly descriptor. Now, let’s use this new descriptor artifact:

<project>
 (...)
 <artifactId>my-web-fragment</artifactId>
 (...)
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-2</version>
 <dependencies>
 <dependency>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <artifactId>web-fragment-descriptor</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <id>assemble</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>

139

 </goals>
 <configuration>
 <descriptorRefs>
 <descriptorRef>web-fragment</descriptorRef>
 </descriptorRefs>
 </configuration>
 </execution>
 </executions>
 </plugin>
 (...)
 </plugins>
 </build>
 (...)
</project>

Two things are special about this Assembly plugin configuration:

• We have to include a plugin-level dependency declaration on our new web-fragment-
descriptor artifact in order to have access to the assembly descriptor via the plugin’s classpath.

• Since we’re using a classpath reference instead of a file in the local project directory structure, we
must use the descriptorRefs section instead of the descriptor section. Also, notice that, while
the assembly descriptor is actually in the assemblies/web-fragment.xml location within the
plugin’s classpath, we reference it without the assemblies/ prefix. This is because the Assembly
plugin assumes that built-in assembly descriptors will always reside in the classpath under this
path prefix.

Now, you’re free to reuse the POM configuration above in as many projects as you like, with the
assurance that all of their web-fragment assemblies will turn out the same. As you need to make
adjustments to the assembly format - maybe to include other resources, or to fine-tune the dependency
and file sets - you can simply increment the version of the assembly descriptor’s project, and release
it again. POMs referencing the assembly-descriptor artifact can then adopt this new version of the
descriptor as they are able.

One final point about assembly-descriptor reuse: you may want to consider sharing the plugin
configuration itself as well as publishing the descriptor as an artifact. This is a fairly simple step; you
simply add the configuration listed above to the pluginManagement section of your parent POM, then
reference the managed plugin configuration from your module POM like this:

(...)
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 </plugin>
(...)

If you’ve added the rest of the plugin’s configuration - listed in the previous example - to the
pluginManagement section of the project’s parent POM, then each project inheriting from that parent

140

POM can add a minimal entry like the one above and take advantage of an advanced assembly format
in their own builds.

8.6.2. Distribution (Aggregating) Assemblies

As mentioned above, the Assembly plugin provides multiple ways of creating many archive formats.
Distribution archives are typically very good examples of this, since they often combine modules from
a multi-module build, along with their dependencies and possibly, other files and artifacts besides
these. The distribution aims to include all these different sources into a single archive that the user
can download, unpack, and run with convenience. However, we also examined some of the potential
drawbacks of using the moduleSets section of the assembly descriptor - namely, that the parent-child
relationships between POMs in a build can prevent the availability of module artifacts in some cases.

Specifically, if module POMs reference as their parent the POM that contains the Assembly-plugin
configuration, that parent project will be built ahead of the module projects when the multi-module
build executes. The parent’s assembly expects to find artifacts in place for its modules, but these module
projects are waiting on the parent itself to finish building, a gridlock situation is reached and the parent
build cannot succeed (since it’s unable to find artifacts for its module projects). In other words, the child
project depends on the parent project which in turn depends on the child project.

As an example, consider the assembly descriptor below, designed to be used from the top-level project
of a multi-module hierarchy:

<assembly>
 <id>distribution</id>
 <formats>
 <format>zip</format>
 <format>tar.gz</format>
 <format>tar.bz2</format>
 </formats>

 <moduleSets>
 <moduleSet>
 <includes>
 <include>*-web</include>
 </includes>
 <binaries>
 <outputDirectory>/</outputDirectory>
 <unpack>true</unpack>
 <includeDependencies>true</includeDependencies>
 <dependencySets>
 <dependencySet>
 <outputDirectory>/WEB-INF/lib</outputDirectory>
 </dependencySet>
 </dependencySets>
 </binaries>
 </moduleSet>
 <moduleSet>
 <includes>

141

 <include>*-addons</include>
 </includes>
 <binaries>
 <outputDirectory>/WEB-INF/lib</outputDirectory>
 <includeDependencies>true</includeDependencies>
 <dependencySets>
 <dependencySet/>
 </dependencySets>
 </binaries>
 </moduleSet>
 </moduleSets>
</assembly>

Given a parent project - called app-parent - with three modules called app-core, app-web, and app-
addons, notice what happens when we try to execute this multi-module build:

$ mvn package
[INFO] Reactor build order:
[INFO] app-parent <----- PARENT BUILDS FIRST
[INFO] app-core
[INFO] app-web
[INFO] app-addons
[INFO] ---
[INFO] Building app-parent
[INFO] task-segment: [package]
[INFO] ---
[INFO] [site:attach-descriptor]
[INFO] [assembly:single {execution: distro}]
[INFO] Reading assembly descriptor: src/main/assembly/distro.xml
[INFO] ---
[ERROR] BUILD ERROR
[INFO] ---
[INFO] Failed to create assembly: Artifact:
org.sonatype.mavenbook.assemblies:app-web:jar:1.0-SNAPSHOT (included by module)
does not have an artifact with a file. Please ensure the package phase is
run before the assembly is generated.
...

The parent project - app-parent - builds first. This is because each of the other projects lists that POM
as its parent, which causes it to be forced to the front of the build order. The app-web module, which
is the first module to be processed in the assembly descriptor, hasn’t been built yet. Therefore, it has no
artifact associated with it, and the assembly cannot succeed.

One workaround for this is to remove the executions section of the Assembly-plugin declaration, that
binds the plugin to the package lifecycle phase in the parent POM, keeping the configuration section
intact. Then, execute Maven with two command-line tasks: the first, package, to build the multi-module
project graph, and a second, assembly:assembly, as a direct invocation of the assembly plugin to
consume the artifacts built on the previous run, and create the distribution assembly. The command line
for such a build might look like this:

$ mvn package assembly:assembly

142

However, this approach has several drawbacks. First, it makes the distribution-assembly process more
of a manual task that can increase the complexity and potential for error in the overall build process
significantly. Additionally, it could mean that attached artifacts - which are associated in memory as the
project build executes - are not reachable on the second pass without resorting to file-system references.

Instead of using a moduleSet to collect the artifacts from your multi-module build, it often makes more
sense to employ a low-tech approach: using a dedicated distribution project module and inter-project
dependencies. In this approach, you create a new module in your build whose sole purpose is to assemble
the distribution. This module POM contains dependency references to all the other modules in the project
hierarchy, and it configures the Assembly plugin to be bound the package phase of its build lifecycle.
The assembly descriptor itself uses the dependencySets section instead of the moduleSets section
to collect module artifacts and determine where to include them in the resulting assembly archive. This
approach escapes the pitfalls associated with the parent-child relationship discussed above, and has the
additional advantage of using a simpler configuration section within the assembly descriptor itself to
do the job.

To do this, we can create a new project structure that’s very similar to the one used for the module-
set approach above, with the addition of a new distribution project, we might end up with five POMs
in total: app-parent, app-core, app-web, app-addons, and app-distribution. The new app-
distribution POM looks similar to the following:

<project>
 <parent>
 <artifactId>app-parent</artifactId>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>app-distribution</artifactId>
 <name>app-distribution</name>

 <dependencies>
 <dependency>
 <artifactId>app-web</artifactId>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <version>1.0-SNAPSHOT</version>
 <type>war</type>
 </dependency>
 <dependency>
 <artifactId>app-addons</artifactId>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 <!-- Not necessary since it's brought in via app-web.
 <dependency> [2]
 <artifactId>app-core</artifactId>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 -->

143

 </dependencies>
</project>

Notice that we have to include dependencies for the other modules in the project structure, since we
don’t have a modules section to rely on in this POM. Also, notice that we’re not using an explicit
dependency on app-core. Since it’s also a dependency of app-web, we don’t need to process it (or,
avoid processing it) twice.

Next, when we move the distro.xml assembly descriptor into the app-distribution project, we
must also change it to use a dependencySets section, like this:

<assembly>
 ...
 <dependencySets>
 <dependencySet>
 <includes>
 <include>*-web</include>
 </includes>
 <useTransitiveDependencies>false</useTransitiveDependencies>
 <outputDirectory>/</outputDirectory>
 <unpack>true</unpack>
 </dependencySet>
 <dependencySet>
 <excludes>
 <exclude>*-web</exclude>
 </excludes>
 <useProjectArtifact>false</useProjectArtifact>
 <outputDirectory>/WEB-INF/lib</outputDirectory>
 </dependencySet>
 </dependencySets>
 ...
</assembly>

This time, if we run the build from the top-level project directory, we get better news:

$ mvn package
(...)
[INFO] ---
[INFO] Reactor Summary:
[INFO] ---
[INFO] module-set-distro-parentSUCCESS [3.070s]
[INFO] app-core SUCCESS [2.970s]
[INFO] app-web SUCCESS [1.424s]
[INFO] app-addons SUCCESS [0.543s]
[INFO] app-distribution SUCCESS [2.603s]
[INFO] ---
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---
[INFO] Total time: 10 seconds
[INFO] Finished at: Thu May 01 18:00:09 EDT 2008
[INFO] Final Memory: 16M/29M

144

[INFO] ---

As you can see, the dependency-set approach is much more stable and - at least until Maven’s internal
project-sorting logic catches up with the Assembly plugin’s capabilities, - involves less opportunity to
get things wrong when running a build.

8.7. Summary
As we’ve seen in this chapter, the Maven Assembly plugin offers quite a bit of potential for creating
custom archive formats. While the details of these assembly archives can be complex, they certainly
don’t have to be in all cases - as we saw with built-in assembly descriptors. Even if your aim is to include
your project’s dependencies and selected project files in some unique, archived directory structure,
writing a custom assembly descriptor doesn’t have to be an arduous task.

Assemblies are useful for a wide array of applications, but are most commonly used as application
distributions of various sorts. And, while there are many different ways to use the Assembly plugin,
using standardized assembly-descriptor artifacts and avoiding moduleSets when creating distributions
containing binaries are two sure ways to avoid problems.

Chapter 9. Properties and Resource
Filtering
9.1. Introduction

Throughout this book, you will notice references to properties which can be used in a POM file.
Sibling dependencies in a multi-project build can be referenced using the ${project.groupId} and
${project.version} properties and any part of the POM can be referenced by prefixing the variable
name with "project.". Environment variables and Java System properties can be referenced, as well
as values from your ~/.m2/settings.xml file. What you haven't seen yet is an enumeration of the
possible property values and some discussion about how they can be used to help you create portable
builds. This chapter provides such an enumeration.

If you've been using property references in your POM, you should also know that Maven has a feature
called Resource Filtering which allows you to replace property references in any resource files stored
under src/main/resources. By default this feature is disabled to prevent accidental replacement of
property references. This feature can be used to target builds toward a specific platform and to externalize
important build variables to properties files, POMs, or profiles. This chapter introduces the resource
filtering feature and provides a brief discussion of how it can be used to create portable enterprise builds.

9.2. Maven Properties

You can use Maven properties in a pom.xml file or in any resource that is being processed by the
Maven Resource plugin's filtering features. A property is always surrounded by ${ and }. For example,
to reference the project.version property, one would write:

${project.version}

There some implicit properties available in any Maven project, these implicit properties are:

project.*

Maven Project Object Model (POM). You can use the project.* prefix to reference values in
a Maven POM.

settings.*

Maven Settings. You use the settings.* prefix to reference values from your Maven Settings
in ~/.m2/settings.xml.

env.*

Environment variables like PATH and M2_HOME can be referenced using the env.* prefix.

146

System Properties
Any property which can be retrieved from the System.getProperty() method can be
referenced as a Maven property.

In addition to the implicit properties listed above, a Maven POM, Maven Settings, or a Maven Profile
can define a set of arbitrary, user-defined properties. The following sections provide so detail on the
various properties available in a Maven project.

9.2.1. Maven Project Properties

When a Maven Project Property is referenced, the property name is referencing a property of
the Maven Project Object Model (POM). Specifically, you are referencing a property of the
org.apache.maven.model.Model class which is being exposed as the implicit variable project.
When you reference a property using this implicit variable, you are using simple dot notation to reference
a bean property of the Model object. For example, when you reference ${project.version}, you are
really invoking the getVersion() method on the instance of Model that is being exposed as project.

The POM is also represented in the pom.xml document present in all Maven projects. Anything
in a Maven POM can be referenced with a property. A complete reference for the POM structure
is available at http://maven.apache.org/ref/2.2.1/maven-model/maven.html. The following list shows
some common property references from the Maven project.

project.groupId and project.version
Projects in a large, multi-module build often share the same groupId and version identifiers.
When you are declaring interdependencies between two modules which share the same groupId
and version, it is a good idea to use a property reference for both:
<dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>sibling-project</artifactId>
 <version>${project.version}</version>
 </dependency>
</dependencies>

project.artifactId

A project's artifactId is often used as the name of a deliverable. For example, in a project with
WAR packaging, you will want to generate a WAR file without the version identifiers. To do
this, you would reference the project.artifactId in your POM file like this:
<build>
 <finalName>${project.artifactId}</finalName>
</build>

project.name and project.description
The name and project description can often be useful properties to reference from documentation.
Instead of having to worry that all of your site documents maintain the same short descriptions,
you can just reference these properties.

http://maven.apache.org/ref/2.2.1/maven-model/maven.html

147

project.build.*

If you are ever trying to reference output directories in Maven, you should never use a literal value
like target/classes. Instead you should use property references to refer to these directories.

• project.build.sourceDirectory

• project.build.scriptSourceDirectory

• project.build.testSourceDirectory

• project.build.outputDirectory

• project.build.testOutputDirectory

• project.build.directory

sourceDirectory, scriptSourceDirectory, and testSourceDirectory provide access
to the source directories for the project. outputDirectory and testOutputDirectory
provide access to the directories where Maven is going to put bytecode or other build output.
directory refers to the directory which contains all of these output directories.

project.baseUri

If you need a valid URI for your project's base directory, you can use the ${project.baseUri}
property. If your project is stored in the directory /tmp/simple, ${project.baseUri} will
resolve to file:/private/tmp/simple/.

Other Project Property references
There are hundreds of properties to reference in a POM. A complete reference for the POM
structure is available at http://maven.apache.org/ref/2.2.1/maven-model/maven.html.

For a full list of properties available on the Maven Model object, take a look at the JavaDoc for the
maven-model project here http://maven.apache.org/ref/2.2.1/maven-model/apidocs/index.html. Once
you load this JavaDoc, take a look at the Model class. From this Model class JavaDoc, you should be able
to navigate to the POM property you wish to reference. If you needed to reference the output directory
of the build, you can use the Maven Model JavaDoc to see that the output directory is referenced via
model.getBuild().getOutputDirectory(); this method call would be translated to the Maven
property reference ${project.build.outputDirectory}.

For more information about the Maven Model module, the module which defines the structure of the
POM, see the Maven Model project page at http://maven.apache.org/ref/2.2.1/maven-model.

9.2.2. Maven Settings Properties

You can also reference any properties in the Maven Local Settings file which is usually stored in ~/.m2/
settings.xml. This file contains user-specific configuration such as the location of the local repository
and any servers, profiles, and mirrors configured by a specific user.

http://maven.apache.org/ref/2.2.1/maven-model/maven.html
http://maven.apache.org/ref/2.2.1/maven-model/apidocs/index.html
http://maven.apache.org/ref/2.2.1/maven-model

148

A full reference for the Local Settings file and corresponding properties is available here http://
maven.apache.org/ref/2.2.1/maven-settings/settings.html.

9.2.3. Environment Variable Properties

Environment variables can be referenced with the env.* prefix. Some interesting environment variables
are listed in the following list:

env.PATH

Contains the current PATH in which Maven is running. The PATH contains a list of directories
used to locate executable scripts and programs.

env.HOME

(On *nix systems) this variable points to a user's home directory. Instead of referencing this, you
should use the ${user.home}

env.JAVA_HOME

Contains the Java installation directory. This can point to either a Java Development Kit (JDK)
installation or a Java Runtime Environment (JRE). Instead of using this, you should consider
referencing the ${java.home} property.

env.M2_HOME

Contains the Maven 2 installation directory.

While they are available, you should always use the Java System properties if you have the choice. If you
need a user's home directory use ${user.home} instead of ${env.HOME}. If you do this, you'll end
up with a more portable build that is more likely to adhere to the Write-One-Run-Anywhere (WORA)
promise of the Java platform.

9.2.4. Java System Properties

Maven exposes all properties from java.lang.System. Anything you can retrieve from
System.getProperty() you can reference in a Maven property. The following table lists available
properties:

Table 9.1. Java System Properties

System Property Description

java.version Java Runtime Environment version

java.vendor Java Runtime Environment vendor

java.vendor.url Java vendor URL

java.home Java installation directory

java.vm.specification.version Java Virtual Machine specification version

java.vm.specification.vendor Java Virtual Machine specification vendor

http://maven.apache.org/ref/2.2.1/maven-settings/settings.html
http://maven.apache.org/ref/2.2.1/maven-settings/settings.html

149

System Property Description

java.vm.specification.name Java Virtual Machine specification name

java.vm.version Java Virtual Machine implementation version

java.vm.vendor Java Virtual Machine implementation vendor

java.vm.name Java Virtual Machine implementation name

java.specification.version Java Runtime Environment specification
version

java.specification.vendor Java Runtime Environment specification
vendor

java.specification.name Java Runtime Environment specification name

java.class.version Java class format version number

java.class.path Java class path

java.ext.dirs Path of extension directory or directories

os.name Operating system name

os.arch Operating system architecture

os.version Operating system version

file.separator File separator ("/" on UNIX, "\" on Windows)

path.separator Path separator (":" on UNIX, ";" on Windows)

line.separator Line separator ("\n" on UNIX and Windows)

user.name User's account name

user.home User's home directory

user.dir User's current working

9.2.5. User-defined Properties

In addition to the implicit properties provided by the POM, Maven Settings, environment variables, and
the Java System properties, you have the ability to define your own arbitrary properties. Properties can
be defined in a POM or in a Profile. The properties set in a POM or in a Maven Profile can be referenced
just like any other property available throughout Maven. User-defined properties can be referenced in
a POM, or they can be used to filter resources via the Maven Resource plugin. Here's an example of
defining some arbitrary properties in a Maven POM.

Example 9.1. User-defined Properties in a POM

<project>
 ...
 <properties>
 <arbitrary.property.a>This is some text</arbitrary.property.a>
 <hibernate.version>3.3.0.ga</hibernate.version>

150

 </properties>
 ...
 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 <version>${hibernate.version}</version>
 </dependency>
 </dependencies>
 ...
</project>

The previous example defines two properties: arbitrary.property.a and hibernate.version.
The hibernate.version is referenced in a dependency declaration. Using the period character as
a separator in property names is a standard practice throughout Maven POMs and Profiles. There is
nothing special about using a period as a separator; to Maven "hibernate.version" is just a key used to
retrieve the property value "3.3.0.ga". The next example shows you how to define a property in a profile
from a Maven POM.

Example 9.2. User-defined Properties in a Profile in a POM

<project>
 ...
 <profiles>
 <profile>
 <id>some-profile</id>
 <properties>
 <arbitrary.property>This is some text</arbitrary.property>
 </properties>
 </profile>
 </profiles>
 ...
</project>

The previous example demonstrates the process of defining a user-defined property in a profile from
a Maven POM. For more information about user-defined properties and profiles, see Chapter 5, Build
Profiles.

9.3. Resource Filtering
You can use Maven to perform variable replacement on project resources. When resource filtering is
activated, Maven will scan resources for references to Maven property references surrounded by ${ and
}. When it finds these references it will replace them with the appropriate value in much the same way
the properties defined in the previous section can be referenced from a POM. This feature is especially
helpful when you need to parameterize a build with different configuration values depending on the
target deployment platform.

Often a .properties file or an XML document in src/main/resources will contain a reference to
an external resource such as a database or a network location which needs to be configured differently

151

depending on the target deployment environment. For example, a system which reads data from a
database has an XML document which contains the JDBC URL along with credentials for the database.
If you need to use a different database in development and a different database in production. You can
either use a technology like JNDI to externalize the configuration from the application in an application
server, or you can create a build which knows how to replace variables with different values depending
on the target platform.

Using Maven resource filtering you can reference Maven properties and then use Maven profiles
to define different configuration values for different target deployment environments. To illustrate
this feature, assume that you have a project which uses a the Spring Framework to configure a
BasicDataSource from the Commons DBCP1 project. Your project may contain a file in src/
main/resources named applicationContact.xml which contains the XML listed in Example 9.3,
“Referencing Maven Properties from a Resource”.

Example 9.3. Referencing Maven Properties from a Resource

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

 <bean id="someDao" class="com.example.SomeDao">
 <property name="dataSource" ref="dataSource"/>
 </bean>

 <bean id="dataSource" destroy-method="close"
 class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName" value="${jdbc.driverClassName}"/>
 <property name="url" value="${jdbc.url}"/>
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
 </bean>
</beans>

Your program would read this file at runtime, and your build is going to replace the references to
properties like jdbc.url and jdbc.username with the values you defined in your pom.xml. Resource
filtering is disabled by default to prevent any unintentional resource filtering. To turn on resource filter,
you need to use the resources child element of the build element in a POM. Example 9.4, “Defining
Variables and Activating Resource Filtering” shows a POM which defines the variables referenced in
Example 9.3, “Referencing Maven Properties from a Resource” and which activates resource filtering
for every resource under src/main/resources.

Example 9.4. Defining Variables and Activating Resource Filtering

<project>
 ...

1 http://commons.apache.org/dbcp

http://commons.apache.org/dbcp
http://commons.apache.org/dbcp

152

 <properties>
 <jdbc.driverClassName>
 com.mysql.jdbc.Driver</jdbc.driverClassName>
 <jdbc.url>jdbc:mysql://localhost:3306/development_db</jdbc.url>
 <jdbc.username>dev_user</jdbc.username>
 <jdbc.password>s3cr3tw0rd</jdbc.password>
 </properties>
 ...
 <build>
 <resources>
 <resource>src/main/resources</resource>
 <filtering>true</filtering>
 </resources>
 </build>
 ...
 <profiles>
 <profile>
 <id>production</id>
 <properties>
 <jdbc.driverClassName>oracle.jdbc.driver.OracleDriver</jdbc.driverClassName>
 <jdbc.url>jdbc:oracle:thin:@proddb01:1521:PROD</jdbc.url>
 <jdbc.username>prod_user</jdbc.username>
 <jdbc.password>s00p3rs3cr3t</jdbc.password>
 </properties>
 </profile>
 </profiles>
</project>

The four variables are defined in the properties element, and resource filtering is activated for
resources under src/main/resources. Resource filtering is deactivated by default, and to activate
it you must explicitly set filtering to true for the resources stored in your project. Filtering is
deactivated by default to prevent accidental, unintentional filtering during your build. If you build a
project with the resource from Example 9.3, “Referencing Maven Properties from a Resource” and the
POM from Example 9.4, “Defining Variables and Activating Resource Filtering” and if you list the
contents of the resource in target/classes, you should see that it contains the filtered resource:

$ mvn install
...
$ cat target/classes/applicationContext.xml
...
 <bean id="dataSource" destroy-method="close"
 class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
 <property name="url" value="jdbc:mysql://localhost:3306/development_db"/>
 <property name="username" value="dev_user"/>
 <property name="password" value="s3cr3tw0rd"/>
 </bean>
...

The POM in Example 9.4, “Defining Variables and Activating Resource Filtering” also defines a
production profile under the profiles/profile element which overrides the default properties

153

with values that would be appropriate for a production environment. In this particular POM, the default
values for the database connection are for a local MySQL database installed on a developer's machine.
When the project is built with the production profile activated, Maven will configure the system to
connect to a production Oracle database using a different driver class, URL, username, and password.
If you build a project with the resource from Example 9.3, “Referencing Maven Properties from a
Resource” and the POM from Example 9.4, “Defining Variables and Activating Resource Filtering”
with the production profile activated and if you list the contents of the resource in target/classes, you
should see that it contains the filtered resource with production values:

$ mvn -Pproduction install
...
$ cat target/classes/applicationContext.xml
...
 <bean id="dataSource" destroy-method="close"
 class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName"
 value="oracle.jdbc.driver.OracleDriver"/>
 <property name="url" value="jdbc:oracle:thin:@proddb01:1521:PROD"/>
 <property name="username" value="prod_user"/>
 <property name="password" value="s00p3rs3cr3t"/>
 </bean>
...

Chapter 10. Site Generation
10.1. Introduction
Successful software applications are rarely produced by a team of one. When we're talking about any
software worth writing, we're usually dealing teams of collaborating developers ranging anywhere in
size from a handful of programmers working in a small team to hundreds or thousands of programmers
working in large distributed environment. Most open source projects (such as Maven) succeed or
fail based on the presence or absence of well written documentation for a widely-distributed, ad-hoc
collection of users and developers. In all environments it is important for projects to have an easy
way to publish and maintain online documentation. Software development is primarily an exercise in
collaboration and communication, and publishing a Maven site is one way to make sure that your project
is communicating with your end-users.

A web site for an open source project is often the foundation for both the end-user and developer
communities alike. End-users look to a project's web site for tutorials, user guides, API documentation,
and mailing list archives, and developers look to a project's web site for design documents, code reports,
issue tracking, and release plans. Large open-sources projects may be integrated with wikis, issue
trackers, and continuous integration systems which help to augment a project's online documentation
with material that reflects the current status of ongoing development. If a new open source project has
an inadequate web site which fails to convey basic information to prospective users, if often is a sign
that the project in question will fail to be adopted. In other words, for an open source project, the site
and the documentation are as important to the formation of a community as the code itself.

Maven can be used to create a project web site to capture information which is relevant to both the end-
user and the developer audience. Out of the box, Maven can generate reports on everything from unit
test failures to package coupling to reports on code quality. Maven provides you with the ability to write
simple web pages and render those pages against a consistent project template. Maven can publish site
content in multiple formats including XHTML and PDF. Maven can be used to generate API document
and can also be used to embedded Javadoc and source code in your project's binary release archive.
Once you've used Maven to generate all of your project's end-user and developer documentation, you
can then use Maven to publish your web site to a remote server.

10.2. Building a Project Site with Maven
To illustrate the process of building a project website, create a sample Maven project with the archetype
plugin:

$ mvn archetype:create -DgroupId=org.sonatype.mavenbook -DartifactId=sample-project

This creates the simplest possible Maven project with a one Java class in src/main/java and a simple
POM. You can then build a Maven site by simply running mvn site. To build the site and preview the

156

result in a browser, you can run mvn site:run, this will build the site and start an embedded instance
of Jetty.

$ cd sample-project
$ mvn site:run
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'site'.
[INFO] --
[INFO] Building sample-project
[INFO] task-segment: [site:run] (aggregator-style)
[INFO] --
[INFO] Setting property: classpath.resource.loader.class =>
 'org.codehaus.plexus.velocity.ContextClassLoaderResourceLoader'.
[INFO] Setting property: velocimacro.messages.on => 'false'.
[INFO] Setting property: resource.loader => 'classpath'.
[INFO] Setting property: resource.manager.logwhenfound => 'false'.
[INFO] [site:run]
2008-04-26 11:52:26.981::INFO: Logging to STDERR via org.mortbay.log.StdErrLog
[INFO] Starting Jetty on http://localhost:8080/
2008-04-26 11:52:26.046::INFO: jetty-6.1.5
2008-04-26 11:52:26.156::INFO: NO JSP Support for /, did not find
 org.apache.jasper.servlet.JspServlet
2008-04-26 11:52:26.244::INFO: Started SelectChannelConnector@0.0.0.0:8080

Once Jetty starts and is listening to port 8080, you can see the project's site when you go to http://
localhost:8080/ in a web browser. You can see the results in Figure 10.1, “Simple Generated Maven
Site”.

Figure 10.1. Simple Generated Maven Site

If you click around on this simple site, you'll see that it isn't very helpful as a real project site. There's
just nothing there (and it doesn't look very good). Since the sample-project hasn't configured any
developers, mailing lists, issue tracking providers, or source code repositories, all of these pages on
the project site will have no information. Even the index page of the site states, "There is currently no

http://localhost:8080/
http://localhost:8080/

157

description associated with this project". To customize the site, you'll have to start add content to the
project and to the project's POM.

If you are going to use the Maven Site plugin to build your project's site, you'll want to customize it.
You will want to populate some of the important fields in the POM that tell Maven about the people
participating in the project, and you'll want to customize the left-hand navigation menu and the links
visible in the header of the page. To customize the contents of the site and affect the contents of the left-
hand navigation menu, you will need to edit the site descriptor.

10.3. Customizing the Site Descriptor
When you add content to the site, you are going to want to modify the left-hand navigation menu that
is generated with your site. The following site descriptor customizes the logo in the upper left-hand
corner of the site. In addition to customizing the header of the site, this descriptor adds a menu section
to the left-hand navigation menu under the heading "Sample Project". This menu contains a single link
to an overview page.

Example 10.1. An Initial Site Descriptor

<project name="Sample Project">
 <bannerLeft>
 <name>Sonatype</name>
 <src>images/logo.png</src>
 <href>http://www.sonatype.com</href>
 </bannerLeft>
 <body>
 <menu name="Sample Project">
 <item name="Overview" href="index.html"/>
 </menu>
 <menu ref="reports"/>
 </body>
</project>

This site descriptor references one image. This logo.png image should be placed in ${basedir}/
src/site/resources/images. In addition to the change to the site descriptor, you'll want to create
a simple index.apt page in ${basedir}/src/site/apt. Put the following content in index.apt,
it will be transformed to the index.html and serve as the first page a user sees when they come to
your project's Maven-generated web site.

 Welcome to the Sample Project, we hope you enjoy your time
 on this project site. We've tried to assemble some
 great user documentation and developer information, and
 we're really excited that you've taken the time to visit
 this site.

What is Sample Project

 Well, it's easy enough to explain. This sample project is
 a sample of a project with a Maven-generated site from

158

 Maven: The Definitive Guide. A dedicated team of volunteers
 help maintain this sample site, and so on and so forth.

To preview the site, run mvn clean site followed by mvn site:run:

$ mvn clean site
$ mvn site:run

Once you do this, load the page in a browser by going to http://localhost:8080. You should see something
similar to the screenshot in Figure 10.2, “Customized Sample Project Web Site”.

Figure 10.2. Customized Sample Project Web Site

10.3.1. Customizing the Header Graphics

To customize the graphics which appear in the upper left-hand and right-hand corners of the page, you
can use the bannerLeft and bannerRight elements in a site descriptor.

Example 10.2. Adding a Banner Left and Banner Right to Site Descriptor

<project name="Sample Project">

 <bannerLeft>
 <name>Left Banner</name>
 <src>images/banner-left.png</src>
 <href>http://www.google.com</href>
 </bannerLeft>

 <bannerRight>
 <name>Right Banner</name>

http://localhost:8080

159

 <src>images/banner-right.png</src>
 <href>http://www.yahoo.com</href>
 </bannerRight>
 ...
</project>

Both the bannerLeft and bannerRight elements take name, src, and href child elements. In the
site descriptor shown above, the Maven Site plugin will generate a site with banner-left.png in the
left-hand corner of the page and banner-right in the right-hand corner of the page. Maven is going to
look in ${basedir}/src/site/resources/images for these images.

10.3.2. Customizing the Navigation Menu

To customize the contents of the navigation menu, use the menu element with item child elements.
The menu element adds a section to the left-hand navigation menu. Each item is rendered as a link in
that menu.

Example 10.3. Creating Menu Items in a Site Descriptor

<project name="Sample Project">
 ...
 <body>

 <menu name="Sample Project">
 <item name="Introduction" href="index.html"/>
 <item name="News" href="news.html"/>
 <item name="Features" href="features.html"/>
 <item name="Installation" href="installation.html"/>
 <item name="Configuration" href="configuration.html"/>
 <item name="FAQ" href="faq.html"/>
 </menu>
 ...
 </body>
</project>

Menu items can also be nested. If you nest items, you will be creating a collapsible menu in the left-
hand navigation menu. The following example adds a link "Developer Resources" which links to /
developer/index.html. When a user is looking at the Developer Resources page, the menu items
below the Developer Resources menu item will be expanded.

Example 10.4. Adding a Link to the Site Menu

<project name="Sample Project">
 ...
 <body>
 ...
 <menu name="Sample Project">
 ...
 <item name="Developer Resources" href="/developer/index.html"
 collapse="true">

160

 <item name="System Architecture" href="/developer/architecture.html"/>
 <item name="Embedder's Guide" href="/developer/embedding.html"/>
 </item>
 </menu>
 ...
 </body>
</project>

When an item has the collapse attribute set to true, Maven will collapse the item until a user is
viewing that specific page. In the previous example, when the user is not looking at the Developer
Resources page, Maven will not display the System Architecture and Embedder's Guide links; instead, it
will display an arrow pointing to the Developer Resources link. When the user is viewing the Developer
Resources page it will show these links with an arrow pointing down.

10.4. Site Directory Structure
Maven places all site document under src/site. Documents of similar format are placed in
subdirectories of src/site. All APT documents should be in src/site/apt, all FML documents
should be in src/site/fml, and XDoc documents should be in src/site/xdoc. The site descriptor
should be in src/site/site.xml, and all resources should be stored under src/site/resources.
When the Maven Site plugin builds a web site, it will copy everything in the resources directory to the
root of the site. If you store an image in src/site/resources/images/test.png, they you would
refer to the image from your site documentation using the relative path images/test.png.

The following examples shows the location of all files in a project which contains APT, FML, HTML,
XHTML, and some XDoc. Note that the XHTML content is simply stored in the resources directory.
The architecture.html file will not be processed by Doxia, it will simply be copied to the output directory.
You can use this approach if you want to include unprocessed HTML content and you don't want to
take advantage of the templating and formatting capabilities of Doxia and the Maven Site plugin.

sample-project
+- src/
 +- site/
 +- apt/
 | +- index.apt
 | +- about.apt
 | |
 | +- developer/
 | +- embedding.apt
 |
 +- fml/
 | +- faq.fml
 |
 +- resources/
 | +- images/
 | | +- banner-left.png
 | | +- banner-right.png
 | |
 | +- architecture.html

161

 | +- jira-roadmap-export-2007-03-26.html
 |
 +- xdoc/
 | +- xml-example.xml
 |
 +- site.xml

Note that the developer documentation is stored in src/site/apt/developer/embedding.apt.
This extra directory below the apt directory will be reflected in the location of the resulting HTML page
on the site. When the Site plugin renders the contents of the src/site/apt directory it will produce
HTML output in directories relative to the site root. If a file is in the apt directory it will be in the root
directory of the generated web site. If a file is in the apt/developer directory it will be generated in
the developer/ directory of the web site.

10.5. Writing Project Documentation
Maven uses a documentation-processing engine called Doxia which reads multiple source formats into
a common document model. Doxia can then manipulate documents and render the result into several
output formats, such as PDF or XHTML. To write document for your project, you will need to write your
content in a format which can be parsed by Doxia. Doxia currently has support for Almost Plain Text
(APT), XDoc (a Maven 1.x documentation format), XHTML, and FML (useful for FAQ documents)
formats.

This chapter has a cursory introduction to the APT format. For a deeper understand of the APT format,
or for an in-depth introduction to XDoc or FML, please see the following resources:

• APT Reference: http://maven.apache.org/doxia/format.html

• XDoc Reference: http://jakarta.apache.org/site/jakarta-site2.html

• FML Reference: http://maven.apache.org/doxia/references/fml-format.html

10.5.1. APT Example

Example 10.5, “APT Document” shows a simple APT document with an introductory paragraph and a
simple list. Note that the list is terminated by the psuedo-element "[]".

Example 10.5. APT Document

Introduction to Sample Project

Brian Fox

26-Mar-2008

Welcome to Sample Project

http://maven.apache.org/doxia/format.html
http://jakarta.apache.org/site/jakarta-site2.html
http://maven.apache.org/doxia/references/fml-format.html

162

 This is a sample project, welcome! We're excited that you've decided to
 read the index page of this Sample Project. We hope you enjoy the simple
 sample project we've assembled for you.

 Here are some useful links to get you started:

 * {{{news.html}News}}

 * {{{features.html}Features}}

 * {{{faq.html}FAQ}}

 []

If the APT document from Example 10.5, “APT Document” were placed in src/site/apt/
index.apt, the Maven Site plugin will parse the APT using Doxia and produce XHTML content in
index.html.

10.5.2. FML Example

Many projects maintain a Frequently Asked Questions (FAQ) page. Example 10.6, “FAQ Markup
Language Document” shows an example of an FML document.

Example 10.6. FAQ Markup Language Document

<?xml version="1.0" encoding="UTF-8"?>
<faqs title="Frequently Asked Questions">
 <part id="General">
 <faq id="sample-project-sucks">
 <question>Sample project doesn't work. Why does sample
 project suck?</question>
 <answer>
 <p>
 We resent that question. Sample wasn't designed to work, it was
 designed to show you how to use Maven. If you really think
 this project sucks, then keep it to yourself. We're not
 interested in your pestering questions.
 </p>
 </answer>
 </faq>
 <faq id="sample-project-source">
 <question>I want to put some code in Sample Project,
 how do I do this?</question>
 <answer>
 <p>
 If you want to add code to this project, just start putting
 Java source in src/main/java. If you want to put some source
 code in this FAQ, use the source element:
 </p>
 <source>
 for(int i = 0; i < 1234; i++) {
 // do something brilliant

163

 }
 </source>
 </answer>
 </faq>
 </part>
</faqs>

10.6. Deploying Your Project Website
Once your project's documentation has been written and you've creates a site to be proud of, you will
want to deploy it to a server. To deploy your site you'll use the Maven Site plugin which can take care
of deploying your project's site to a remote server using a number of methods including FTP, SCP,
and DAV. To deploy the site using DAV, configure the site entry of the distributionManagement
section in the POM, like this:

Example 10.7. Configuring Site Deployment

<project>
 ...
 <distributionManagement>
 <site>
 <id>sample-project.website</id>
 <url>dav:https://dav.sample.com/sites/sample-project</url>
 </site>
 </distributionManagement>
 ...
</project>

The url in distribution management has a leading indicator dav which tells the Maven Site plugin
to deploy the site to a URL that is able to understand WebDAV. Once you have added the
distributionManagement section to our sample-project POM, we can try deploying the site:

$ mvn clean site-deploy

If you have a server configured properly that can understand WebDAV, Maven will deploy your project's
web site to the remote server. If you are deploying this project to a site and server visible to the public,
you are going to want to configure your web server to access for credentials. If your web server asks
for a username and password (or other credentials, you can configure this values in your ~/.m2/
settings.xml).

10.6.1. Configuring Server Authentication

To configure a username/password combination for use during the site deployment, we'll include the
following in $HOME/.m2/settings.xml:

Example 10.8. Storing Server Authentication in User-specific Settings

<settings>
 ...

164

 <servers>
 <server>
 <id>sample-project.website</id>
 <username>jdcasey</username>
 <password>b@dp@ssw0rd</password>
 </server>
 ...
 </servers>
 ...
</settings>

The server authentication section can contain a number of authentication elements. In the event you're
using SCP for deployment, you may wish to use public-key authentication. To do this, specify the
publicKey and passphrase elements, instead of the password element. You may still want to
configure the username element, depending on your server's configuration.

10.6.2. Configuring File and Directory Modes

If you are working in a large group of developers, you'll want to make sure that your web site's files
end up with the proper user and group permissions after they are published to the remote server. To
configure specific file and directory modes for use during the site deployment, include the following
in $HOME/.m2/settings.xml:

Example 10.9. Configuring File and Directory Modes on Remote Servers

<settings>
 ...
 <servers>
 ...
 <server>
 <id>hello-world.website</id>
 ...
 <directoryPermissions>0775</directoryPermissions>
 <filePermissions>0664</filePermissions>
 </server>
 </servers>
 ...
</settings>

The above settings will make any directories readable and writable by either the owner or members of
the owner's primary group; the anonymous users will only have access to read and list the directory.
Similarly, the owner or members of the owner's primary group will have access to read and write any
files, with the rest of the world restricted to read-only access.

10.7. Customizing Site Appearance
The default Maven template leaves much to be desired. If you wish to customize your project's
website beyond simply adding content, navigational elements, and custom logos. Maven offers
several mechanisms for customizing your website that offer successively deeper access to content

165

decoration and website structure. For small, per-project tweaks, providing a custom site.css is often
enough. However, if you want your customizations to be reusable across multiple projects, or if your
customizations involve changing the XHTML that Maven generates, you should consider creating your
own Maven website skin.

10.7.1. Customizing the Site CSS

The easiest way to affect the look and feel of your project's web site is through the project's site.css.
Just like any images or XHTML content you provide for the website, the site.css file goes in the
src/site/resources directory. Maven expects this file to be in the src/site/resources/css
subdirectory. With CSS it is possible to change text styling properties, layout properties, and even add
background images and custom bullet graphics. For example, if we decided that to make the menu
heading stand out a little more, we might try the following style in src/site/resources/css/
site.css:

#navcolumn h5 {
 font-size: smaller;
 border: 1px solid #aaaaaa;
 background-color: #bbb;
 margin-top: 7px;
 margin-bottom: 2px;
 padding-top: 2px;
 padding-left: 2px;
 color: #000;
}

When you regenerate the website, the menu headers should be framed by a gray background and
separated from the rest of the menu by some extra margin space. Using this file, any structure in the
Maven-generated website can be decorated with custom CSS. When you change site.css in a specific
Maven project, the changes will apply to that specific project. If you are interested in making changes
that will apply to more than one Maven project, you can create a custom skin for the Maven Site plugin.

Tip
There is no good reference for the structure of the default Maven site template. If you
are attempting to customize the style of your Maven project, you should use a Firefox
extension like Firebug as a tool to explore the DOM for your project's pages.

10.7.2. Create a Custom Site Template

If the default Maven Site structure just doesn't do it for you, you can always customize the Maven site
template. Customizing the Maven Site template gives you complete control over the ultimate output of
the Maven plugin, and it is possible to customize your project's site template to the point where it hardly
resembles the structure of a default Maven site template.

The Site plugin uses a rendering engine called Doxia, which in turn uses a Velocity template to render
the XHTML for each page. To change the page structure that is rendered by default, we can configure

166

the site plugin in our POM to use a custom page template. The site template is fairly complex, and you'll
need to have a good starting point for your customization. Start by copying the default Velocity template
from Doxia's Subversion repository default-site.vm1 to src/site/site.vm. This template is written in
a templating language called Velocity. Velocity is a simple templating language which supports simple
macro definition and allows you to access an object's methods and properties using simple notation.
A full introduction is beyond the scope of this book, for more information about Velocity and a full
introduction please go to the Velocity project site at http://velocity.apache.org.

The default-site.xml template is fairly involved, but the change required to customize the left-hand
menu is relatively straightforward. If you are trying to change the appearance of a menuItem, locate
the menuItem macro. It resides in a section that looks like this:

#macro (menuItem $item)

 ...

#end

If you replace the macro definition with the macro definition listed below, you will injects Javascript
references into each menu item which will allow the reader to expand or collapse the menu tree without
suffering through a full page reload:

#macro (menuItem $item $listCount)
 #set ($collapse = "none")
 #set ($currentItemHref = $PathTool.calculateLink($item.href,
 $relativePath))
 #set ($currentItemHref = $currentItemHref.replaceAll("\\", "/"))

 #if ($item && $item.items && $item.items.size() > 0)
 #if ($item.collapse == false)
 #set ($collapse = "collapsed")
 #else
 ## By default collapsed
 #set ($collapse = "collapsed")
 #end

 #set ($display = false)
 #displayTree($display $item)

 #if ($alignedFileName == $currentItemHref || $display)
 #set ($collapse = "expanded")
 #end
 #end
 <li class="$collapse">
 #if ($item.img)
 #if (! ($item.img.toLowerCase().startsWith("http") ||
 $item.img.toLowerCase().startsWith("https")))
 #set ($src = $PathTool.calculateLink($item.img, $relativePath))

1 http://svn.apache.org/viewvc/maven/doxia/doxia-sitetools/trunk/doxia-site-renderer/src/main/resources/org/apache/maven/
doxia/siterenderer/resources/default-site.vm?revision=595592

http://svn.apache.org/viewvc/maven/doxia/doxia-sitetools/trunk/doxia-site-renderer/src/main/resources/org/apache/maven/doxia/siterenderer/resources/default-site.vm?revision=595592
http://velocity.apache.org
http://svn.apache.org/viewvc/maven/doxia/doxia-sitetools/trunk/doxia-site-renderer/src/main/resources/org/apache/maven/doxia/siterenderer/resources/default-site.vm?revision=595592
http://svn.apache.org/viewvc/maven/doxia/doxia-sitetools/trunk/doxia-site-renderer/src/main/resources/org/apache/maven/doxia/siterenderer/resources/default-site.vm?revision=595592

167

 #set ($src = $item.img.replaceAll("\\", "/"))

 #else

 #end
 #end
 #if ($alignedFileName == $currentItemHref)
 $item.name
 #else
 #if ($item && $item.items && $item.items.size() > 0)
 <a onclick="expand('list$listCount')"
 style="cursor:pointer">$item.name
 #else
 $item.name
 #end
 #end
 #if ($item && $item.items && $item.items.size() > 0)
 #if ($collapse == "expanded")
 <ul id="list$listCount" style="display:block">
 #else
 <ul id="list$listCount" style="display:none">
 #end
 #foreach($subitem in $item.items)
 #set ($listCounter = $listCounter + 1)
 #menuItem($subitem $listCounter)
 #end

 #end

#end

This change adds a new parameter to the menuItem macro. For the new functionality to work, you will
need to change references to this macro, or the resulting template may produce unwanted or internally
inconsistent XHTML. To finish changing these references, make a similar replacement in the mainMenu
macro. Find this macro by looking for something similar to the following template snippet:

#macro (mainMenu $menus)
 ...
#end

Replace the mainMenu macro with the following implementation:

#macro (mainMenu $menus)
 #set ($counter = 0)
 #set ($listCounter = 0)
 #foreach($menu in $menus)
 #if ($menu.name)
 <h5 onclick="expand('menu$counter')">$menu.name</h5>
 #end
 <ul id="menu$counter" style="display:block">
 #foreach($item in $menu.items)
 #menuItem($item $listCounter)
 #set ($listCounter = $listCounter + 1)
 #end

168

 #set ($counter = $counter + 1)
 #end
#end

This new mainMenu macro is compatible with the new menuItem macro above, and also provides
support for a Javascript-enabled top-level menu. Clicking on a top-level menu item with children will
expand the menu and allow users to see the entire tree without waiting for a page to load.

The change to the menuItem macro introduced an expand() Javascript function. This method needs
to be added to the main XHTML template at the bottom of this template file. Find the section that looks
similar to the following:

 <head>
 ...
 <meta http-equiv="Content-Type"
 content="text/html; charset=${outputEncoding}" />
 ...
 </head>

and replace it with this:

 <head>
 ...
 <meta http-equiv="Content-Type"
 content="text/html; charset=${outputEncoding}" />
 <script type="text/javascript">
 function expand(item) {
 var expandIt = document.getElementById(item);
 if(expandIt.style.display == "block") {
 expandIt.style.display = "none";
 expandIt.parentNode.className = "collapsed";
 } else {
 expandIt.style.display = "block";
 expandIt.parentNode.className = "expanded";
 }
 }
 </script>
 #if ($decoration.body.head)
 #foreach($item in $decoration.body.head.getChildren())
 #if ($item.name == "script")
 $item.toUnescapedString()
 #else
 $item.toString()
 #end
 #end
 #end
 </head>

After modifying the default site template, you'll need to configure your project's POM to reference this
new site template. To customize the site template, you'll need to use the templateDirectory and
template configuration properties of the Maven Site plugin.

169

Example 10.10. Customizing the Page Template in a Project's POM

<project>
 ...
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-site-plugin</artifactId>
 <configuration>
 <templateDirectory>src/site</templateDirectory>
 <template>site.vm</template>
 </configuration>
 </plugin>
 </plugins>
 </build>
 ...
</project>

Now, you should be able to regenerate your project website. When you do so you may notice that the
resources and CSS for the maven site are missing. When a Maven project customizes the site template,
the Site plugin expects the project to supply all of the default images and CSS. To seed your project's
resources, you may want to copy the resources from the default Doxia site renderer project to your own
project's resources directory by executing the following commands:

$ svn co \
 http://svn.apache.org/repos/asf/maven/doxia/doxia-sitetools/\
 trunk/doxia-site-renderer
$ rm \
 doxia-site-renderer/src/main/resources/org/apache/maven/\
 doxia/siterenderer/resources/css/maven-theme.css
$ cp -rf \
 doxia-site-renderer/src/main/resources/org/apache/maven/\
 doxia/siterenderer/resources/* \
 sample-project/src/site/resources

Check out the doxia-site-renderer project, remove the default maven-theme.css file and then
copy all the resources to your project's src/site/resources directory.

When you regenerate the site, you'll notice that a few menu items look like regular unstyled text. This
is caused by a quirky interaction between the site's CSS and our new custom page template. It can be
fixed by modifying our site.css to restore the proper link color for these menus. Simply add this:

li.collapsed, li.expanded, a:link {
 color:#36a;
}

After regenerating the site, the menu's link color should be corrected. If you applied the new site template
to the same sample-project from this chapter, you'll notice that the menu now consists of a tree. Clicking

170

on "Developer Resources" no longer takes you to the "Developer Resources" page; in stead, it expands
the sub-menu. Since you've turned the Developer Resources menu-item into a dynamically-folding sub-
menu, you have lost the ability to reach the developer/index.apt page. To address this change, you
should add an Overview link to the sub-menu which references the same page:

Example 10.11. Adding a Menu Item to a Site Descriptor

<project name="Hello World">
 ...
 <menu name="Main Menu">
 ...
 <item name="Developer Resources" collapse="true">
 <item name="Overview" href="/developer/index.html"/>
 <item name="System Architecture" href="/developer/architecture.html"/>
 <item name="Embedder's Guide" href="/developer/embedding.html"/>
 </item>
 </menu>
 ...
</project>

10.7.3. Reusable Website Skins

If your organization is creating many Maven project sites, you will likely want to reuse site template
and CSS customizations throughout an organization. If you want thirty projects to share the same CSS
and site template, you can use Maven's support for skinning. Maven Site skins allow you to package up
resources and templates which can be reused by other projects in lieu of duplicating your site template
for each project which needs to be customized.

While you can define your own skin, you may want to consider using one of Maven's alternate skins.
You can choose from several skins. These each provide their own layout for navigation, content, logos,
and templates:

• Maven Classic Skin - org.apache.maven.skins:maven-classic-skin:1.0

• Maven Default Skin - org.apache.maven.skins:maven-default-skin:1.0

• Maven Stylus Skin - org.apache.maven.skins:maven-stylus-skin:1.0.1

You can find an up-to-date and comprehensive listing in the Maven repository: http://repo1.maven.org/
maven2/org/apache/maven/skins/.

Creating a custom skin is a simple matter of wrapping your customized maven-theme.css in a Maven
project, so that it can be referenced by groupId, artifactId, and version. It can also include
resources such as images, and a replacement website template (written in Velocity) that can generate a
completely different XHTML page structure. In most cases, custom CSS can manage the changes you
desire. To demonstrate, let's create a designer skin for the sample-project project, starting with a custom
maven-theme.css.

http://repo1.maven.org/maven2/org/apache/maven/skins/
http://repo1.maven.org/maven2/org/apache/maven/skins/

171

Before we can start writing our custom CSS, we need to create a separate Maven project to allow the
sample-project site descriptor to reference it. First, use Maven's archetype plugin to create a basic
project. Issue the following command from the directory above the sample-project project's root
directory:

$ mvn archetype:create -DartifactId=sample-site-skin
 -DgroupId=org.sonatype.mavenbook

This will create a project (and a directory) called sample-site-skin. Change directories to the new
sample-site-skin directory, remove all of the source code and tests, and create a directory to store
your skin's resources:

$ cd sample-site-skin
$ rm -rf src/main/java src/test
$ mkdir src/main/resources

10.7.4. Creating a Custom Theme CSS

Next, write a custom CSS for the custom skin. A custom CSS stylesheet in a Maven site skin should be
placed in src/main/resources/css/maven-theme.css. Unlike the site.css file, which goes in
the site-specific source directory for a project, the maven-theme.css will be bundled in a JAR artifact
in your local Maven repository. In order for the maven-theme.css file to be included in the skin's JAR
file, it must reside in the main project-resources directory, src/main/resources.

As with the default the default site template, you will want to start customizing your new skin's CSS
from a good starting point. Copy the CSS file used by the default Maven skin to your project's maven-
theme.css. To get a copy of this theme file, save the contents of maven-theme.css2 from the maven-
default-skin project to src/main/resources/css/maven-theme.css in our new skin project.

Now that we have the base theme file in place, customize it using the CSS from our old site.css file.
Replace the #navcolumn h5 CSS block with the following:

#navcolumn h5 {
 font-size: smaller;
 border: 1px solid #aaaaaa;
 background-color: #bbb;
 margin-top: 7px;
 margin-bottom: 2px;
 padding-top: 2px;
 padding-left: 2px;
 color: #000;
}

Once you've customized the maven-theme.css, build and install the sample-site-skin JAR
artifact to your local Maven repository by running:

2 http://svn.apache.org/viewvc/maven/skins/trunk/maven-default-skin/src/main/resources/css/maven-theme.css?view=co

http://svn.apache.org/viewvc/maven/skins/trunk/maven-default-skin/src/main/resources/css/maven-theme.css?view=co
http://svn.apache.org/viewvc/maven/skins/trunk/maven-default-skin/src/main/resources/css/maven-theme.css?view=co

172

$ mvn clean install

Once the installation is complete, switch back to the sample-project project directory, if you already
customized the site.css earlier in this chapter, move site.css to site.css.bak so it no longer
affects the output of the Maven Site plugin:

$ mv src/site/resources/css/site.css src/site/resources/css/site.css.bak

To use the sample-site-skin in the sample-project site, you'll need to add a reference to the
sample-site-skin artifact in the sample-project's site descriptor. A site references a skin in the
site descriptor using the skin element:

Example 10.12. Configuring a Custom Site Skin in Site Descriptor

<project name="Sample Project">
 ...
 <skin>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>sample-site-skin</artifactId>
 </skin>
 ...
</project>

You can think of a Maven Site skin as a site dependency. Site skins are referenced as artifacts with a
groupId and an artifactId. Using a site skin allows you to consolidate site customizations to a single
project, and makes reusing custom CSS and site templates as easy as reusing build logic through a
custom Maven plugin.

10.8. Tips and Tricks
This section lists some useful tips and tricks you can use when creating a Maven site.

10.8.1. Inject XHTML into HEAD

To inject XHTML into the HEAD element, add a head element to the body element in your project's Site
descriptor. The following example adds a feed link to every page in the sample-project web site.

Example 10.13. Injecting HTML into the HEAD element

<project name="Hello World">
 ...
 <body>
 <head>
 <link href="http://sample.com/sites/sample-project/feeds/blog"
 type="application/atom+xml"
 id="auto-discovery"
 rel="alternate"
 title="Sample Project Blog" />

173

 </head>
 ...
 </body>
</project>

10.8.2. Add Links under Your Site Logo

If you are working on a project which is being developed by an organization, you may want to add
links under your project's logo. Assume that your project is a part of the Apache Software Foundation,
you might want to add a link to the Apache Software Foundation web site right below your logo, and
you might want to add a link to a parent project as well. To add links below your site logo, just add a
links element to the body element in the Site descriptor. Each item element in the links element will be
rendered as a link in a bar directly below your project's logo. The following example would add a link
to the Apache Software Foundation followed by a link to the Apache Maven project.

Example 10.14. Adding Links Under Your Site Logo

<project name="Hello World">
 ...
 <body>
 ...
 <links>
 <item name="Apache" href="http://www.apache.org"/>
 <item name="Maven" href="http://maven.apache.org"/>
 </links>
 ...
 </body>
</project>

10.8.3. Add Breadcrumbs to Your Site

If your hierarchy exists within a logical hierarchy, you may want to place a series of breadcrumbs to give
the user a sense of context and give them a way to navigate up the tree to projects which might contain
the current project as a subproject. To configure breadcrumbs, add a breadcrumbs element to the body
element in the site descriptor. Each item element will render a link, and the items in the breadcrumbs
element will be rendered in order. The breadcrumb items should be listed from highest level to lowest
level. In the following site descriptor, the Codehaus item would be seen to contain the Mojo item.

Example 10.15. Configuring the Site's Breadcrumbs

<project name="Sample Project">
 ...
 <body>
 ...
 <breadcrumbs>
 <item name="Codehaus" href="http://www.codehaus.org"/>
 <item name="Mojo" href="http://mojo.codehaus.org"/>
 </breadcrumbs>
 ...

174

 </body>
</project>

10.8.4. Add the Project Version

When you are documenting a project that has multiple versions, it is often very helpful to list the project's
version number on every page. To display your project's version on the website, simply add the version
element to your site descriptor:

Example 10.16. Positioning the Version Information

<project name="Sample Project">
 ...
 <version position="left"/>
 ...
</project>

This will position the version (in the case of the sample-project project, it will say "Version: 1.0-
SNAPSHOT") in the upper left-hand corner of the site, right next to the default "Last Published" date.
Valid positions for the project version are:

left
Left side of the bar just below the site logo

right
Right side of the bar just below the site logo

navigation-top
Top of the menu

navigation-bottom
Bottom of the menu

none
Suppress the version entirely

10.8.5. Modify the Publication Date Format and Location

In some cases, you may wish to reformat or reposition the "Last Published" date for your project website.
Just like the project version tip above, you can specify the position of the publication date by using one
of the following:

left
Left side of the bar just below the site logo

right
Right side of the bar just below the site logo

175

navigation-top
Top of the menu

navigation-bottom
Bottom of the menu

none
Suppress the publication entirely

Example 10.17. Positioning the Publish Date

<project name="Sample Project">
 ...
 <publishDate position="navigation-bottom"/>
 ...
</project>

By default, the publication date will be formatted using the date format string MM/dd/

yyyy. You can change this format by using the standard notation found in the JavaDocs for
java.text.SimpleDateFormat (see JavaDoc for SimpleDateFormat3 for more information). To
reformat the date using yyyy-MM-dd, use the following publishDate element.

Example 10.18. Configuring the Publish Date Format

<project name="Sample Project">
 ...
 <publishDate position="navigation-bottom" format="yyyy-MM-dd"/>
 ...
</project>

10.8.6. Using Doxia Macros

In addition to its advanced document rendering features, Doxia also provides a macro engine that allows
each input format to trigger injection of dynamic content. An excellent example of this is the snippet
macro, which allows a document to pull a code snippet out of a source file that's available via HTTP.
Using this macro, a small fragment of APT can be rendered into XHTML. The following APT code
calls out to the snippet macro. Please note that this code should be on a single continuous line, the black
slash character is inserted to denote a line break so that this code will fit on the printed page.

%{snippet|id=modello-model|url=http://svn.apache.org/repos/asf/maven/\
archetype/trunk/maven-archetype/maven-archetype-model/src/main/\
mdo/archetype.mdo}

Example 10.19. Output of the Snippet Macro in XHTML

<div class="source"><pre>

3 http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html

http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html

176

<model>
 <id>archetype</id>
 <name>Archetype</name>
 <description><![CDATA[Maven's model for the archetype descriptor.
]]></description>
 <defaults>
 <default>
 <key>package</key>
 <value>org.apache.maven.archetype.model</value>
 </default>
 </defaults>
 <classes>
 <class rootElement="true" xml.tagName="archetype">
 <name>ArchetypeModel</name>
 <description>Describes the assembly layout and packaging.</description>
 <version>1.0.0</version>
 <fields>
 <field>
 <name>id</name>
 <version>1.0.0</version>
 <required>true</required>
 <type>String</type>
 </field>
 ...
 </fields>
 </class>
 </classes>
</model>

</pre></div>

Warning
Doxia macros MUST NOT be indented in APT source documents. Doing so will result in
the APT parser skipping the macro altogether.

For more information about defining snippets in your code for reference by the snippet macro, see
the Guide to the Snippet Macro on the Maven website, at http://maven.apache.org/guides/mini/guide-
snippet-macro.html.

http://maven.apache.org/guides/mini/guide-snippet-macro.html
http://maven.apache.org/guides/mini/guide-snippet-macro.html

Chapter 11. Writing Plugins
11.1. Introduction
While this chapter covers an advanced topic, don't let the idea of writing a Maven plugin intimidate. For
all of the theory and complexity of this tool, the fundamental concepts are easy to understand and the
mechanics of writing a plugin are straightforward. After you read this chapter, you will have a better
grasp of what is involved in creating a Maven plugin.

11.2. Programming Maven
Most of this book has dealt with using Maven, and for a book on Maven, you haven't seen too many
code examples dealing with Maven customization. In fact, you haven't yet seen any. This is by design,
99 out of 100 Maven users will never need to write a custom plugin to customize Maven; there is an
abundance of configurable plugins, and unless your project has particularly unique requirements, you
will have to work to find a reason to write a new plugin. An even smaller percentage of people who
end up writing custom plugins will ever need to crack open the source code for Maven and customize a
core Maven component. If you really need to customize the behavior of Maven, then you would write
a plugin. Modifying the core Maven code is as far out of scope for most developers as modifying the
TCP/IP stack on an operating system, it is that abstract for most Maven users.

On the other hand, if you are going to start writing a custom plugin, you are going to have to learn a
bit about the internals of Maven: How does it manage software components? What is a Plugin? How
can I customize the lifecycle? This section answers some of those questions, and it introduces a few
concepts at the core of Maven's design. Learning how to write a custom Maven plugin is the gateway to
customizing Maven itself. If you were wondering how to start understanding the code behind Maven,
you've found the proper starting line.

11.2.1. What is Inversion of Control?

At the heart of Maven is an Inversion of Control (IoC) container named Plexus. What does it do? It
is a system for managing and relating components. While there is a canonical essay about IoC written
by Martin Fowler, the concept and term have been so heavily overloaded in the past few years it is
tough to find a good definition of the concept that isn't a self-reference (or just a lazy reference to the
aforementioned essay). Instead of resorting to a Wikipedia quote, we'll summarize Inversion of Control
and Dependency Injection with an analogy.

Assume that you have a series of components which need to be wired together. When you think about
components, think stereo components not software components. Imagine several stereo components
hooked up to a Playstation 3 and a Tivo that have to interface with both an Apple TV box and a 50"
flat panel LCD TV. You bring everything home from the electronics store and you purchase a series
of cables that you are going to use to connect everything to everything else. You unpack all of these

178

components, put them in the right place, and then get to the job of hooking up fifty thousand coaxial
cables and stereo jacks to fifty thousand digital inputs and network cables. Step back from your home
entertainment center and turn on the TV, you've just performed dependency injection, and you've just
been an inversion of control container.

So what did that have to do with anything? Your Playstation 3 and a Java Bean both provide an interface.
The Playstation 3 has two inputs: power and network, and one output to the TV. Your JavaBean has
three properties: power, network, and tvOutput. When you open the box of your Playstation 3, it
didn't provide you with detailed pictures and instructions for how to connect it to every different kind of
TV that might be in every different kind of house. When you look at your Java Bean, it just provides a set
of properties, not an explicit recipe for creating and managing an entire system of components. In an IoC
container like Plexus, you are responsible for declaring the relationships between a set of components
which simply provide an interface of inputs and outputs. You don't instantiate objects, Plexus does;
your application's code isn't responsible for managing the state of components, Plexus is. Even though
it sounds very cheesy, when you start up Maven, it is starting Plexus and managing a system of related
components just like your stereo system.

What are the advantages of using an IoC container? What is the advantage of buying discrete stereo
components? If one component breaks, you can drop in a replacement for your Playstation 3 without
having to spend $20,000 on the entire system. If you are unhappy with your TV, you can swap it out
without affecting your CD player. Most important to you, your stereo components cost less and are
more capable and reliable because manufacturers can build to a set of known inputs and outputs and
focus on building individual components. Inversion of Control containers and Dependency Injection
encourage Disaggregation and the emergence of standards. The software industry likes to imagine itself
as the font of all new ideas, but dependency injection and inversion of control are really just new words
for the concepts of Disaggregation and interchangeable machinery. If you really want to know about
DI and IoC, learn about the Model T, the Cotton Gin, and the emergence of a railroad standard in the
late 19th century.

11.2.2. Introduction to Plexus

The most important feature of an IoC container implemented in Java is a mechanism called dependency
injection. The basic idea of IoC is that the control of creating and managing objects is removed from the
code itself and placed into the hands of an IoC framework. Using dependency injection in an application
that has been programmed to interfaces, you can create components which are not bound to specific
implementations of these interfaces. Instead, you program to interfaces and then configure Plexus to
connect the appropriate implementation to the appropriate component. While your code deals with
interfaces, you can capture the dependencies between classes and components in an XML file that
defines components, implementation classes, and the relationships between your components. In other
words, you can write isolated components, then you can wire them together using an XML file that
defines how the components are wired together. In the case of Plexus, system components are defined
with an XML document that is found in META-INF/plexus/components.xml.

179

In a Java IoC container, there are several methods for injecting dependencies values into a component
object: constructor, setter, or field injections. Although Plexus is capable of all three dependency
injection techniques, Maven only uses two types: field and setter injection.

Constructor Injection
Constructor injection is populating an object's values through its constructor when an instance of
the object is created. For example, if you had an object of type Person which had a constructor
Person(String name, Job job), you could pass in values for both name and the job via
this constructor.

Setter Injection
Setter injection is using the setter method of a property on a Java bean to populate object
dependencies. For example, if you were working with a Person object with the properties name
and job, an IoC container which uses setter injection, would create an instance of Person using
a no-arg constructor. Once it had an instance of Person, it would proceed to call the setName()
and setJob() methods.

Field Injection
Both Constructor and Setter injection rely on a call to a public method. Using Field injection,
an IoC container populates a component's dependencies by setting an object's fields directly. For
example, if you were working with a Person object that had two fields name and job, your IoC
container would populate these dependencies by setting these fields directly (i.e. person.name
= "Thomas"; person.job = job;)

11.2.3. Why Plexus?

Spring does happen to be the most popular IoC container at the moment, and there's a good argument to
be made that it has affected the Java "ecosystem" for the better forcing companies like Sun Microsystems
to yield more control to the open source community and helping to open up standards by providing a
pluggable, component-oriented "bus". But, Spring isn't the only IoC container in open source. There are
many IoC containers (like PicoContainer1).

Years and years ago, when Maven was created, Spring wasn't a mature option. The initial team of
committers on Maven were more familiar with Plexus because they invented it, so they decided to use
it as an IoC container. While it might not be as popular as the Spring Framework, it is no less capable.
And, the fact that it was created by the same person who created Maven makes it a perfect fit. After
reading this chapter you've have an idea of how Plexus works. If you already use an IoC container you'll
notice similarities and differences between Plexus and the container you currently use.

Note
Just because Maven is based on Plexus doesn't mean that the Maven community is "anti-
Spring" (we've included a whole chapter with a Spring example in this book, portions of

1 http://www.picocontainer.org/

http://www.picocontainer.org/
http://www.picocontainer.org/

180

the Spring project are moving to Maven as a build platform). The question, "Why didn't
you use Spring?" comes up often enough it did make sense to address it here. We know
it, Spring is a rock star, we don't deny it, and it is on our continuing to-do list to introduce
people to (and document) Plexus: choice in the software industry is always a good thing.

11.2.4. What is a Plugin?

A Maven Plugin is a Maven artifact which contains a plugin descriptor and one or more Mojos. A Mojo
can be thought of as a goal in Maven, and every goal corresponds to a Mojo. The compiler:compile
goal corresponds to the CompilerMojo class in the Maven Compiler Plugin, and the jar:jar goal
corresponds to the JarMojo class in the Maven Jar Plugin. When you write your own plugin, you are
simply grouping together a set of related Mojos (or goals) in a single plugin artifact.2

Note
Mojo? What is a Mojo? The word mojo2 is defined as "a magic charm or spell", "an
amulet, often in a small flannel bag containing one or more magic items", and "personal
magnetism; charm". Maven uses the term Mojo because it is a play on the word Pojo
(Plain-old Java Object).

A Mojo is much more than just a goal in Maven, it is a component managed by Plexus that can include
references to other Plexus components.

11.3. Plugin Descriptor
A Maven plugin contains a road-map for Maven that tells Maven about the various Mojos and
plugin configuration. This plugin descriptor is present in the plugin JAR file in META-INF/maven/
plugin.xml. When Maven loads a plugin, it reads this XML file, instantiates and configures plugin
objects to make the Mojos contained in a plugin available to Maven.

When you are writing custom Maven plugins, you will almost never need to think about writing a plugin
descriptor. In Chapter 4, The Build Lifecycle, the lifecycle goals bound to the maven-plugin packaging
type show that the plugin:descriptor goal is bound to the generate-resources phase. This
goal generates a plugin descriptor off of the annotations present in a plugin's source code. Later in this
chapter, you will see how Mojos are annotated, and you will also see how the values in these annotations
end up in the META-INF/maven/plugin.xml file.

Example 11.1, “Plugin Descriptor” shows a plugin descriptor for the Maven Zip Plugin. This plugin
is a contrived plugin that simply zips up the output directory and produces an archive. Normally, you
wouldn't need to write a custom plugin to create an archive from Maven, you could simply use the
Maven Assembly Plugin which is capable of producing a distribution archive in multiple formats. Read
through the following plugin descriptor to get an idea of the content it contains.

2"mojo." The American Heritage® Dictionary of the English Language, Fourth Edition. Houghton Mifflin Company, 2004.
Answers.com 02 Mar. 2008. http://www.answers.com/topic/mojo-1

http://www.answers.com/topic/mojo-1

181

Example 11.1. Plugin Descriptor

<plugin>
 <description></description>
 <groupId>com.training.plugins</groupId>
 <artifactId>maven-zip-plugin</artifactId>
 <version>1-SNAPSHOT</version>
 <goalPrefix>zip</goalPrefix>
 <isolatedRealm>false</isolatedRealm>
 <inheritedByDefault>true</inheritedByDefault>
 <mojos>
 <mojo>
 <goal>zip</goal>
 <description>Zips up the output directory.</description>
 <requiresDirectInvocation>false</requiresDirectInvocation>
 <requiresProject>true</requiresProject>
 <requiresReports>false</requiresReports>
 <aggregator>false</aggregator>
 <requiresOnline>false</requiresOnline>
 <inheritedByDefault>true</inheritedByDefault>
 <phase>package</phase>
 <implementation>com.training.plugins.ZipMojo</implementation>
 <language>java</language>
 <instantiationStrategy>per-lookup</instantiationStrategy>
 <executionStrategy>once-per-session</executionStrategy>
 <parameters>
 <parameter>
 <name>baseDirectory</name>
 <type>java.io.File</type>
 <required>false</required>
 <editable>true</editable>
 <description>Base directory of the project.</description>
 </parameter>
 <parameter>
 <name>buildDirectory</name>
 <type>java.io.File</type>
 <required>false</required>
 <editable>true</editable>
 <description>Directory containing the build files.</description>
 </parameter>
 </parameters>
 <configuration>
 <buildDirectory implementation="java.io.File">
 ${project.build.directory}</buildDirectory>
 <baseDirectory implementation="java.io.File">
 ${basedir}</baseDirectory>
 </configuration>
 <requirements>
 <requirement>
 <role>org.codehaus.plexus.archiver.Archiver</role>
 <role-hint>zip</role-hint>
 <field-name>zipArchiver</field-name>
 </requirement>

182

 </requirements>
 </mojo>
 </mojos>
 <dependencies>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-io</artifactId>
 <version>1.3.2</version>
 </dependencies>
</plugin>

There are three parts to a plugin descriptor: the top-level configuration of the plugin which contains
elements like groupId and artifactId, the declaration of mojos, and the declaration of dependencies.
Let's examine each of these sections in more detail.

11.3.1. Top-level Plugin Descriptor Elements

The top-level configuration values in the plugin element are:

description
This element contains a short description of the plugin. In the case of the Zip plugin, this
description is empty.

groupId, artifactId, version
As with everything else in Maven, plugins need to have a unique set of coordinates. The groupId,
artifactId, and version are used to locate the plugin artifact in a Maven repository.

goalPrefix
This element controls the prefix used to reference goals in a particular plugin. If you were to look
at the Compiler plugin's descriptor you would see that goalPrefix has a value of compiler. If
you look at the descriptor for the Jar plugin, it would have a goalPrefix of jar. It is important
that you choose a distinct goal prefix for your custom plugin.

isolatedRealm (deprecated)
This is a legacy property which is no longer used by Maven. It is still present in the system to
provide backwards compatibility with older plugins. Earlier versions of Maven used to provide a
mechanism to load a plugin's dependencies in an isolated ClassLoader. Maven makes extensive
use of a project called ClassWorlds3 from the Codehaus4 community to create hierarchies of
ClassLoader objects which are modeled by a ClassRealm object. Feel free to ignore this
property and always set it to false.

inheritedByDefault
If inheritedByDefault is set to true, any mojo in this plugin which is configured in a parent project
will be configured in a child project. If you configure a mojo to execute during a specific phase in
a parent project and the Plugin has inheritedByDefault set to true, this execution will be inherited

3 http://classworlds.codehaus.org/
4 http://www.codehaus.org

http://classworlds.codehaus.org/
http://www.codehaus.org
http://classworlds.codehaus.org/
http://www.codehaus.org

183

by the child project. If inheritedByDefault is not set to true, then an goal execution defined in a
parent project will not be inherited by a child project.

11.3.2. Mojo Configuration

Next is the declaration of the each Mojo. The plugin element contains an element named mojos which
contains a mojo element for each mojo present in the Plugin. Each mojo element contains the following
configuration elements:

goal
This is the name of the goal. If you were running the compiler:compile goal, then compiler
is the plugin's goalPrefix and compile would be the name of the goal.

description
This contains a short description of the goal to display to the use when they use the Help plugin
to generate plugin documentation.

requiresDirectInvocation
If you set this to true, the goal can only be executed if it is explicitly executed from the
command-line by the user. If someone tries to bind this goal to a lifecycle phase in a POM, Maven
will print an error message. The default for this element is false.

requiresProject
Specifies that a given goal cannot be executed outside of a project. The goal requires a project
with a POM. The default value for this requiresProject is true.

requiresReports
If you were creating a plugin that relies on the presence of reports, you would need to set
requiresReports to true. For example, if you were writing a plugin to aggregate information
from a number of reports, you would set requiresReports to true. The default for this
element is false.

aggregator
A Mojo descriptor with aggregator set to true is supposed to only run once during the
execution of Maven, it was created to give plugin developers the ability to summarize the output
of a series of builds; for example, to create a plugin that summarizes a report across all projects
included in a build. A goal with aggregator set to true should only be run against the top-
level project in a Maven build. The default value of aggregator is false. Aggregator is slated
for deprecation in a future release of Maven.

requiresOnline
Specifies that a given goal cannot be executed if Maven is running in offline mode (-o command-
line option). If a goal depends on a network resource, you would specify a value of true for this
element and Maven would print an error if the goal was executed in offline mode. The default
for requiresOnline is false.

184

inheritedByDefault
If inheritedByDefault is set to true, a mojo which is configured in a parent project will
be configured in a child project. If you configure a mojo to execute during a specific phase in a
parent project and the Mojo descriptor has inheritedByDefault set to true, this execution
will be inherited by the child project. If inheritedByDefault is not set to true, then a goal
execution defined in a parent project will not be inherited by a child project.

phase
If you don't bind this goal to a specific phase, this element defines the default phase for this
mojo. If you do not specify a phase element, Maven will require the user to explicitly specify
a phase in a POM.

implementation
This element tells Maven which class to instantiate for this Mojo. This is a Plexus component
property (defined in Plexus ComponentDescriptor).

language
The default language for a Maven Mojo is Java. This controls the Plexus ComponentFactory
used to create instances of this Mojo component. This chapter focuses on writing Maven plugins
in Java, but you can also write Maven in a number of alternative languages such as Groovy,
Beanshell, and Ruby. If you were writing a plugin in one of these languages you would use a
language element value other than java.

instantiationStrategy
This property is a Plexus component configuration property, it tells Plexus how to create and
manage instances of the component. In Maven, all mojos are going to be configured with an
instantiationStrategy of per-lookup; a new instance of the component (mojo) is created
every time it is retrieved from Plexus.

executionStrategy
The execution strategy tells Maven when and how to execute a Mojo. The valid values are once-
per-session and always. Note: This particular property doesn't do a thing, it is a hold over
from an early design of Maven. This property is slated for deprecation in a future release of
Maven.

parameters
This element describes all of the parameters for this Mojo. What's the name of the parameter?
What is the type of parameter? Is it required? Each parameter has the following elements:

name
Is the name of the parameter (i.e. baseDirectory)

type
This is the type (Java class) of the parameters (i.e. java.io.File)

185

required
Is the parameter required? If true, the parameter must be non-null when the goal is executed.

editable
If a parameter is not editable (if editable is set to false), then the value of the parameter
cannot be set in the POM. For example, if the plugin descriptor defines the value of
buildDirectory to be ${basedir} in the descriptor, a POM cannot override this value
to be another value in a POM.

description
A short description to use when generating plugin documentation (using the Help Plugin)

configuration
This element provides default values for all of the Mojo's parameters using Maven property
notation. This example provides a default value for the baseDir Mojo parameter and the
buildDirectory Mojo parameter. In the parameter element, the implementation specifies the
type of the parameter (in this case java.io.File), the value in the parameter element contains
either a hard-coded default or a Maven property reference.

requirements
This is where the descriptor gets interesting. A Mojo is a component that is managed by Plexus,
and, because of this, it has the opportunity to reference other components managed by Plexus.
This element allows you to define dependencies on other components in Plexus.

While you should know how to read a Plugin Descriptor, you will almost never need to write one of these
descriptor files by hand. Plugin Descriptor files are generated automatically off of a set of annotations
in the source for a Mojo.

11.3.3. Plugin Dependencies

Lastly, the plugin descriptor declares a set of dependencies just like a Maven project. When Maven
uses a plugin, it will download any required dependencies before it attempts to execute a goal from this
plugin. In this example, the plugin depends on Jakarta Commons IO version 1.3.2.

11.4. Writing a Custom Plugin
When you write a custom plugin, you are going to be writing a series of Mojos (goals). Every Mojo is
a single Java class which contains a series of annotations that tell Maven how to generate the Plugin
descriptor described in the previous section. Before you can start writing Mojo classes, you will need
to create Maven project with the appropriate packaging and POM.

11.4.1. Creating a Plugin Project

To create a plugin project, you should use the Maven Archetype plugin. The following command-line
will create a plugin with a groupId of org.sonatype.mavenbook.plugins and the artifactId
of first-maven-plugin:

186

$ mvn archetype:create \
 -DgroupId=org.sonatype.mavenbook.plugins \
 -DartifactId=first-maven-plugin \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DarchetypeArtifactId=maven-archetype-mojo

The Archetype plugin is going to create a directory named my-first-plugin which contains the following
POM.

Example 11.2. A Plugin Project's POM

<?xml version="1.0" encoding="UTF-8"?><project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.plugins</groupId>
 <artifactId>first-maven-plugin</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>maven-plugin</packaging>
 <name>first-maven-plugin Maven Mojo</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-plugin-api</artifactId>
 <version>2.0</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

The most import element in a plugin project's POM is the packaging element which has a value of
maven-plugin. This packaging element customizes the Maven lifecycle to include the necessary goals
to create a plugin descriptor. The plugin lifecycle was introduced in Section 4.2.3, “Maven Plugin”, it
is similar to the Jar lifecycle with three exceptions: plugin:descriptor is bound to the generate-
resources phase, plugin:addPluginArtifactMetadata is added to the package phase, and
plugin:updateRegistry is added to the install phase.

The other important piece of a plugin project's POM is the dependency on the Maven Plugin API. This
project depends on version 2.0 of the maven-plugin-api and it also adds in JUnit as a test-scoped
dependency.

11.4.2. A Simple Java Mojo

In this chapter, we're going to introduce a Maven Mojo written in Java. Each Mojo in
your project is going to implement the org.apache.maven.plugin.Mojo interface, the Mojo

187

implementation shown in the following example implements the Mojo interface by extending the
org.apache.maven.plugin.AbstractMojo class. Before we dive into the code for this Mojo, let's
take some time to explore the methods on the Mojo interface. Mojo provides the following methods:

void setLog(org.apache.maven.monitor.logging.Log log)

Every Mojo implementation has to provide a way for the plugin to communicate the progress of
a particular goal. Did the goal succeed? Or, was there a problem during goal execution? When
Maven loads and executes a Mojo, it is going to call the setLog() method and supply the Mojo
instance with a suitable logging destination to be used in your custom plugin.

protected Log getLog()

Maven is going to call setLog() before your Mojo is executed, and your Mojo can retrieve
the logging object by calling getLog(). Instead of printing out status to Standard Output or the
console, your Mojo is going to invoke methods on the Log object.

void execute() throws org.apache.maven.plugin.MojoExecutionException

This method is called by Maven when it is time to execute your goal.

The Mojo interface is concerned with two things: logging the results of goal execution and executing a
goal. When you are writing a custom plugin, you'll be extending AbstractMojo. AbstractMojo takes
care of handling the setLog() and getLog() implementations and contains an abstract execute()
method. When you extend AbstractMojo, all you need to do is implement the execute() method.
Example 11.3, “A Simple EchoMojo” shows a trivial Mojo implement which simply prints out a
message to the console.

Example 11.3. A Simple EchoMojo

package org.sonatype.mavenbook.plugins;

import org.apache.maven.plugin.AbstractMojo;
import org.apache.maven.plugin.MojoExecutionException;
import org.apache.maven.plugin.MojoFailureException;

/**
 * Echos an object string to the output screen.
 * @goal echo
 * @requiresProject false
 */
public class EchoMojo extends AbstractMojo
{
 /**
 * Any Object to print out.
 * @parameter expression="${echo.message}" default-value="Hello World..."
 */
 private Object message;

 public void execute()
 throws MojoExecutionException, MojoFailureException

188

 {
 getLog().info(message.toString());
 }
}

If you create this Mojo in ${basedir} under src/main/java in org/sonatype/mavenbook/
mojo/EchoMojo.java in the project created in the previous section and run mvn install, you should
be able to invoke this goal directly from the command-line with:

$ mvn org.sonatype.mavenbook.plugins:first-maven-plugin:1.0-SNAPSHOT:echo

That large command-line is mvn followed by the groupId:artifactId:version:goal. When you
run this command-line you should see output that contains the output of the echo goal with the default
message: "Hello Maven World...". If you want to customize the message, you can pass the value of the
message parameter with the following command-line:

$ mvn org.sonatype.mavenbook.plugins:first-maven-plugin:1.0-SNAPSHOT:echo \
 -Decho.message="The Eagle has Landed"

The previous command-line is going to execute the EchoMojo and print out the message "The Eagle
has Landed".

11.4.3. Configuring a Plugin Prefix

Specifying the groupId, artifactId, version, and goal on the command-line is cumbersome. To
address this, Maven assigns a plugin a prefix. Instead of typing:

$ mvn org.apache.maven.plugins:maven-jar-plugin:2.2:jar

You can use the plugin prefix jar and turn that command-line into mvn jar:jar. How does
Maven resolve something like jar:jar to org.apache.mven.plugins:maven-jar:2.3? Maven
looks at a file in the Maven repository to obtain a list of plugins for a specific groupId. By
default, Maven is configured to look for plugins in two groups: org.apache.maven.plugins and
org.codehaus.mojo. When you specify a new plugin prefix like mvn hibernate3:hbm2ddl,
Maven is going to scan the repository metadata for the appropriate plugin prefix. First, Maven is going
to scan the org.apache.maven.plugins group for the plugin prefix hibernate3. If it doesn't find
the plugin prefix hibernate3 in the org.apache.maven.plugins group it will scan the metadata
for the org.codehaus.mojo group.

When Maven scans the metadata for a particular groupId, it is retrieving an XML file from the
Maven repository which captures metadata about the artifacts contained in a group. This XML file
is specific for each repository referenced, if you are not using a custom Maven repository, you
will be able to see the Maven metadata for the org.apache.maven.plugins group in your local
Maven repository (~/.m2/repository) under org/apache/maven/plugins/maven-metadata-

189

central.xml. Example 11.4, “Maven Metadata for the Maven Plugin Group” shows a snippet of the
maven-metadata-central.xml file from the org.apache.maven.plugin group.

Example 11.4. Maven Metadata for the Maven Plugin Group

<?xml version="1.0" encoding="UTF-8"?>
<metadata>
 <plugins>
 <plugin>
 <name>Maven Clean Plugin</name>
 <prefix>clean</prefix>
 <artifactId>maven-clean-plugin</artifactId>
 </plugin>
 <plugin>
 <name>Maven Compiler Plugin</name>
 <prefix>compiler</prefix>
 <artifactId>maven-compiler-plugin</artifactId>
 </plugin>
 <plugin>
 <name>Maven Surefire Plugin</name>
 <prefix>surefire</prefix>
 <artifactId>maven-surefire-plugin</artifactId>
 </plugin>
 ...
 </plugins>
</metadata>

As you can see in Example 11.4, “Maven Metadata for the Maven Plugin Group”, this maven-
metadata-central.xml file in your local repository is what makes it possible for your to execute
mvn surefire:test. Maven scans org.apache.maven.plugins and org.codehaus.mojo:
plugins from org.apache.maven.plugins are considered core Maven plugins and plugins from
org.codehaus.mojo are considered extra plugins. The Apache Maven project manages the
org.apache.maven.plugins group, and a separate independent open source community manages
the Codehaus Mojo project. If you would like to start publishing plugins to your own groupId, and
you would like Maven to automatically scan your own groupId for plugin prefixes, you can customize
the groups that Maven scans for plugins in your Maven Settings.

If you wanted to be able to run the first-maven-plugin's echo goal by running first:echo,
add the org.sonatype.mavenbook.plugins groupId to your ~/.m2/settings.xml as shown
in Example 11.5, “Customizing the Plugin Groups in Maven Settings”. This will prepend the
org.sonatype.mavenbook.plugins to the list of groups which Maven scans for Maven plugins.

Example 11.5. Customizing the Plugin Groups in Maven Settings

<settings>
 ...
 <pluginGroups>
 <pluginGroup>org.sonatype.mavenbook.plugins</pluginGroup>

190

 </pluginGroups>
</settings>

You can now run mvn first:echo from any directory and see that Maven will properly resolve
the goal prefix to the appropriate plugin identifiers. This worked because our project adhered to a
naming convention for Maven plugins. If your plugin project has an artifactId which follows the
pattern maven-first-plugin or first-maven-plugin. Maven will automatically assign a plugin
goal prefix of first to your plugin. In other words, when the Maven Plugin Plugin is generating the
Plugin descriptor for your plugin and you have not explicitly set the goalPrefix in your project, the
plugin:descriptor goal will extract the prefix from your plugin's artifactId when it matches
the following patterns:

• ${prefix}-maven-plugin, OR

• maven-${prefix}-plugin

If you would like to set an explicit plugin prefix, you'll need to configure the Maven Plugin Plugin. The
Maven Plugin Plugin is a plugin that is responsible for building the Plugin descriptor and performing
plugin specific tasks during the package and load phases. The Maven Plugin Plugin can be configured
just like any other plugin in the build element. To set the plugin prefix for your plugin, add the following
build element to the first-maven-plugin project's pom.xml.

Example 11.6. Configuring a Plugin Prefix

<?xml version="1.0" encoding="UTF-8"?><project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.plugins</groupId>
 <artifactId>first-maven-plugin</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>maven-plugin</packaging>
 <name>first-maven-plugin Maven Mojo</name>
 <url>http://maven.apache.org</url>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-plugin-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <goalPrefix>blah</goalPrefix>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-plugin-api</artifactId>
 <version>2.0</version>
 </dependency>

191

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Example 11.6, “Configuring a Plugin Prefix” sets the plugin prefix to blah. If you've added the
org.sonatype.mavenbook.plugins to the pluginGroups in your ~/.m2/settings.xml, you
should be able to execute the EchoMojo by running mvn echo:blah from any directory.

11.4.4. Logging from a Plugin

Maven takes care of connecting your Mojo to a logging provider by calling
setLog() prior to the execution of your Mojo. It supplies an implementation of
org.apache.maven.monitor.logging.Log. This class exposes methods that you can use to
communicate information back to the user. This Log class provides multiple levels of logging similar
to that API provided by Log4J5. Those levels are captured by a series of methods available for each
level: debug, info, error and warn. To save trees, we've only listed the methods for a single logging
level: debug.

void debug(CharSequence message)

Prints a message to the debug logging level.

void debug(CharSequence message, Throwable t)

Prints a message to the debug logging level which includes the stack trace from the Throwable
(either Exception or Error)

void debug(Throwable t)

Prints out the stack trace of the Throwable (either Exception or Error)

Each of the four levels exposes the same three methods. The four logging levels serve different purposes.
The debug level exists for debugging purposes and for people who want to see a very detailed picture
of the execution of a Mojo. You should use the debug logging level to provide as much detail on the
execution of a Mojo, but you should never assume that a user is going to see the debug level. The info
level is for general informational messages that should be printed as a normal course of operation. If
you were building a plugin that compiled code using a compiler, you might want to print the output of
the compiler to the screen.

The warn logging level is used for messages about unexpected events and errors that your Mojo can
cope with. If you were trying to run a plugin that compiled Ruby source code, and there was no Ruby
source code available, you might want to just print a warning message and move on. Warnings are not

5 http://logging.apache.org/

http://logging.apache.org/
http://logging.apache.org/

192

fatal, but errors are usually build-stopping conditions. For the completely unexpected error condition,
there is the error logging level. You would use error if you couldn't continue executing a Mojo. If you
were writing a Mojo to compile some Java code and the compiler wasn't available, you'd print a message
to the error level and possibly pass along an Exception that Maven could print out for the user. You
should assume that a user is going to see most of the messages in info and all of the messages in error.

11.4.5. Mojo Class Annotations

In first-maven-plugin, you didn't write the plugin descriptor yourself, you relied on Maven to
generate the plugin descriptor from your source code. The descriptor was generated using your plugin
project's POM information and a set of annotations on your EchoMojo class. EchoMojo only specifies
the @goal annotation, here is a list of other annotations you can place on your Mojo implementation.

@goal <goalName>
This is the only required annotation which gives a name to this goal unique to this plugin.

@requiresDependencyResolution <requireScope>
Flags this mojo as requiring the dependencies in the specified scope (or an implied scope) to be
resolved before it can execute. Supports compile, runtime, and test. If this annotation had a value
of test, it would tell Maven that the Mojo cannot be executed until the dependencies in the test
scope had been resolved.

@requiresProject (true|false)
Marks that this goal must be run inside of a project, default is true. This is opposed to plugins
like archetypes, which do not.

@requiresReports (true|false)
If you were creating a plugin that relies on the presence of reports, you would need to set
requiresReports to true. The default value of this annotation is false.

@aggregator (true|false)
A Mojo with aggregator set to true is supposed to only run once during the execution of
Maven, it was created to give plugin developers the ability to summarize the output of a series
of builds; for example, to create a plugin that summarizes a report across all projects included in
a build. A goal with aggregator set to true should only be run against the top-level project in
a Maven build. The default value of aggregator is false.

@requiresOnline (true|false)
When set to true, Maven must not be running in offline mode when this goal is executed. Maven
will throw an error if one attempts to execute this goal offline. Default: false.

@requiresDirectInvocation
When set to true, the goal can only be executed if it is explicitly executed from the command-
line by the user. Maven will throw an error if someone tries to bind this goal to a lifecycle phase.
The default for this annotation is false.

193

@phase <phaseName>
This annotation specifies the default phase for this goal. If you add an execution for this goal
to a pom.xml and do not specify the phase, Maven will bind the goal to the phase specified in
this annotation by default.

@execute [goal=goalName|phase=phaseName [lifecycle=lifecycleId]]
This annotation can be used in a number of ways. If a phase is supplied, Maven will execute
a parallel lifecycle ending in the specified phase. The results of this separate execution will be
made available in the Maven property ${executedProperty}.

The second way of using this annotation is to specify an explicit goal using the prefix:goal
notation. When you specify just a goal, Maven will execute this goal in a parallel environment
that will not affect the current Maven build.

The third way of using this annotation would be to specify a phase in an alternate lifecycle using
the identifier of a lifecycle.

@execute phase="package" lifecycle="zip"
@execute phase="compile"
@execute goal="zip:zip"

If you look at the source for EchoMojo, you'll notice that Maven is not using the standard annotations
available in Java 5. Instead, it is using Commons Attributes6. Commons Attributes provided a way for
Java programmers to use annotations before annotations were a part of the Java language specification.
Why doesn't Maven use Java 5 annotations? Maven doesn't use Java 5 annotations because it is designed
to target pre-Java 5 JVMs. Because Maven has to support older versions of Java, it cannot use any of
the newer features available in Java 5.

11.4.6. When a Mojo Fails

The execute() method in Mojo throws two exceptions MojoExecutionException and
MojoFailureException. The difference between these two exception is both subtle and important,
and it relates to what happens when a goal execution "fails". A MojoExecutionException is a fatal
exception, something unrecoverable happened. You would throw a MojoExecutionException if
something happens that warrants a complete stop in a build; you re trying to write to disk, but there
is no space left, or you were trying to publish to a remote repository, but you can't connect to it.
Throw a MojoExecutionException if there is no chance of a build continuing; something terrible
has happened and you want the build to stop and the user to see a "BUILD ERROR" message.

A MojoFailureException is something less catastrophic, a goal can fail, but it might not be the end
of the world for your Maven build. A unit test can fail, or a MD5 checksum can fail; both of these are
potential problems, but you don't want to return an exception that is going to kill the entire build. In
this situation you would throw a MojoFailureException. Maven provides for different "resiliency"
settings when it comes to project failure. Which are described below.

6 http://commons.apache.org/attributes/

http://commons.apache.org/attributes/
http://commons.apache.org/attributes/

194

When you run a Maven build, it could involve a series of projects each of which can succeed or fail.
You have the option of running Maven in three failure modes:

mvn -ff
Fail-fast mode: Maven will fail (stop) at the first build failure.

mvn -fae
Fail-at-end: Maven will fail at the end of the build. If a project in the Maven reactor fails, Maven
will continue to build the rest of the builds and report a failure at the end of the build.

mvn -fn
Fail never: Maven won't stop for a failure and it won't report a failure.

You might want to ignore failure if you are running a continuous integration build and you want to
attempt a build regardless of the success of failure of an individual project build. As a plugin developer,
you'll have to make a call as to whether a particular failure condition is a MojoExecutionException
or a MojoFailureExeception.

11.5. Mojo Parameters
Just as important as the execute() method and the Mojo annotations, a Mojo is configured via
parameters. This section deals with some configuration and topics surrounding Mojo parameters.

11.5.1. Supplying Values for Mojo Parameters

In EchoMojo we declared the message parameter with the following annotations:

/**
 * Any Object to print out.
 * @parameter
 * expression="${echo.message}"
 * default-value="Hello Maven World"
 */
private Object message;

The default expression for this parameter is ${echo.message}, this means that Maven will try to use
the value of the echo.message property to set the value for message. If the value of the echo.message
property is null, the default-value attribute of the @parameter annotation will be used instead. Instead
of using the echo.message property, we can configure a value for the message parameter of the
EchoMojo directly in a project's POM.

There are a few ways to populate the message parameter in the EchoMojo. First we can pass in a value
from the command-line like this (assuming that you've added org.sonatype.mavenbook.plugins
to your pluginGroups):

$ mvn first:echo -Decho.message="Hello Everybody"

195

We could also specify the value of this message parameter, by setting a property in our POM or in our
settings.xml.

<project>
 ...
 <properties>
 <echo.message>Hello Everybody</echo.message>
 </properties>
</project>

This parameter could also be configured directly as a configuration value for the plugin. If we wanted
to customize the message parameter directly, we could use the following build configuration. The
following configuration bypasses the echo.message property and populates the Mojo parameter in plugin
configuration.

<project>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.sonatype.mavenbook.plugins</groupId>
 <artifactId>first-maven-plugin</artifactId>
 <version>1.0-SNAPSHOT</version>
 <configuration>
 <message>Hello Everybody!</message>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

If we wanted to run the EchoMojo twice at difference phases in a lifecycle, and we wanted to customize
the message parameter for each execution separately, we could configure the parameter value at the
execution level in a POM like this:

<build>
 <build>
 <plugins>
 <plugin>
 <groupId>org.sonatype.mavenbook.plugins</groupId>
 <artifactId>first-maven-plugin</artifactId>
 <version>1.0-SNAPSHOT</version>
 <executions>
 <execution>
 <id>first-execution</id>
 <phase>generate-resources</phase>
 <goals>
 <goal>echo</goal>
 </goals>
 <configuration>
 <message>The Eagle has Landed!</message>

196

 </configuration>
 </execution>
 <execution>
 <id>second-execution</id>
 <phase>validate</phase>
 <goals>
 <goal>echo</goal>
 </goals>
 <configuration>
 <message>${project.version}</message>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</build>

While this last configuration example seems very verbose, it illustrates the flexibility of Maven. In the
previous configuration example, you've bound the EchoMojo to both the validate and generate-
resources phases in the default Maven lifecycle. The first execution is bound to generate-
resources, it supplies a string value to the message parameter of "The Eagle has Landed!". The second
execution is bound to the validate phase, it supplies a property reference to ${project.version}.
When you run mvn install for his project, you'll see that the first:echo goal executes twice and
prints out two different messages.

11.5.2. Multi-valued Mojo Parameters

Plugins can have parameters which accept more than one value. Take a look at the ZipMojo shown
in Example 11.7, “A Plugin with Multi-valued Parameters”. Both the includes and excludes
parameters are multivalued String arrays which specify the inclusion and exclusion patterns for a
component that creates a ZIP file.

Example 11.7. A Plugin with Multi-valued Parameters

package org.sonatype.mavenbook.plugins

/**
 * Zips up the output directory.
 * @goal zip
 * @phase package
 */
public class ZipMojo extends AbstractMojo
{
 /**
 * The Zip archiver.
 * @parameter \
 expression="${component.org.codehaus.plexus.archiver.Archiver#zip}"
 */
 private ZipArchiver zipArchiver;

197

 /**
 * Directory containing the build files.
 * @parameter expression="${project.build.directory}"
 */
 private File buildDirectory;

 /**
 * Base directory of the project.
 * @parameter expression="${basedir}"
 */
 private File baseDirectory;

 /**
 * A set of file patterns to include in the zip.
 * @parameter alias="includes"
 */
 private String[] mIncludes;

 /**
 * A set of file patterns to exclude from the zip.
 * @parameter alias="excludes"
 */
 private String[] mExcludes;

 public void setExcludes(String[] excludes) { mExcludes = excludes; }

 public void setIncludes(String[] includes) { mIncludes = includes; }

 public void execute()
 throws MojoExecutionException
 {
 try {
 zipArchiver.addDirectory(buildDirectory, includes, excludes);
 zipArchiver.setDestFile(new File(baseDirectory, "output.zip"));
 zipArchiver.createArchive();
 } catch(Exception e) {
 throw new MojoExecutionException("Could not zip", e);
 }
 }
}

To configure a multi-valued Mojo parameter, you use a series of elements for each value. If the name
of the multi-valued parameter is includes, you would use an element includes with child elements
include. If the multi-valued parameter is excludes, you would use an element excludes with child
elements exclude. To configure the ZipMojo to ignore all files ending in .txt and all files ending in
a tilde, you would use the following plugin configuration.

<project>
 ...
 <build>
 <plugins>
 <plugin>

198

 <groupId>org.sonatype.mavenbook.plugins</groupId>
 <artifactId>zip-maven-plugin</artifactId>
 <configuration>
 <excludes>
 <exclude>**/*.txt</exclude>
 <exclude>**/*~</exclude>
 </excludes>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

11.5.3. Depending on Plexus Components

A Mojo is a component managed by an IoC container called Plexus. A Mojo can depend on other
components managed by Plexus by declaring a Mojo parameter and using the @parameter or the
@component annotation. Example 11.7, “A Plugin with Multi-valued Parameters” shows a ZipMojo
which depends on a Plexus component using the @parameter annotation, this dependency could be
declared using the @component annotation.

Example 11.8. Depending on a Plexus Component

/**
 * The Zip archiver.
 * @component role="org.codehaus.plexus.archiver.Archiver" roleHint="zip"
 */
private ZipArchiver zipArchiver;

When Maven instantiates this Mojo, it will then attempt to retrieve the Plexus component with the
specified role and role hint. In this example, the Mojo will be related to a ZipArchiver component which
will allow the ZipMojo to create a ZIP file.

11.5.4. Mojo Parameter Annotations

Unless you insist on writing your Plugin descriptors by hand, you'll never have to write that XML.
Instead, the Maven Plugin Plugin has a plugin:descriptor goal bound to the generate-resources
phase. This goal generates the plugin descriptor from annotations on your Mojo. To configure a Mojo
parameter, you should use the following annotations on either the private member variables for each
of your Mojo's parameters. You can also use these annotations on public setter methods, but the most
common convention for Maven plugins is to annotate private member variables directly.

@parameter [alias="someAlias"] [expression="${someExpression}"] [default-value="value"]
Marks a private field (or a setter method) as a parameter. The alias provides the name of
the parameter. If alias is omitted, Maven will use the name of the variable as the parameter
name. The expression is an expression that Maven will evaluate to obtain a value. Usually the
expression is a property reference like ${echo.message}. default-value is the value that

199

this Mojo will use if no value can be derived from the expression or if a value was not explicitly
supplied via plugin configuration in a POM.

@required
If this annotation is present, a valid value for this parameter is required prior to Mojo execution.
If Maven tries to execute this Mojo and the parameter has a null value, Maven will throw and
error when it tries to execute this goal.

@readonly
If this annotation is present, the user cannot directly configure this parameter in the POM.
You would use this annotation with the expression attribute of the parameter annotation. For
example, if you wanted to make sure that a particular parameter always had the value of the
finalName POM property, you would list an expression of ${build.finalName} and then
add the @readOnly annotation. If this were the case, the user could only change the value of this
parameter by changing the value of finalName in the POM.

@component
Tells Maven to populate a field with a Plexus Component. A valid value for the @component
annotation would be:
@component role="org.codehaus.plexus.archiver.Archiver" roleHint="zip"

This would have the effect of retrieving the ZipArchiver from Plexus. The ZipArchiver is
the Archiver which corresponds to the role hint zip. Instead of component, you could also use
the @parameter annotation with an expression attribute of:

@parameter expression="${component.org.codehaus.plexus.archiver.Archiver#zip}"

While the two annotations are effectively the same, the @component annotation is the preferred
way to configure dependencies on Plexus components.

@deprecated
The parameter will be deprecated. Users can continue configuring this parameter, but a warning
message will be displayed.

11.6. Plugins and the Maven Lifecycle
In the Chapter 4, The Build Lifecycle chapter, you learned that lifecycles can be customized by
packaging types. A plugin can both introduce a new packaging type and customize the lifecycle. In this
section, you are going to learn how you can customize the lifecycle from a custom Maven plugin. You
are also some to see how you can tell a Mojo to execute a parallel lifecycle.

11.6.1. Executing a Parallel Lifecycle

Let's assume you write some goal that depends on the output from a previous build. Maybe the ZipMojo
goal can only run if there is output to include in an archive. You can specify something like a prerequisite

200

goal by using the @execute annotation on a Mojo class. This annotation will cause Maven to spawn
a parallel build and execute a goal or a lifecycle in a parallel instance of Maven that isn't going to
affect the current build. Maybe you wrote some Mojo that you can to run once a day that runs mvn
install and then packages up all of the output in some sort of customized distribution format. Your
Mojo descriptor could tell Maven that before you execute your CustomMojo, you'd like it to execute
the default lifecycle up to the install phase and then expose the results of that project to your Mojo as the
property ${executedProject}. You could then reference properties in that project to before some
sort of post processing.

Another possibility is that you have a goal that does something completely unrelated to the default
lifecycle. Let's consider something completely unexpected, maybe you have a goal that turns a WAV file
into an MP3 using something like LAME, but before you do that, you want to step through a lifecycle
that turns a MIDI file to a WAV. (You can use Maven for anything; this isn't that "far out".) You've
created a "midi-sound" lifecycle, and you want to include the output of the midi-sound lifecycle's
install phase in your web application project which has a war packaging type. Since your project is
running in the war packaging lifecycle, you'll need to have a goal that effectively forks off an isolated
build and runs through the midi-source lifecycle. You would do this by annotating your mojo with
@execute lifecycle="midi-source" phase="install".

@execute goal="<goal>"
This will execute the given goal before execution of this one. The goal name is specified using
the prefix:goal notation.

@execute phase="<phase>"
This will fork an alternate build lifecycle up to the specified phase before continuing to execute
the current one. If no lifecycle is specified, Maven will use the lifecycle of the current build.

@execute lifecycle="<lifecycle>" phase="<phase>"
This will execute the given alternate lifecycle. A custom lifecycle can be defined in META-INF/
maven/lifecycle.xml.

11.6.2. Creating a Custom Lifecycle

A custom lifecycle must be packaged in the plugin under the META-INF/maven/lifecycle.xml file.
You can include a lifecycle under src/main/resources in META-INF/maven/lifecycle.xml.
The following lifecycle.xml declares a lifecycle named zipcycle that contains only the zip goal
in a package phase.

Example 11.9. Define a Custom Lifecycle in lifecycle.xml

<lifecycles>
 <lifecycle>
 <id>zipcycle</id>
 <phases>
 <phase>
 <id>package</id>

201

 <executions>
 <execution>
 <goals>
 <goal>zip</goal>
 </goals>
 </execution>
 </executions>
 </phase>
 </phases>
 </lifecycle>
</lifecycles>

If you wanted to execute the zipcycle phase within another build, you could then create a
ZipForkMojo which uses the @execute annotation to tell Maven to step through the zipcycle phase
to package when the ZipForkMojo is executed.

Example 11.10. Forking a Customer Lifecycle from a Mojo

/**
 * Forks a zip lifecycle.
 * @goal zip-fork
 * @execute lifecycle="zipcycle" phase="package"
 */
public class ZipForkMojo extends AbstractMojo
{
 public void execute()
 throws MojoExecutionException
 {
 getLog().info("doing nothing here");
 }
}

Running the ZipForkMojo will fork the lifecycle. If you've configured your plugin to execute with the
goal prefix zip, running zip-fork should produce something similar to the following output.

$ mvn zip:zip-fork
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'zip'.
[INFO] --
[INFO] Building Maven Zip Forked Lifecycle Test
[INFO] task-segment: [zip:zip-fork]
[INFO] --
[INFO] Preparing zip:zip-fork
[INFO] [site:attach-descriptor]
[INFO] [zip:zip]
[INFO] Building zip: \
 ~/maven-zip-plugin/src/projects/zip-lifecycle-test/target/output.zip
[INFO] [zip:zip-fork]
[INFO] doing nothing here
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---

202

[INFO] Total time: 1 second
[INFO] Finished at: Sun Apr 29 16:10:06 CDT 2007
[INFO] Final Memory: 3M/7M
[INFO] ---

Calling zip-fork spawned another lifecycle, Maven executed the zipcycle lifecycle then it printed
out the message from ZipFormMojo's execute method.

11.6.3. Overriding the Default Lifecycle

Once you've created your own lifecycle and spawned it from a Mojo. The next question you might have
is how do you override the default lifecycle. How do you create custom lifecycles and attach them to
projects? In Chapter 4, The Build Lifecycle, we saw that the packaging of a project defines the lifecycle
of a project. There's something different about almost every packaging type; war attached different
goals to package, custom lifecycles like swf from the Israfil Flex 3 plugin attach different goals to the
compile phase. When you create a custom lifecycle, you can attach that lifecycle to a packaging type
by supplying some Plexus configuration in your plugin's archive.

To define a new lifecycle for a new packaging type, you'll need to configure a LifecycleMapping
component in Plexus. In your plugin project, create a META-INF/plexus/components.xml under
src/main/resources. In components.xml add the content from Example 11.11, “Overriding the Default
Lifecycle”. Set the name of the packaging type under role-hint, and the set of phases containing the
coordinates of the goals to bind (omit the version). Multiple goals can be associated with a phase using
a comma delimited list.

Example 11.11. Overriding the Default Lifecycle

<component-set>
 <components>
 <component>
 <role>org.apache.maven.lifecycle.mapping.LifecycleMapping</role>
 <role-hint>zip</role-hint>
 <implementation>
 org.apache.maven.lifecycle.mapping.DefaultLifecycleMapping
 </implementation>
 <configuration>
 <phases>
 <process-resources>
 org.apache.maven.plugins:maven-resources-plugin:resources
 </process-resources>
 <compile>
 org.apache.maven.plugins:maven-compiler-plugin:compile
 </compile>
 <package>org.sonatype.mavenbook.plugins:maven-zip-plugin:zip</package>
 </phases>
 </configuration>
 </component>
 </components>
</component-set>

203

If you create a plugin which defines a new packaging type and a customized lifecycle, Maven won't
know anything about it until you add the plugin to your project's POM and set the extensions element
to true. Once you do this, Maven will scan your plugin for more than just Mojos to execute, it will look
for the components.xml under META-INF/plexus, and it will make the packaging type available to
your project.

Example 11.12. Configuring a Plugin as an Extension

<project>
 ...
 <build>
 ...
 <plugins>
 <plugin>
 <groupId>com.training.plugins</groupId>
 <artifactId>maven-zip-plugin</artifactId>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

Once you add the plugin with the extensions element set to true, you can use the custom packaging type
and your project will be able to execute the custom lifecycle associated with that packaging type.

Chapter 12. Using Maven Archetypes
12.1. Introduction to Maven Archetypes
An archetype is a template for a Maven project which is used by the Maven Archetype plugin to create
new projects. Archetypes are useful for open source projects such as Apache Wicket or Apache Cocoon
which want to present end-users with a set of baseline projects that can be used as a foundation for new
applications. Archetypes can also be useful within an organization that wants to encourage standards
across a series of similar and related projects. If you work in an organization with a large team of
developers who all need to create projects which follow a similar structure, you can publish an archetype
that can be used by all other members of the development team. You can create a new product from an
archetype using the Maven Archetype plugin from the command line or by using the project creation
wizard in the m2eclipse plugin introduced in Developing with Eclipse and Maven1.

12.2. Using Archetypes
You can use an archetype by invoking the generate goal of the Archetype plugin via the command-line
or with m2eclipse.

12.2.1. Using an Archetype from the Command Line

The following command line can be used to generate a project from the quickstart archetype.

mvn archetype:generate \
 -DgroupId=org.sonatype.mavenbook \
 -DartifactId=quickstart \
 -Dversion=1.0-SNAPSHOT \
 -DpackageName=org.sonatype.mavenbook \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DarchetypeArtifactId=maven-archetype-quickstart \
 -DarchetypeVersion=1.0 \
 -DinteractiveMode=false

The generate goal accepts the following parameters:

groupId

The groupId for the project you are creating.

artifactId

The artifactId for the project you are creating.

version

The version for the project you are creating (defaults to 1.0-SNAPSHOT).

1 http://www.sonatype.com/books/m2eclipse-book/reference/

http://www.sonatype.com/books/m2eclipse-book/reference/
http://www.sonatype.com/books/m2eclipse-book/reference/

206

packageName

The default package for the project you are creating (defaults to groupId).

archetypeGroupId

The groupId of the archetype you wish to use for project generation.

archetypeArtifactId

The artifactId of the archetype you wish to use for project generation.

archetypeVersion

The version of the archetype you wish to use for project generation.

interactiveMode

When the generate goal is executed in interactive mode, it will prompt the user for all the
previously listed parameters. When interactiveMode is false, the generate goal will use the
values passed in from the command line.

Once you run the generate goal using the previously listed command line, you will have a directory
named quickstart which contains a new Maven project. The command line you had to suffer through in
this section is difficult to manage. In the next section we generate the same project running the generate
goal in an interactive mode.

12.2.2. Using the Interactive generate Goal

The simplest way to use the Maven Archetype plugin to generate a new Maven project from an archetype
is to run the archetype:generate goal in interactive mode. When interactiveMode is set to true,
the generate goal will present you with a list of archetypes and prompt you to select an archetype and
supply the necessary identifiers. Since the default value of the parameter interactiveMode is true,
all you have to do to generate a new Maven project is run mvn archetype:generate.

$ mvn archetype:generate
[INFO] --
[INFO] Building Maven Default Project
[INFO] task-segment: [archetype:generate] (aggregator-style)
[INFO] [archetype:generate]
[INFO] Generating project in Interactive mode
[INFO] No archetype defined. Using maven-archetype-quickstart
Choose archetype:
1: internal -> appfuse-basic-jsf
2: internal -> appfuse-basic-spring
3: internal -> appfuse-basic-struts
4: internal -> appfuse-basic-tapestry
5: internal -> appfuse-core
6: internal -> appfuse-modular-jsf
7: internal -> appfuse-modular-spring
8: internal -> appfuse-modular-struts
9: internal -> appfuse-modular-tapestry
10: internal -> maven-archetype-j2ee-simple

207

11: internal -> maven-archetype-marmalade-mojo
12: internal -> maven-archetype-mojo
13: internal -> maven-archetype-portlet
14: internal -> maven-archetype-profiles
15: internal -> maven-archetype-quickstart
16: internal -> maven-archetype-site-simple
17: internal -> maven-archetype-site
18: internal -> maven-archetype-webapp
19: internal -> jini-service-archetype
20: internal -> softeu-archetype-seam
21: internal -> softeu-archetype-seam-simple
22: internal -> softeu-archetype-jsf
23: internal -> jpa-maven-archetype
24: internal -> spring-osgi-bundle-archetype
25: internal -> confluence-plugin-archetype
26: internal -> jira-plugin-archetype
27: internal -> maven-archetype-har
28: internal -> maven-archetype-sar
29: internal -> wicket-archetype-quickstart
30: internal -> scala-archetype-simple
31: internal -> lift-archetype-blank
32: internal -> lift-archetype-basic
33: internal -> cocoon-22-archetype-block-plain
34: internal -> cocoon-22-archetype-block
35: internal -> cocoon-22-archetype-webapp
36: internal -> myfaces-archetype-helloworld
37: internal -> myfaces-archetype-helloworld-facelets
38: internal -> myfaces-archetype-trinidad
39: internal -> myfaces-archetype-jsfcomponents
40: internal -> gmaven-archetype-basic
41: internal -> gmaven-archetype-mojo
Choose a number: 15

The first thing that the archetype:generate goal does in interactive mode is print out a list of
archetypes that it is aware of. The Maven Archetype plugin ships with an archetype catalog which
includes a reference to all of the standard, simple Maven archetypes (10-18). The plugin's archetype
catalog also contains a number of references to compelling third-party archetypes such as archetypes
which can be used to create AppFuse projects, Confluence and JIRA plugins, Wicket applications,
Scala applications, and Groovy projects. For a brief overview of these third-party archetypes, see
Section 12.3.2, “Notable Third-Party Archetypes”.

Once you select an archetype, the Maven Archetype plugin downloads the archetype, and then asks you
to supply the following values for your new project:

• groupId

• artifactId

• version

• package

208

Define value for groupId: : org.sonatype.mavenbook
Define value for artifactId: : quickstart
Define value for version: 1.0-SNAPSHOT: : 1.0-SNAPSHOT
Define value for package: org.sonatype.mavenbook: : org.sonatype.mavenbook
Confirm properties configuration:
groupId: org.sonatype.mavenbook
artifactId: quickstart
version: 1.0-SNAPSHOT
package: org.sonatype.mavenbook
 Y: : Y

Once this interactive portion of the archetype:generate goal execution is finished, the Maven
Archetype plugin will generate the project in a directory named after the artifactId you supplied.

[INFO] Parameter: groupId, Value: org.sonatype.mavenbook
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook
[INFO] Parameter: basedir, Value: /Users/tobrien/tmp
[INFO] Parameter: package, Value: org.sonatype.mavenbook
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: quickstart
[INFO] ********************* End of debug info from resources from \
 generated POM **
[INFO] OldArchetype created in dir: /Users/tobrien/tmp/quickstart
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 1 minute 57 seconds
[INFO] Finished at: Sun Oct 12 15:39:14 CDT 2008
[INFO] Final Memory: 8M/15M
[INFO] --

12.2.3. Using an Archetype from m2eclipse

m2eclipse makes creating a new Maven project from a Maven Archetype very easy by providing an
intuitive wizard for searching for, selecting, and configuring a Maven Archetype. For more information
about generating a Maven project from a Maven Archetype using m2eclipse, see "Creating a Maven
Project from a Maven Archetype"2 in "Developing with Eclipse and Maven"3.

12.3. Available Archetypes

As more and more projects adopt Maven, more and more artifacts are being published by projects as
a way to provide users with a quick way of creating projects from existing templates. This section
discusses some of the simple core archetypes from the Apache Maven as well as providing a survey of
some interesting third-party archetypes.

2 http://www.sonatype.com/books/m2eclipse-book/reference/eclipse-sect-creating-project.html#eclipse-sect-m2e-create-
archetype
3 http://www.sonatype.com/books/m2eclipse-book/

http://www.sonatype.com/books/m2eclipse-book/reference/eclipse-sect-creating-project.html#eclipse-sect-m2e-create-archetype
http://www.sonatype.com/books/m2eclipse-book/reference/eclipse-sect-creating-project.html#eclipse-sect-m2e-create-archetype
http://www.sonatype.com/books/m2eclipse-book/
http://www.sonatype.com/books/m2eclipse-book/reference/eclipse-sect-creating-project.html#eclipse-sect-m2e-create-archetype
http://www.sonatype.com/books/m2eclipse-book/reference/eclipse-sect-creating-project.html#eclipse-sect-m2e-create-archetype
http://www.sonatype.com/books/m2eclipse-book/

209

12.3.1. Common Maven Archetypes

Some of the most straightforward Maven archetypes are contained in the org.apache.maven.archetypes
groupId. Most of the basic archetypes under org.apache.maven.archetypes are very basic templates that
include few options. You'll use them only to provide the most basic features that distinguish a Maven
project from a non-Maven project. For example, the webapp archetype plugin described in this section
just includes a stub of a web.xml file in ${basedir}/src/main/webapp/WEB-INF, and it doesn't
even go as far as providing a Servlet for you to customize. In Section 12.3.2, “Notable Third-Party
Archetypes” you'll see a quick survey of some of the more notable third-party archetype such as the
AppFuse and Cocoon artifacts.

The following archetypes can be found in the groupId org.apache.maven.archetypes:

12.3.1.1. maven-archetype-quickstart

The quickstart archetype is a simple project with JAR packaging and a single dependency on JUnit.
After generating a project with the quickstart archetype, you will have a single class named App in the
default package with a main() method that prints "Hello World!" to standard output. You will also
have a single JUnit test class named AppTest with a testApp() method with a trivial unit test.

12.3.1.2. maven-archetype-webapp

This archetype creates a simple project with WAR packaging and a single dependency on JUnit.
${basedir}/src/main/webapp contains a simple shell of a web application: an index.jsp page
and the simplest possible web.xml file. Even though the archetype includes a dependency on JUnit,
this archetype does not create any unit tests. If you were looking for a functional web application, this
archetype is going to disappoint you. For more relevant web archetypes, see Section 12.3.2, “Notable
Third-Party Archetypes”.

12.3.1.3. maven-archetype-mojo

This archetype creates a simple project with maven-plugin packaging and a single mojo class named
MyMojo in the project's default package. The MyMojo class contains a touch goal which is bound to the
process-resources phase, it creates a file named touch.txt in the target/ directory of the new
project when it is executed. The new project will have a dependency on maven-plugin-api and JUnit.

12.3.2. Notable Third-Party Archetypes

This section is going to give you a brief overview of some of the archetypes available from third-
parties not associated with the Apache Maven project. If you are looking for a more comprehensive
list of available archetypes, take a look at the list of archetypes in m2eclipse. m2eclipse allows you to
create a new Maven project from an ever growing list of approximately 80 archetypes which span an
amazing number of projects and technologies. "Creating a Maven Project from a Maven Archetype"4

4 http://www.sonatype.com/books/m2eclipse-book/reference/eclipse-sect-creating-project.html#eclipse-sect-m2e-create-
archetype

http://www.sonatype.com/books/m2eclipse-book/reference/eclipse-sect-creating-project.html#eclipse-sect-m2e-create-archetype
http://www.sonatype.com/books/m2eclipse-book/reference/eclipse-sect-creating-project.html#eclipse-sect-m2e-create-archetype
http://www.sonatype.com/books/m2eclipse-book/reference/eclipse-sect-creating-project.html#eclipse-sect-m2e-create-archetype

210

in "Developing with Eclipse and Maven"5 contains a list of archetypes which are immediately available
to you when you use m2eclipse. The archetypes listed in this section are available on the default list of
archetypes generated by the interactive execution of the generate goal.

12.3.2.1. AppFuse

AppFuse is an application framework developed by Matt Raible. You can think of AppFuse as something
of a Rosetta Stone for a few very popular Java technologies like the Spring Framework, Hibernate,
and iBatis. Using AppFuse you can very quickly create an end-to-end multi-tiered application that can
plugin into several front-end web frameworks like Java Server Faces, Struts, and Tapestry. Starting with
AppFuse 2.0, Matt Raible has been transitioning the framework to Maven 2 to take advantage of the
dependency management and archetype capabilities. AppFuse 2 provides the following archetypes all
in the groupId org.appfuse.archetypes:

appfuse-basic-jsf and appfuse-modular-jsf
End-to-end application using Java Server Faces in the presentation layer

appfuse-basic-spring and appfuse-modular-spring
End-to-end application using Spring MVC in the presentation layer

appfuse-basic-struts and appfuse-modular-struts
End-to-end application using Struts 2 in the presentation layer

appfuse-basic-tapestry and appfuse-modular-tapestry
End-to-end application using Tapestry in the presentation layer

appfuse-core

Persistence and object model without the presentation layer

Archetypes following the appfuse-basic-* pattern are entire end-to-end applications in a single
Maven project, and archetypes following the appfuse-modular-* pattern are end-to-end applications
in a multimodule Maven project which separates the core model objects and persistence logic from the
web front-end. Here's an example from generating a project to running a web application for the modular
Spring MVC application:

$ mvn archetype:generate \
 -DarchetypeArtifactId=appfuse-modular-spring \
 -DarchetypeGroupId=org.appfuse.archetypes \
 -DgroupId=org.sonatype.mavenbook \
 -DartifactId=mod-spring \
 -Dversion=1.0-SNAPSHOT \
 -DinteractiveMode=false[INFO] Scanning for projects...
...
[INFO] [archetype:generate]
[INFO] Generating project in Batch mode
[INFO] Archetype [org.appfuse.archetypes:appfuse-modular-spring:RELEASE]

5 http://www.sonatype.com/books/m2eclipse-book/

http://www.sonatype.com/books/m2eclipse-book/
http://www.sonatype.com/books/m2eclipse-book/

211

 found in catalog
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook
[INFO] Parameter: basedir, Value: /Users/tobrien/tmp
[INFO] Parameter: package, Value: org.sonatype.mavenbook
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: mod-spring
...
[INFO] OldArchetype created in dir: /Users/tobrien/tmp/mod-spring
[INFO] --
[INFO] BUILD SUCCESSFUL
$ cd mod-spring
$ mvn
... (an overwhelming amount of activity ~5 minutes)
$ cd web
$ mvn jetty:run-war
... (Maven Jetty plugin starts a Servlet Container on port 8080)

From generating a project with the AppFuse archetype to running a web application with a authentication
and user-management system takes all of 5 minutes. This is the real power of using a Maven Archetype
as a foundation for a new application. We oversimplified the AppFuse installation process a bit and left
out the important part where you download and install a MySQL database, but that's easy enough to
figure out by reading the AppFuse Quickstart Documentation6.

12.3.2.2. Confluence and JIRA plugins

Atlassian has created some archetypes for people interested in developing plugins for both Confluence
and JIRA. Confluence and JIRA are, respectively, a Wiki and an issue tracker both of which have
gained a large open source user base through granting free licenses for open source projects. Both
the jira-plugin-archetype and the confluence-maven-archetype artifacts are under the
com.atlassian.maven.archetypes groupId. When you generate a Confluence plugin, the archetype will
generate a pom.xml which contains the necessary references to the Atlassian repositories and a
dependency on the confluence artifact. The resulting Confluence plugin project will have a single
example macro class and an atlassian-plugin.xml descriptor. Generating a project from the Jira archetype
creates a project with a single, blank MyPlugin class and an atlassian-plugin.xml descriptor in
${basedir}/src/main/resources.

For more information about developing Confluence plugins with Maven 2, see Developing Confluence
Plugins with Maven 27 on the Confluence project's Wiki. For more information about developing Jira
plugins with Maven 2, see How to Build and Atlassian Plugin8 on the Atlassian Developer Network.

12.3.2.3. Wicket

Apache Wicket is a component-oriented web framework which focused on managing the server-side
state of a number of components written in Java and simple HTML. Where a framework like Spring

6 http://appfuse.org/display/APF/AppFuse+QuickStart
7 http://confluence.atlassian.com/display/DISC/Developing+Confluence+Plugins+with+Maven+2
8 http://confluence.atlassian.com/display/DEVNET/How+to+Build+an+Atlassian+Plugin

http://appfuse.org/display/APF/AppFuse+QuickStart
http://confluence.atlassian.com/display/DISC/Developing+Confluence+Plugins+with+Maven+2
http://confluence.atlassian.com/display/DISC/Developing+Confluence+Plugins+with+Maven+2
http://confluence.atlassian.com/display/DEVNET/How+to+Build+an+Atlassian+Plugin
http://appfuse.org/display/APF/AppFuse+QuickStart
http://confluence.atlassian.com/display/DISC/Developing+Confluence+Plugins+with+Maven+2
http://confluence.atlassian.com/display/DEVNET/How+to+Build+an+Atlassian+Plugin

212

MVC or Ruby on Rails focuses on merging objects within a request with a series of page templates,
Wicket is very strongly focused on capturing interactions and page structure in a series of POJO Java
classes. In an age where hype-driven tech media outlets are proclaiming the "Death of Java", Wicket
is a contrarian approach to the design and assembly of web applications. To generate a Wicket project
with the Maven Archetype plugin:

$ mvn archetype:generate
... (select the "wicket-archetype-quickstart" artifact from the interactive \
 menu) ...
... (supply a groupId, artifactId, version, package) ...
... (assuming the artifactId is "ex-wicket") ...
$ cd ex-wicket
$ mvn install
... (a lot of Maven activity) ...
$ mvn jetty:run
... (Jetty will start listening on port 8080) ...

Just like the AppFuse archetype, this archetype creates a shell web application which can be immediately
executed with the Maven Jetty plugin. If you hit http://localhost:8080/ex-wicket, you be able to see the
newly created web application in a servlet container.

Note
Think about the power of Maven Archetypes versus the copy and paste approach that has
characterized the last few years of web development. Six years ago, without the benefit
of something like the Maven Archetype plugin, you would have had to slog through a
book about AppFuse or a book about Wicket and followed circuitous pedagogy about
the framework before you could actually fire it up in servlet container. It was either that
or just copying an existing project and customizing it for your needs. With the Maven
Archetype plugin, framework developers can now give you a working, customized shell
for an application in a matter of minutes. This is a sea change that has yet to hit the
enterprise development space, and you can expect that this handful of available third-party
artifacts will balloon to hundreds within the next few years.

12.4. Publishing Archetypes
Once you've generated a good set of artifacts, you will probably want to share them with the world. To
do this, you'll need to create something called an Archetype catalog. An Archetype catalog is an XML
file which the Maven Archetype plugin can consult to locate archetypes in a repository. Example 12.1,
“Archetype Catalog for the Apache Cocoon Project” shows the contents of the Archetype catalog for
the Apache Cocoon project which can be found at http://cocoon.apache.org/archetype-catalog.xml.

Example 12.1. Archetype Catalog for the Apache Cocoon Project

<archetype-catalog>
 <archetypes>

http://localhost:8080/ex-wicket
http://cocoon.apache.org/archetype-catalog.xml

213

 <archetype>
 <groupId>org.apache.cocoon</groupId>
 <artifactId>cocoon-22-archetype-block-plain</artifactId>
 <version>1.0.0</version>
 <description>Creates an empty Cocoon block; useful if you want to add
 another block to a Cocoon application</description>

 </archetype>
 <archetype>
 <groupId>org.apache.cocoon</groupId>
 <artifactId>cocoon-22-archetype-block</artifactId>
 <version>1.0.0</version>
 <description>Creates a Cocoon block containing some small
 samples</description>
 </archetype>

 <archetype>
 <groupId>org.apache.cocoon</groupId>
 <artifactId>cocoon-22-archetype-webapp</artifactId>
 <version>1.0.0</version>
 <description>Creates a web application configured to host Cocoon blocks.
 Just add the block dependencies</description>
 </archetype>
 </archetypes>

</archetype-catalog>

To generate such a catalog, you'll need crawl a Maven repository and generate this catalog XML file.
The Archetype plugin has a goal named crawl which does just this, and it assumes that it has access
to the file system that hosts a repository. If you run archetype:crawl from the command line with no
arguments, the Archetype plugin will crawl your local repository searching for Archetypes and it will
create an archetype-catalog.xml in ~/.m2/repository.

[tobrien@MACBOOK repository]$ mvn archetype:crawl
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] --
[INFO] Building Maven Default Project
[INFO] task-segment: [archetype:crawl] (aggregator-style)
[INFO] --
[INFO] [archetype:crawl]
repository /Users/tobrien/.m2/repository
catalogFile null
[INFO] Scanning /Users/tobrien/.m2/repository/ant/ant/1.5/ant-1.5.jar
[INFO] Scanning /Users/tobrien/.m2/repository/ant/ant/1.5.1/ant-1.5.1.jar
[INFO] Scanning /Users/tobrien/.m2/repository/ant/ant/1.6/ant-1.6.jar
[INFO] Scanning /Users/tobrien/.m2/repository/ant/ant/1.6.5/ant-1.6.5.jar
...
[INFO] Scanning /Users/tobrien/.m2/repository/xom/xom/1.0/xom-1.0.jar
[INFO] Scanning /Users/tobrien/.m2/repository/xom/xom/1.0b3/xom-1.0b3.jar
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 31 seconds

214

[INFO] Finished at: Sun Oct 12 16:06:07 CDT 2008
[INFO] Final Memory: 6M/12M
[INFO] --

If you are interested in creating an Archetype catalog it is usually because you are an open source project
or organization which has a set of archetypes to share. These archetypes are likely already available in a
repository, and you need to crawl this repository and generate a catalog in a file system. In other words,
you'll probably want to scan a directory on an existing Maven repository and generate an Archetype
plugin at the root of the repository. To do this, you'll need to pass in the catalog and repository parameters
to the archetype:crawl goal.

The following command line assumes that you are trying to generate a catalog file in /var/www/html/
archetype-catalog.xml for a repository hosted in /var/www/html/maven2.

$ mvn archetype:crawl -Dcatalog=/var/www/html/archetype-catalog.xml \
 [INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] --
[INFO] Building Maven Default Project
[INFO] task-segment: [archetype:crawl] (aggregator-style)
[INFO] --
[INFO] [archetype:crawl]
repository /Users/tobrien/tmp/maven2
catalogFile /Users/tobrien/tmp/blah.xml
-Drepository=/var/www/html/maven2
...

Chapter 13. Developing with
Flexmojos
13.1. Introduction

This chapter provides an overview of the Flexmojos project for people interested in using Maven to
develop Flex applications and libraries.

13.2. Configuring Build Environment for Flexmojos

Before you attempt to compile Flex libraries and applications with Maven, you will need to complete
two configuration tasks:

• Configure your Maven settings to reference a repository which contains the Flex framework

• Add the Flash Player to your PATH to support Flex unit testing

• (Optional) Configure your Maven Settings to include the Sonatype plugin group

13.2.1. Referencing a Repository with the Flex Framework

To setup your Maven environment for Flexmojos, you have two options: you can reference the Sonatype
Flexmojos repository directly in a pom.xml, or you can install Nexus and add the Sonatype Flexmojos
repository as a proxy repository in your own repository manager. While the most straightforward option
is to reference the repository directly, downloading and installing Nexus will give you the control and
flexibility you need to cache and manage artifacts generated by your own build. If you are just interested
in getting up and running with Flexmojos, read Section 13.2.1.1, “Referencing Sonatype's Flexmojos
Repository in a POM” next. If you are interested in a long-term solution which can be deployed to
support a development team, continue to Section 13.2.1.2, “Proxying Sonatype's Flexmojos Repository
with Nexus”.

If your organization is already using Sonatype Nexus to proxy remote repositories, you probably
have a customized ~/.m2/settings.xml file which points to a single Nexus group. If this is your
situation, you should add a Proxy repository for the Sonatype Flexmojos repository group at http://
repository.sonatype.org/content/groups/flexgroup/ to the Nexus Repository Group that is referenced by
your development team. Adding a proxy repository for this remote group and then adding this group to
your Nexus installation's public repository group will give clients of your Nexus instance access to the
artifacts from the Sonatype repository.sonatype.org Nexus instance.

http://repository.sonatype.org/content/groups/flexgroup/
http://repository.sonatype.org/content/groups/flexgroup/

216

13.2.1.1. Referencing Sonatype's Flexmojos Repository in a POM

Flexmojos depends on a few artifacts which are not currently available from the Central Maven
repository. These artifacts are available from a Repository hosted by Sonatype. To use Flexmojos, you
will need to reference this repository from your project's pom.xml. To do this, add the repositories
element shown in Example 13.1, “Adding a Reference to Sonatype's FlexMojos Repository in a POM”
to your project's pom.xml.

Example 13.1. Adding a Reference to Sonatype's FlexMojos Repository in a POM

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>test</groupId>
 <artifactId>test</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>pom</packaging>

 <modules>
 <module>swc</module>
 <module>swf</module>
 <module>war</module>
 </modules>

 <repositories>
 <repository>
 <id>flexmojos</id>
 <url>http://repository.sonatype.org/content/groups/flexgroup/</url>
 </repository>
 </repositories>

</project>

The XML shown in Example 13.1, “Adding a Reference to Sonatype's FlexMojos Repository in a
POM”, will add this repository to the list of repositories Maven will consult when it attempts to download
artifacts and plugins.

13.2.1.2. Proxying Sonatype's Flexmojos Repository with Nexus

Instead of pointing directly at the Sonatype Flexmojos repository, Sonatype recommends that you install
a repository manager and proxy the Sonatype public repository. When you proxy a remote repository
with a repository manager such as Nexus, you gain a level of control and stability not possible when
your build relies directly on external resources. In addition to this control and stability, a repository
manager also provides you with an deployment target for binary artifacts generated by your own builds.
For instructions on downloading, installing, and configuring Nexus, refer to the Installation chapter in
Repository Management with Nexus1. Once Nexus is installed and started, complete the following steps
to add a proxy repository for the Sonatype public repository.

1 http://www.sonatype.com/books/nexus-book/reference/install.html

http://www.sonatype.com/books/nexus-book/reference/install.html
http://www.sonatype.com/books/nexus-book/reference/install.html
http://www.sonatype.com/books/nexus-book/reference/install.html

217

To add a new proxy repository, click on the Repositories link under Views/Repositories in the
Nexus menu on the left-hand side of the Nexus user interface. Clicking on Repositories will load the
Repositories panel. In the Repositories panel, click on the Add.. button and select Proxy Repository as
shown in Figure 13.1, “Adding a Proxy Repository to Sonatype Nexus”.

Figure 13.1. Adding a Proxy Repository to Sonatype Nexus

Once you've created a new Proxy repository, you will need to configure it to point to the Sonatype
Flexmojos repository. Select the new repository, and then select the Configuration tab in the lower half
of the window. Populate the following field with the values shown in Figure 13.2, “Configuring the
Sonatype Flexmojos Proxy Repository”.

• Repository ID is "sonatype-flexmojos"

• Repository Name is "Sonatype Flexmojos Proxy"

• The Remote Storage Location is http://repository.sonatype.org/content/groups/flexgroup/

http://repository.sonatype.org/content/groups/flexgroup/

218

Figure 13.2. Configuring the Sonatype Flexmojos Proxy Repository

Once you have populated the fields shown in Figure 13.2, “Configuring the Sonatype Flexmojos
Proxy Repository” click the Save button to save the proxy repository and start proxying the Sonatype
Flexmojos repository. Nexus ships with a public repository group, which combines several repositories
into a single point of contact for Maven clients. To complete our setup of the new proxy repository,
you should add this new proxy repository to the Nexus public group. To do this, return to the list
of repositories which should now be visible in the upper half of the Repositories panel as shown in
Figure 13.2, “Configuring the Sonatype Flexmojos Proxy Repository”. Click on the Public Repositories
group and then click on the Configuration tab in the lower half of the Repository panel. Clicking the
Configuration tab will expose the Group configuration form shown in Figure 13.3, “Adding the Sonatype
Flexmojos Proxy to the Public Repositories Group”.

219

Figure 13.3. Adding the Sonatype Flexmojos Proxy to the Public Repositories Group

To add the Sonatype Public Proxy to the Public Repositories group simply drag and drop the Sonatype
Public Proxy repository from the Available Repositories list to the Ordered Group Repositories list.
Click Save, and you have successfully added a proxy of the Sonatype Flexmojos repository to your
Nexus installation. Whenever a client requests an artifact from this repository group, if Nexus has
not already cached a matching artifact, it will query the Sonatype Flexmojos repository at http://
repository.sonatype.org/content/groups/flexgroup/. Your Nexus installation will maintain a local cache
of all artifacts retrieved from the Sonatype Flexmojos repository. This local cache gives you more
control and contributes to a more stable build environment. If you are setting up a group of developers
to rely upon artifacts from the Sonatype public repository, you'll have a completely self-contained build
environment that won't be subject to the availability of the Sonatype repository once the necessary
artifacts have been cached by your Nexus instance.

The final step is connecting your Maven installation to the Nexus instance you just configured. You will
need to update your Maven Settings to use your Nexus repository group as a mirror for all repositories.
To do this, you need to put the following XML in your ~/.m2/settings.xml file.

Example 13.2. Settings XML for Local Nexus Instance

<settings>

http://repository.sonatype.org/content/groups/flexgroup/
http://repository.sonatype.org/content/groups/flexgroup/

220

 <mirrors>
 <mirror>
 <!--This sends everything else to /public -->
 <id>nexus</id>
 <mirrorOf>*</mirrorOf>
 <url>http://localhost:8081/nexus/content/groups/public</url>
 </mirror>
 </mirrors>
 <profiles>
 <profile>
 <id>nexus</id>
 <!—-Enable snapshots for the built in central repo to direct -->
 <!--all requests to nexus via the mirror -->
 <repositories>
 <repository>
 <id>central</id>
 <url>http://central</url>
 <releases><enabled>true</enabled></releases>
 <snapshots><enabled>true</enabled></snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>central</id>
 <url>http://central</url>
 <releases><enabled>true</enabled></releases>
 <snapshots><enabled>true</enabled></snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>
 <activeProfiles>
 <!—-make the profile active all the time -->
 <activeProfile>nexus</activeProfile>
 </activeProfiles>
</settings>

This XML file configures Maven to consult a single public repository group for all configured
repositories and plugin repositories. It is a simple way to guarantee that every request for an artifact is
made through your Nexus installation.

13.2.2. Configuring Environment to Support Flex Unit Tests

Flexmojos expects to be able to launch the stand-alone Flash Play to execute unit tests. In order for
this to work, you will need to add the stand-alone Flash Player to your PATH, or you will need to pass
the location of the Flash Player executable to your build using the -DflashPlayer.command options.
When executing a unit test, Flex Mojos expects to launch the following platform-specific executables
for the stand-alone Flash Player:

Microsoft Windows
FlexMojos will attempt to launch the FlashPlayer.exe binary. To support execution of unit
tests, add the directory containing FlashPlayer.exe to your PATH or pass in the location of

221

the FlashPlayer.exe binary to Maven using the -DflashPlayer.command=${filepath}
command-line option.

Macintosh OSX
FlexMojos will attempt to launch the "Flash Player" application. To support the execution of unit
tests, add the directory containing "Flash Player" to your PATH or pass the path to the executable
to Maven using the -DflashPlayer.command=${filepath} command-line option.

Unix (Linux, Solaris, etc.)
FlexMojos will attempt to launch the flashplayer executable. To support the execution of unit
tests, add the directory containing flashplayer to your PATH or pass the path to the executable
to Maven using the -DflashPlayer.command=${filepath} command-line option.

Note

On a Linux machine, you will need to have X virtual framebuffer (Xvfb) installed to run
unit tests in a headless build. For more information about Xvfb, click here2.

If you have been developing Flash Applications with Adobe Flash CS4 or Adobe Flex Builder or if you
have been viewing flash content in a browser, you probably have the Flash Player installed somewhere
on your workstation. While it is possible to configure Maven to use one of these players for Flex unit
tests, you'll want to make sure that you are running the debug version of the Flash Player. To minimize
the potential for incompatibility, you should download one of the Flash Player's listed below and install
it on your local workstation. To download the standalone Flash Player for you environment:

• Windows: http://download.macromedia.com/pub/flashplayer/updaters/10/
flashplayer_10_sa_debug.exe

• Mac OSX: http://download.macromedia.com/pub/flashplayer/updaters/10/
flashplayer_10_sa_debug.app.zip

• Linux: http://download.macromedia.com/pub/flashplayer/updaters/10/
flash_player_10_linux_dev.tar.gz

To install this player and add it to your PATH on an OSX machine, run the following commands:

$ wget http://download.macromedia.com/pub/flashplayer/updaters/10/\
flashplayer_10_sa_debug.app.zip
$ unzip flashplayer_10_sa_debug.app.zip
$ sudo cp -r Flash\ Player.app /Applications/
$ export PATH=/Applications/Flash\ Player.app/Contents/MacOS:/usr/local/bin:/usr/local/maven/bin:/usr/kerberos/sbin:/usr/kerberos/bin:/usr/java/latest/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/usr/bin:/usr/local/bin

Instead of adding the path for the Flash Player to your PATH on the command-line, you should
configure your environment's profile. On OSX, you would add the last export command to you
~/.bash_profile.

http://en.wikipedia.org/wiki/Xvfb
http://download.macromedia.com/pub/flashplayer/updaters/10/flashplayer_10_sa_debug.exe
http://download.macromedia.com/pub/flashplayer/updaters/10/flashplayer_10_sa_debug.exe
http://download.macromedia.com/pub/flashplayer/updaters/10/flashplayer_10_sa_debug.app.zip
http://download.macromedia.com/pub/flashplayer/updaters/10/flashplayer_10_sa_debug.app.zip
http://download.macromedia.com/pub/flashplayer/updaters/10/flash_player_10_linux_dev.tar.gz
http://download.macromedia.com/pub/flashplayer/updaters/10/flash_player_10_linux_dev.tar.gz

222

13.2.3. Adding FlexMojos to Your Maven Settings' Plugin Groups

If you need to run FlexMojos goals from the command-line, it will be more convenient if you add the
Sonatype Plugin groups to your Maven Settings. To do this, open up ~/.m2/settings.xml and add
the following plugin groups:

Example 13.3. Adding Sonatype Plugins to Maven Settings

<pluginGroups>
 <pluginGroup>com.sonatype.maven.plugins</pluginGroup>
 <pluginGroup>org.sonatype.plugins</pluginGroup>
</pluginGroups>

Once you've added these plugin groups to your Maven Settings you can invoke a FlexMojos goal using
the plugin prefix flexmojos. Without this configuration, calling the flexbuilder goal would involve
the following command-line:
$ mvn org.sonatype.flexmojos:flexmojos-maven-plugin:3.2.0:flexbuilder

With the org.sonatype.plugins group in your Maven settings, the same goal can be invoked with:
$ mvn flexmojos:flexbuilder

13.3. Creating a Flex Mojos Project from an Archetype
Flexmojos has a set of archetypes which can be used to quickly create a new Flex project. The following
archetypes are all in the org.sonatype.flexmojos group with a version of 3.3.0:

flexmojos-archetypes-library
Creates a simple Flex Library project which produces a SWC

flexmojos-archetypes-application
Creates a simple Flex Application with produces a SWF

flexmojos-archetypes-modular-webapp
Creates a Multimodule project which consists of a project that produces a SWC which is
consumed by a project which produces a SWF that is ultimately presented in a project that
generates a WAR

13.3.1. Creating a Flex Library

To create a Flex Library Project, execute the following command at the command-line:
$ mvn archetype:generate \
 -DarchetypeRepository=http://repository.sonatype.org/content/groups/public \
 -DarchetypeGroupId=org.sonatype.flexmojos \
 -DarchetypeArtifactId=flexmojos-archetypes-library \
 -DarchetypeVersion=3.3.0
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.

223

[INFO] com.sonatype.maven.plugins: checking for updates from central
...
[INFO] [archetype:generate]
[INFO] Generating project in Interactive mode
[INFO] Archetype defined by properties
...
Define value for groupId: : org.sonatype.test
Define value for artifactId: : sample-library
Define value for version: 1.0-SNAPSHOT: : 1.0-SNAPSHOT
Define value for package: org.sonatype.test: : org.sonatype.test
Confirm properties configuration:
groupId: org.sonatype.test
artifactId: sample-library
version: 1.0-SNAPSHOT
package: org.sonatype.test
 Y: : Y[INFO] Parameter: groupId, Value: org.sonatype.test
[INFO] Parameter: packageName, Value: org.sonatype.test
[INFO] Parameter: basedir, Value: /Users/Tim
[INFO] Parameter: package, Value: org.sonatype.test
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: sample-library
[INFO] --
[INFO] BUILD SUCCESSFUL

If you look in the directory sample-library/ you will see that the project consists of the directory structure
shown in Figure 13.4, “Flexmojo Library Archetype File Structure”.

Figure 13.4. Flexmojo Library Archetype File Structure

The product of the simple Flex library archetype only contains three files: a POM, one source, and a
unit test. Let's examine each of these files. First, the Project Object Model (POM).

Example 13.4. Project Object Model for Flex Library Archetype

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">

224

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.sonatype.test</groupId>
 <artifactId>sample-library</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>swc</packaging>

 <name>test Flex</name>

 <build>
 <sourceDirectory>src/main/flex</sourceDirectory>
 <testSourceDirectory>src/test/flex</testSourceDirectory>
 <plugins>
 <plugin>
 <groupId>org.sonatype.flexmojos</groupId>
 <artifactId>flexmojos-maven-plugin</artifactId>
 <version>3.3.0</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>com.adobe.flex.framework</groupId>
 <artifactId>flex-framework</artifactId>
 <version>3.2.0.3958</version>
 <type>pom</type>
 </dependency>

 <!-- flexmojos Unit testing support -->
 <dependency>
 <groupId>org.sonatype.flexmojos</groupId>
 <artifactId>flexmojos-unittest-support</artifactId>
 <version>3.3.0</version>
 <type>swc</type>
 <scope>test</scope>
 </dependency>
 </dependencies>

</project>

Example 13.4, “Project Object Model for Flex Library Archetype” is very simple, the key to this POM
is the flexmojos-maven-plugin configuration which sets extensions to true. This configuration
customizes the lifecycle for the swc packaging which is defined in the flexmojos-maven-plugin.
The archetype then includes the flex-framework dependency and the flexmojos-unittest-
support test-scoped dependency. The flex-framework dependency is a POM which contains
references to the SWC libraries and resources required to compile Flex applications.

In Example 13.4, “Project Object Model for Flex Library Archetype”, the packaging is very critical.
A POMs packaging type controls the lifecycle it uses to produce build output. The value swc in the
packaging element is Maven's cue to look for the Flex-specific lifecycle customizations which are

225

provided by the flexmojos-maven-plugin. The other important part of this POM is the build element
which specifies the location of the Flex source code and the Flex unit tests. Next, let's take a quick look
at Example 13.5, “Flex Library Archetype's Sample App Class” which contains the sample Actionscript
which was created by this archetype.

Example 13.5. Flex Library Archetype's Sample App Class

package org.sonatype.test {
 public class App {
 public static function greeting(name:String):String {
 return "Hello, " + name;
 }
 }
}

While this code is underwhelming, it does provide you with a quick model and a quick pointer: "Place
More Code Here". While it might seem silly to test code this simple, a sample test named TestApp.as
is provides in the src/test/flex directory. This test is shown in Example 13.6, “Unit Test for Library
Archetype's App Class”.

Example 13.6. Unit Test for Library Archetype's App Class

package org.sonatype.test {

 import flexunit.framework.TestCase;

 public class TestApp extends TestCase {

 /**
 * Tests our greeting() method
 */
 public function testGreeting():void {
 var name:String = "Buck Rogers";
 var expectedGreeting:String = "Hello, Buck Rogers";

 var result:String = App.greeting(name);
 assertEquals("Greeting is incorrect", expectedGreeting, result);
 }
 }
}

To run this build, go to the sample-library project directory and run mvn install.
$ mvn install
[INFO] Scanning for projects...
[INFO] --
[INFO] Building sample-library Flex
[INFO] task-segment: [install]
[INFO] --
[INFO] [resources:resources]
[INFO] [flexmojos:compile-swc]
[INFO] flexmojos 3.3.0 - GNU GPL License (NO WARRANTY) - \
See COPYRIGHT file
[WARNING] Nothing expecified to include. Assuming source and resources folders.

226

[INFO] Flex compiler configurations:
-compiler.headless-server=false
-compiler.keep-all-type-selectors=false
-compiler.keep-generated-actionscript=false
-compiler.library-path ~/.m2/repository/com/adobe/flex/framework/flex/\
3.2.0.3958...
-compiler.namespaces.namespace http://www.adobe.com/2006/mxml
 target/classes/configs/mxml-manifest.xml
-compiler.optimize=true
-compiler.source-path src/main/flex
...
[INFO] [resources:testResources]
[WARNING] Using platform encoding (MacRoman actually) to copy filtered \
 resources, i.e. build is platform dependent!
[INFO] skip non existing resourceDirectory src/test/resources
[INFO] [flexmojos:test-compile]
[INFO] flexmojos 3.3.0 - GNU GPL License (NO WARRANTY) - \
See COPYRIGHT file
[INFO] Flex compiler configurations:
-compiler.include-libraries ~/.m2/repository/org/sonatype/flexmojos/\
 flexmojos-unittest-support...
-compiler.keep-generated-actionscript=false
-compiler.library-path ~/.m2/repository/com/adobe/flex/framework/flex
 3.2.0.3958/flex-3.2.0....
-compiler.optimize=true
-compiler.source-path src/main/flex target/test-classes src/test/flex
-compiler.strict=true
-target-player 9.0.0
-use-network=true
-verify-digests=true -load-config=
[INFO] Already trust on target/test-classes/TestRunner.swf
[INFO] [flexmojos:test-run]
[INFO] flexmojos 3.3.0 - GNU GPL License (NO WARRANTY) - \
See COPYRIGHT file
[INFO] flexunit setup args: null
[INFO] --
[INFO] Tests run: 1, Failures: 0, Errors: 0, Time Elpased: 0 sec
[INFO] [install:install]

Note

To execute Flex unit tests you will need to configure your PATH environment variable
to include the Flash Player. For more information about configuring FlexMojos for unit
tests, see Section 13.2.2, “Configuring Environment to Support Flex Unit Tests”.

When you ran mvn install on this project, you should notice in the output that Maven and Flexmojos
plugin is take care of managing all of the libraries and the dependencies for the Flex compiler. Much
like Maven excels at helping Java developers manage the contents of a Java classpath, Maven can help
Flex developers manage the complex of compile paths. You also might have been shocked when the
Flexmojos project started a web browser or the Flash Player and used it to execute the TestApp.as class
against the project's source code.

227

13.3.2. Creating a Flex Application

To create a Flex application from a Maven archetype, execute the following command:

$ mvn archetype:generate \
 -DarchetypeRepository=http://repository.sonatype.org/content/groups/public \
 -DarchetypeGroupId=org.sonatype.flexmojos \
 -DarchetypeArtifactId=flexmojos-archetypes-application \
 -DarchetypeVersion=3.3.0
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] com.sonatype.maven.plugins: checking for updates from central
...
[INFO] [archetype:generate]
[INFO] Generating project in Interactive mode
[INFO] Archetype defined by properties
...
Define value for groupId: : org.sonatype.test
Define value for artifactId: : sample-application
Define value for version: 1.0-SNAPSHOT: : 1.0-SNAPSHOT
Define value for package: org.sonatype.test: : org.sonatype.test
Confirm properties configuration:
groupId: org.sonatype.test
artifactId: sample-library
version: 1.0-SNAPSHOT
package: org.sonatype.test
 Y: : Y
[INFO] Parameter: groupId, Value: org.sonatype.test
[INFO] Parameter: packageName, Value: org.sonatype.test
[INFO] Parameter: basedir, Value: /Users/Tim/flex-sample
[INFO] Parameter: package, Value: org.sonatype.test
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: sample-application
[INFO] BUILD SUCCESSFUL

If you look in the directory sample-application/ you will see the filesystem shown in Figure 13.5,
“Directory Structure for Flex Application Archetype”.

228

Figure 13.5. Directory Structure for Flex Application Archetype

Building an application from the Application archetype produces the following POM.

Example 13.7. POM for Flex Application Archetype

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.sonatype.test</groupId>
 <artifactId>sample-application</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>swf</packaging>

 <name>sample-application Flex</name>

 <build>
 <sourceDirectory>src/main/flex</sourceDirectory>
 <testSourceDirectory>src/test/flex</testSourceDirectory>
 <plugins>
 <plugin>
 <groupId>org.sonatype.flexmojos</groupId>
 <artifactId>flexmojos-maven-plugin</artifactId>
 <version>3.3.0</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>com.adobe.flex.framework</groupId>
 <artifactId>flex-framework</artifactId>
 <version>3.2.0.3958</version>
 <type>pom</type>
 </dependency>

229

 <!-- flexmojos Unit testing support -->
 <dependency>
 <groupId>org.sonatype.flexmojos</groupId>
 <artifactId>flexmojos-unittest-support</artifactId>
 <version>3.3.0</version>
 <type>swc</type>
 <scope>test</scope>
 </dependency>
 </dependencies>

</project>

The difference between Example 13.7, “POM for Flex Application Archetype” and Example 13.4,
“Project Object Model for Flex Library Archetype” is that the packaging element is swf instead of
swc. By setting the packaging to swf, the project will produce a Flex application in target/sample-
application-1.0-SNAPSHOT.swf. The sample application created by this archetype displays the
Text "Hello World". Main.mxml can be found in src/main/flex.

Example 13.8. Sample Application Main.mxml

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute">
 <mx:Text text="Hello World!"/>
</mx:Application>

This application also creates a simple FlexUnit test that does nothing more than print out a trace message.
The sample unit test is in src/test/flex/org/sonatype/test.

Example 13.9. Unit Test for Main.mxml

package org.sonatype.test
{

 import flexunit.framework.TestCase;
 import Main;

 public class TestApp extends TestCase
 {

 public function testNothing():void
 {
 //TODO un implemented
 trace("Hello test");
 }
 }
}

13.3.3. Creating a Multi-module Project: Web Application with a Flex
Dependency

To create a multi-module project consisting of a Flex Library project referenced by a Flex Application,
referenced by a Web Application.

230

$ mvn archetype:generate \
 -DarchetypeRepository=http://repository.sonatype.org/content/groups/public \
 -DarchetypeGroupId=org.sonatype.flexmojos \
 -DarchetypeArtifactId=flexmojos-archetypes-modular-webapp \
 -DarchetypeVersion=3.3.0
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] com.sonatype.maven.plugins: checking for updates from central
...
[INFO] [archetype:generate]
[INFO] Generating project in Interactive mode
[INFO] Archetype defined by properties
...
Define value for groupId: : org.sonatype.test
Define value for artifactId: : sample-multimodule
Define value for version: 1.0-SNAPSHOT: : 1.0-SNAPSHOT
Define value for package: org.sonatype.test: : org.sonatype.test
Confirm properties configuration:
groupId: org.sonatype.test
artifactId: sample-library
version: 1.0-SNAPSHOT
package: org.sonatype.test
 Y: : Y
[INFO] Parameter: groupId, Value: org.sonatype.test
[INFO] Parameter: packageName, Value: org.sonatype.test
[INFO] Parameter: basedir, Value: /Users/Tim
[INFO] Parameter: package, Value: org.sonatype.test
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: sample-multimodule
[INFO] --
[INFO] BUILD SUCCESSFUL

If you look in the sample-multimodule/ directory, you will see a directory structure which contains
three projects swc, swf, and war.

Figure 13.6. Directory Structure for Flex Multimodule Archetype

231

The simple top-level POM in this multimodule project is shown in . It consists of module references
to the swc, swf, and war modules.

Example 13.10. Top-level POM Created by Modular Web Application Archetype

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.test</groupId>
 <artifactId>sample-multimodule</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>pom</packaging>

 <modules>
 <module>swc</module>
 <module>swf</module>
 <module>war</module>
 </modules>
</project>

The swc project has a simple POM that resembles the POM shown in Example 13.4, “Project Object
Model for Flex Library Archetype”. Note that the artifactId in this POM differs from the name of
the module directory and is swc-swc.

Example 13.11. swc Module POM

<project>

 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>org.sonatype.test</groupId>
 <artifactId>sample-multimodule</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>

 <groupId>org.sonatype.test</groupId>
 <artifactId>swc-swc</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>swc</packaging>
 <name>swc Library</name>
 <build>
 <sourceDirectory>src/main/flex</sourceDirectory>
 <testSourceDirectory>src/test/flex</testSourceDirectory>
 <plugins>
 <plugin>
 <groupId>org.sonatype.flexmojos</groupId>
 <artifactId>flexmojos-maven-plugin</artifactId>
 <version>3.3.0</version>
 <extensions>true</extensions>
 <configuration>

232

 <locales>
 <locale>en_US</locale>
 </locales>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>com.adobe.flex.framework</groupId>
 <artifactId>flex-framework</artifactId>
 <version>3.2.0.3958</version>
 <type>pom</type>
 </dependency>

 <!-- flexmojos Unit testing support -->
 <dependency>
 <groupId>org.sonatype.flexmojos</groupId>
 <artifactId>flexmojos-unittest-support</artifactId>
 <version>3.3.0</version>
 <type>swc</type>
 <scope>test</scope>
 </dependency>
 </dependencies>

</project>

The swf module's POM resembles the POM in Example 13.7, “POM for Flex Application Archetype”
adding a dependency on the swc-swc artifact. Note that the following POM defines an artifactId
that differs from the directory that stores the module; the artifactId in the following POM is swf-swf.

Example 13.12. swf module POM

<project>

 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>org.sonatype.test</groupId>
 <artifactId>sample-multimodule</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>

 <groupId>org.sonatype.test</groupId>

 <artifactId>swf-swf</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>swf</packaging>
 <name>swf Application</name>

 <build>
 <sourceDirectory>src/main/flex</sourceDirectory>
 <testSourceDirectory>src/test/flex</testSourceDirectory>

233

 <plugins>
 <plugin>
 <groupId>org.sonatype.flexmojos</groupId>
 <artifactId>flexmojos-maven-plugin</artifactId>
 <version>3.3.0</version>
 <extensions>true</extensions>
 <configuration>
 <locales>
 <locale>en_US</locale>
 </locales>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>com.adobe.flex.framework</groupId>
 <artifactId>flex-framework</artifactId>
 <version>3.2.0.3958</version>
 <type>pom</type>
 </dependency>

 <!-- flexmojos Unit testing support -->
 <dependency>
 <groupId>org.sonatype.flexmojos</groupId>
 <artifactId>flexmojos-unittest-support</artifactId>
 <version>3.3.0</version>
 <type>swc</type>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>org.sonatype.test</groupId>
 <artifactId>swf-swc</artifactId>
 <version>1.0-SNAPSHOT</version>
 <type>swc</type>
 </dependency>
 </dependencies>
</project>

Warning

In Example 13.12, “swf module POM”, the dependency on "swf-swc" needs to be changed
to "swc-swc". This is a bug in the modular webapp archetype that is present in the
FlexMojos 3.3.0 release. It will be fixed in the FlexMojos 3.2.0 release.

When you declare a dependency on a SWC, you'll need to specify the type of the dependency so that
Maven can locate the appropriate artifact in the remote or local repository. In this case, the swf-swf
project depends upon the SWC that is generated by the swc-swc project. When you add the dependency
to the swf-swf project, the FlexMojos plugin will add the appropriate SWC file to the Flex Compiler's
library path.

234

Next, take a look at the simple POM in the war module.

Example 13.13. war module POM

<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <artifactId>sample-multimodule</artifactId>
 <groupId>org.sonatype.test</groupId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <groupId>org.sonatype.test</groupId>
 <artifactId>war-war</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>war</packaging>
 <build>
 <plugins>
 <plugin>
 <groupId>org.sonatype.flexmojos</groupId>
 <artifactId>flexmojos-maven-plugin</artifactId>
 <version>3.3.0</version>
 <executions>
 <execution>
 <goals>
 <goal>copy-flex-resources</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>org.sonatype.test</groupId>
 <artifactId>war-swf</artifactId>
 <version>1.0-SNAPSHOT</version>
 <type>swf</type>
 </dependency>
 </dependencies>
</project>

Warning
In Example 13.13, “war module POM”, the dependency on "war-swf" needs to be changed
to "swf-swf". This is a bug in the modular webapp archetype that is present in the
FlexMojos 3.3.0 release. It will be fixed in the FlexMojos 3.2.0 release.

The POM shown in Example 13.13, “war module POM” configures the FlexMojos plugin to execute
the copy-flex-resources goal for this project. The copy-flex-resources goal will copy SWF

235

application into the web application's document root. In this project, running a build and creating a WAR
will copy the swf-swf-1.0-SNAPSHOT.swf file to the web application's root directory in target/
war-war-1.0-SNAPSHOT.

To build the multimodule web application project, run mvn install from the top-level directory. This
should build the swc-swc, swf-swf, and war-war artifacts and product a WAR file in war/target/
war-war-1.0-SNAPSHOT.war which contains the swf-swf-1.0-SNAPSHOT.swf in the document
root of the web application.

Note
To execute Flex unit tests you will need to configure your PATH environment variable
to include the Flash Player. For more information about configuring FlexMojos for unit
tests, see Section 13.2.2, “Configuring Environment to Support Flex Unit Tests”.

13.4. The FlexMojos Lifecycle
The FlexMojos Maven plugin customizes the lifecycle based on the packaging. If your project has a
packaging of type swc or swf, the FlexMojos plugin with execute a customized lifecycle if your
plugin configuration sets the extensions to true. Example 13.14, “Setting Plugin Extensions to True
for Custom Flex Lifecycle” shows the plugin configuration for the flexmojos-maven-plugin with the
extensions set to true.

Example 13.14. Setting Plugin Extensions to True for Custom Flex Lifecycle

 <build>
 <sourceDirectory>src/main/flex</sourceDirectory>
 <testSourceDirectory>src/test/flex</testSourceDirectory>
 <plugins>
 <plugin>
 <groupId>org.sonatype.flexmojos</groupId>
 <artifactId>flexmojos-maven-plugin</artifactId>
 <version>3.3.0</version>
 <extensions>true</extensions>
 <configuration>
 <locales>
 <locale>en_US</locale>
 </locales>
 </configuration>
 </plugin>
 </plugins>
 </build>

13.4.1. The SWC Lifecycle

When the packaging is swc, FlexMojos will execute the lifecycle shown in Figure 13.7, “The FlexMojos
SWC Lifecycle”. The highlighted goals are goals from the FlexMojos plugin, the goals which are not
highlights are standard goals from the Core Maven plugins.

236

resources:resources

flexmojos:compile-swc

resources:testResources

flexmojos:test-compile

flexmojos:test-run

install:install

deploy-deploy

sw
c lifecycle

Figure 13.7. The FlexMojos SWC Lifecycle

The FlexMojos contributed goals are:

flexmojos:compile-swc
This goal compiles all of the Actionscript and MXML files in the sourceDirectory into a
SWC. A SWC is an Adobe library or class file which contains components and resources used
in Flex applications.

flexmojos:test-compile
This goal compiles all of the Actionscript and MXML files in the testSourceDirectory.

flexmojos:test-run
This goal executes unit tests using the Flash Player. This goal can only run if the Flash Player
has been configured as described in Section 13.2.2, “Configuring Environment to Support Flex
Unit Tests”.

13.4.2. The SWF Lifecycle

When the packaging is swf, FlexMojos will execute the lifecycle shown in Figure 13.8, “The FlexMojos
SWF Lifecycle”. The highlighted goals are goals from the FlexMojos plugin, the goals which are not
highlights are standard goals from the Core Maven plugins.

237

resources:resources

flexmojos:compile-swf

resources:testResources

flexmojos:test-compile

flexmojos:test-run

install:install

deploy-deploy

sw
f lifecycle

Figure 13.8. The FlexMojos SWF Lifecycle

The FlexMojos contributed goals are:

flexmojos:compile-swf
This goal compiles all of the Actionscript and MXML files in the sourceDirectory into a
SWF. A SWF is a file which contains an application that can be render by the Adobe Flash Player
or Adobe AIR software.

flexmojos:test-compile
This goal compiles all of the Actionscript and MXML files in the testSourceDirectory.

flexmojos:test-run
This goal executes unit tests using the Flash Player. This goal can only run if the Flash Player
has been configured as described in Section 13.2.2, “Configuring Environment to Support Flex
Unit Tests”.

13.5. FlexMojos Plugin Goals
The FlexMojos Maven Plugin contains the following goals:

flexmojos:asdoc
Generates documentation for Actionscript source files

flexmojos:asdoc-report
Generates documentation for Actionscript sources as a report that can be included in a Maven site

238

flexmojos:compile-swc
Compiles Flex source (Actionscript and MXML) into a SWC library for use in a Flex or AIR
application

flexmojos:compile-swf
Compiles Flex source (Actionscript and MXML) into a SWF for use in the Adobe Flash Player
or Adobe AIR Runtime

flexmojos:copy-flex-resources
Copies Flex resources into a web application project

flexmojos:flexbuilder
Generates project files for use in Adobe Flex Builder

flexmojos:generate
Generates Actionscript 3 based on Java classes using Granite GAS3

flexmojos:optimize
Goal which run post-link SWF optimization on swc files. This goal is used to produce RSL files.

flexmojos:sources
Create a JAR which contains all the sources for a Flex project

flexmojos:test-compile
Compile all test classes in a Flex project

flexmojos:test-run
Run the tests using the Adobe Flash Player

flexmojos:test-swc
Build a SWC containing the test classes for a specific project

flexmojos:wrapper
Generate an HTML wrapper for a SWF application

13.5.1. Generating Actionscript Documentation

You can run the asdoc or asdoc-report goals to generate documentation for Actionscript. Once the
goals has completed, the documentation will be saved to ${basedir}/target/asdoc as HTML.
Figure 13.9, “Actionscript Documentation Generated by the FlexMojos Plugin” shows the result of
running the asdoc goal against the Flexmojos application archetype project.

239

Figure 13.9. Actionscript Documentation Generated by the FlexMojos Plugin

13.5.2. Compiling Flex Source

FlexMojos contains a number of goals which compile Actionscript and MXML into SWCs and SWFs.
The compile-swc and compile-swf goals are used to generate output from a project's source, and test-
compile is used to compile unit tests. In the simple projects created by the FlexMojos archetypes, the
compile-swc and compile-swf goals are called because the project customizes the lifecycle and binds
either compile-swc or compile-swf to the compile phase and test-compile to the test-compile phase.
If you need to configure the options for the FlexMojos compiler, you would configure the FlexMojos
plugin configuration. For example, if you wanted the application with the POM shown in Example 13.7,
“POM for Flex Application Archetype” to ignore certain code-level warnings on compile and use some
customized font settings, you might use the plugin configuration shown in Example 13.15, “Customizing
the Compiler Plugin”.

Example 13.15. Customizing the Compiler Plugin

 <build>
 <sourceDirectory>src/main/flex</sourceDirectory>
 <testSourceDirectory>src/test/flex</testSourceDirectory>
 <plugins>
 <plugin>
 <groupId>org.sonatype.flexmojos</groupId>
 <artifactId>flexmojos-maven-plugin</artifactId>
 <version>3.3.0</version>
 <extensions>true</extensions>
 <configuration>
 <configurationReport>true</configurationReport>
 <warnings>
 <arrayTostringChanges>true</arrayTostringChanges>

240

 <duplicateArgumentNames>false</duplicateArgumentNames>
 </warnings>
 <fonts>
 <advancedAntiAliasing>true</advancedAntiAliasing>
 <flashType>true</flashType>
 <languages>
 <englishRange>U+0020-U+007E</englishRange>
 </languages>
 <localFontsSnapshot>
 ${basedir}/src/main/resources/fonts.ser
 </localFontsSnapshot>
 <managers>
 <manager>flash.fonts.BatikFontManager</manager>
 </managers>
 <maxCachedFonts>20</maxCachedFonts>
 <maxGlyphsPerFace>1000</maxGlyphsPerFace>
 </fonts>
 </configuration>
 </plugin>
 </plugins>
 </build>

13.5.3. Generating Flex Builder Project Files

To generate Flex Builder project files for a FlexMojos project, configure the plugin groups as
described in Section 13.2.3, “Adding FlexMojos to Your Maven Settings' Plugin Groups”, and run the
flexbuilder goal:

$ mvn flexmojos:flexbuilder

Running this goal will create a .project, .settings/org.eclipse.core.resources.prefs,
.actionScriptProperties, and .flexLibProperties.

13.6. FlexMojos Plugin Reports
The FlexMojos Maven Plugin contains the following report:

flexmojos:asdoc-report
Generates documentation for Actionscript sources as a report that can be included in a Maven site

13.6.1. Generating Actionscript Documentation Report

To generate the asdoc-report as part of your Maven site build, add the following XML to your POM:

Example 13.16. Configuring the Actionscript Documentation Report

<reporting>
 <plugins>
 <plugin>
 <groupId>org.sonatype.flexmojos</groupId>

241

 <artifactId>flexmojos-maven-plugin</artifactId>
 <version>3.3.0</version>
 <reportSets>
 <reportSet>
 <id>flex-reports</id>
 <reports>
 <report>asdoc-report</report>
 </reports>
 </reportSet>
 </reportSets>
 </plugin>
 </plugins>
</reporting>

When you run mvn site, Maven will generate this report and place the results under the "Project
Reports" menu as shown in Figure 13.10, “Actionscript Documentation Report on Maven Site”.

Figure 13.10. Actionscript Documentation Report on Maven Site

If you need to pass in any configuration options to the asdoc-report, you will need add a configuration
element to the reportSets element as shown in Example 13.17, “Configuring the asdoc-report”.

Example 13.17. Configuring the asdoc-report

<reporting>
 <plugins>
 <plugin>
 <groupId>org.sonatype.flexmojos</groupId>
 <artifactId>flexmojos-maven-plugin</artifactId>
 <version>3.3.0</version>
 <reportSets>
 <reportSet>
 <id>flex-reports</id>
 <reports>
 <report>asdoc-report</report>
 </reports>
 <configuration>
 <windowTitle>My TEST API Doc</windowTitle>
 <footer>Copyright 2009 Sonatype</footer>

242

 </configuration>
 </reportSet>
 </reportSets>
 </plugin>
 </plugins>
 </reporting>

13.7. Developing and Customizing Flexmojos
The following sections guide you through some of first steps toward customizing or contributing to
the Flexmojos project. Flexmojos is more than just a tool for people who are interested in compiling
Actionscript into SWF and SWC artifacts, it is a community of developers. This section isn't for
everyone, but, if you have an itch to scratch and you wish to participate, come on in.

13.7.1. Get the Flexmojos Source Code

Flexmojos is an open source project hosted on the Sonatype Forge, and the source code for Flexmojos
is stored in the Sonatype Forge Subversion repository. You can browse the contents of the Flexmojos
Subversion repository by opening http://svn.sonatype.org/flexmojos/trunk in a web browser.

Figure 13.11. Flexmojos Subversion Repository

If you are interested in participating in the Flexmojos project, you will likely want to checkout the current
Flexmojos source code to your local machine. To checkout the Flexmojos source using Subversion,
execute the following command at the command line:

$ svn co http://svn.sonatype.org/flexmojos/trunk flexmojos
A flexmojos
...

http://svn.sonatype.org/flexmojos/trunk

243

$ ls
COPYRIGHT flexmojos-sandbox pom.xml
flexmojos-archetypes flexmojos-super-poms src
flexmojos-maven-plugin flexmojos-testing
flexmojos-parent flexmojos-touchstone

Appendix A. Appendix: Settings
Details
A.1. Quick Overview
The settings element in the settings.xml file contains elements used to define values which configure
Maven execution. Settings in this file are settings which apply to many projects and which should not
be bundled to any specific project, or distributed to an audience. These include values such as the local
repository location, alternate remote repository servers, and authentication information. There are two
locations where a settings.xml file may live:

• Maven Installation Directory: $M2_HOME/conf/settings.xml

• User-specific Settings File: ~/.m2/settings.xml

Here is an overview of the top elements under settings:

Example A.1. Overview of top-level elements in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <localRepository/>
 <interactiveMode/>
 <usePluginRegistry/>
 <offline/>
 <pluginGroups/>
 <servers/>
 <mirrors/>
 <proxies/>
 <profiles/>
 <activeProfiles/>
</settings>

A.2. Settings Details

A.2.1. Simple Values

Half of the top-level settings elements are simple values, representing a range of values which configure
the core behavior of Maven:

Example A.2. Simple top-level elements in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"

246

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <localRepository>${user.dir}/.m2/repository</localRepository>
 <interactiveMode>true</interactiveMode>
 <usePluginRegistry>false</usePluginRegistry>
 <offline>false</offline>
 <pluginGroups>
 <pluginGroup>org.codehaus.mojo</pluginGroup>
 </pluginGroups>
 ...
</settings>

The simple top-level elements are:

localRepository
This value is the path of this build system's local repository. The default value is
${user.dir}/.m2/repository.

interactiveMode
true if Maven should attempt to interact with the user for input, false if not. Defaults to true.

usePluginRegistry
true if Maven should use the ${user.dir}/.m2/plugin-registry.xml file to manage
plugin versions, defaults to false.

offline
true if this build system should operate in offline mode, defaults to false. This element is
useful for build servers which cannot connect to a remote repository, either because of network
setup or security reasons.

pluginGroups
This element contains a list of pluginGroup elements, each contains a groupId. The list is
searched when a plugin is used and the groupId is not provided in the command line. This list
contains org.apache.maven.plugins by default.

A.2.2. Servers

The distributionManagement element of the POM defines the repositories for deployment.
However, certain settings such as security credentials should not be distributed along with the pom.xml.
This type of information should exist on the build server in the settings.xml.

Example A.3. Server configuration in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...

247

 <servers>
 <server>
 <id>server001</id>
 <username>my_login</username>
 <password>my_password</password>
 <privateKey>${user.home}/.ssh/id_dsa</privateKey>
 <passphrase>some_passphrase</passphrase>
 <filePermissions>664</filePermissions>
 <directoryPermissions>775</directoryPermissions>
 <configuration></configuration>
 </server>
 </servers>
 ...
</settings>

The elements under server are:

id
This is the id of the server (not of the user to login as) that matches the
distributionManagement repository element's id.

username, password
These elements appear as a pair denoting the login and password required to authenticate to this
server.

privateKey, passphrase
Like the previous two elements, this pair specifies a path to a private key (default is
${user.home}/.ssh/id_dsa) and a passphrase, if required. The passphrase and password
elements may be externalized in the future, but for now they must be set plain-text in the
settings.xml file.

filePermissions, directoryPermissions
When a repository file or directory is created on deployment, these are the permissions to use.
The legal values of each is a three digit number corresponding to *nix file permissions, i.e. 664,
or 775.

A.2.3. Mirrors

Example A.4. Mirror configuration in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <mirrors>
 <mirror>
 <id>planetmirror.com</id>
 <name>PlanetMirror Australia</name>

248

 <url>http://downloads.planetmirror.com/pub/maven2</url>
 <mirrorOf>central</mirrorOf>
 </mirror>
 </mirrors>
 ...
</settings>

id, name
The unique identifier of this mirror. The id is used to differentiate between mirror elements.

url
The base URL of this mirror. The build system will use prepend this URL to connect to a
repository rather than the default server URL.

mirrorOf
The id of the server that this is a mirror of. For example, to point to a mirror of the Maven
central server (http://repo1.maven.org/maven2), set this element to central. This must not match
the mirror id.

A.2.4. Proxies

Example A.5. Proxy configuration in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <proxies>
 <proxy>
 <id>myproxy</id>
 <active>true</active>
 <protocol>http</protocol>
 <host>proxy.somewhere.com</host>
 <port>8080</port>
 <username>proxyuser</username>
 <password>somepassword</password>
 <nonProxyHosts>*.google.com|ibiblio.org</nonProxyHosts>
 </proxy>
 </proxies>
 ...
</settings>

id
The unique identifier for this proxy. This is used to differentiate between proxy elements.

active
true if this proxy is active. This is useful for declaring a set of proxies, but only one may be
active at a time.

http://repo1.maven.org/maven2

249

protocol, host, port
The protocol://host:port of the proxy, separated into discrete elements.

username, password
These elements appear as a pair denoting the login and password required to authenticate to this
proxy server.

nonProxyHosts
This is a list of hosts which should not be proxied. The delimiter of the list is the expected type
of the proxy server; the example above is pipe delimited - comma delimited is also common.

A.2.5. Profiles

The profile element in the settings.xml is a truncated version of the pom.xml profile element.
It consists of the activation, repositories, pluginRepositories and properties elements.
The profile elements only include these four elements because they concern themselves with the build
system as a whole (which is the role of the settings.xml file), not about individual project object
model settings.

If a profile is active from settings, its values will override any equivalent profiles which matching
identifiers in a POM or profiles.xml file.

A.2.6. Activation

Activations are the key of a profile. Like the POM's profiles, the power of a profile comes from its
ability to modify some values only under certain circumstances; those circumstances are specified via
an activation element.

Example A.6. Defining Activation Parameters in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <profiles>
 <profile>
 <id>test</id>
 <activation>
 <activeByDefault>false</activeByDefault>
 <jdk>1.5</jdk>
 <os>
 <name>Windows XP</name>
 <family>Windows</family>
 <arch>x86</arch>
 <version>5.1.2600</version>
 </os>
 <property>

250

 <name>mavenVersion</name>
 <value>2.0.3</value>
 </property>
 <file>
 <exists>${basedir}/file2.properties</exists>
 <missing>${basedir}/file1.properties</missing>
 </file>
 </activation>
 ...
 </profile>
 </profiles>
 ...
</settings>

Activation occurs when all specified criteria have been met, though not all are required at once.

jdk
activation has a built in, Java-centric check in the jdk element. This will activate if the test is
run under a jdk version number that matches the prefix given. In the above example, 1.5.0_06
will match.

os
The os element can define some operating system specific properties shown above.

property
The profile will activate if Maven detects a property (a value which can be dereferenced within
the POM by ${name}) of the corresponding name=value pair.

file
Finally, a given filename may activate the profile by the existence of a file, or if it is missing.

The activation element is not the only way that a profile may be activated. The settings.xml file's
activeProfile element may contain the profile's id. They may also be activated explicitly through
the command line via a comma separated list after the P flag (e.g. -P test).

To see which profile will activate in a certain build, use the maven-help-plugin.

mvn help:active-profiles

A.2.7. Properties

Maven properties are value placeholder, like properties in Ant. Their values are accessible anywhere
within a POM by using the notation ${X}, where X is the property. They come in five different styles,
all accessible from the settings.xml file:

env.X

Prefixing a variable with env. will return the shell’s environment variable. For example,
${env.PATH} contains the $path environment variable. (%PATH% in Windows.)

251

project.x

A dot-notated (.) path in the POM will contain the corresponding elements value.

settings.x

A dot-notated (.) path in the settings.xml will contain the corresponding elements value.

Java system properties
All properties accessible via java.lang.System.getProperties() are available as POM
properties, such as ${java.home}.

x

Set within a properties element or an external file, the value may be used as ${someVar}.

Example A.7. Setting the ${user.install} property in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <profiles>
 <profile>
 ...
 <properties>
 <user.install>${user.dir}/our-project</user.install>
 </properties>
 ...
 </profile>
 </profiles>
 ...
</settings>

The property ${user.install} is accessible from a POM if this profile is active.

A.2.8. Repositories

Repositories are remote collections of projects from which Maven uses to populate the local repository of
the build system. It is from this local repository that Maven calls it plugins and dependencies. Different
remote repositories may contain different projects, and under the active profile they may be searched
for a matching release or snapshot artifact.

Example A.8. Repository Configuration in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <profiles>
 <profile>
 ...

252

 <repositories>
 <repository>
 <id>codehausSnapshots</id>
 <name>Codehaus Snapshots</name>
 <releases>
 <enabled>false</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <url>http://snapshots.maven.codehaus.org/maven2</url>
 <layout>default</layout>
 </repository>
 </repositories>
 <pluginRepositories>
 ...
 </pluginRepositories>
 ...
 </profile>
 </profiles>
 ...
</settings>

releases, snapshots
These are the policies for each type of artifact, Release or snapshot. With these two sets, a POM
has the power to alter the policies for each type independent of the other within a single repository.
For example, one may decide to enable only snapshot downloads, possibly for development
purposes.

enabled
true or false for whether this repository is enabled for the respective type (releases or
snapshots).

updatePolicy
This element specifies how often updates should attempt to occur. Maven will compare the local
POMs timestamp to the remote. The choices are: always, daily (default), interval:X (where
X is an integer in minutes) or never.

checksumPolicy
When Maven deploys files to the repository, it also deploys corresponding checksum files. Your
options are to ignore, fail, or warn on missing or incorrect checksums.

layout
In the above description of repositories, it was mentioned that they all follow a common layout.
This is mostly correct. Maven 2 has a default layout for its repositories; however, Maven 1.x had

253

a different layout. Use this element to specify which if it is default or legacy. If you are upgrading
from Maven 1 to Maven 2, and you want to use the same repository which was used in your
Maven 1 build, list the layout as legacy.

A.2.9. Plugin Repositories

The structure of the pluginRepositories element block is similar to the repositories element.
The pluginRepository elements each specify a remote location of where Maven can find plugins
artifacts.

Example A.9. Plugin Repositories in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <profiles>
 <profile>
 ...
 <repositories>
 ...
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>codehausSnapshots</id>
 <name>Codehaus Snapshots</name>
 <releases>
 <enabled>false</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <url>http://snapshots.maven.codehaus.org/maven2</url>
 <layout>default</layout>
 </pluginRepository>
 </pluginRepositories>
 ...
 </profile>
 </profiles>
 ...
</settings>

A.2.10. Active Profiles
Example A.10. Setting active profiles in settings.xml

<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

254

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <activeProfiles>
 <activeProfile>env-test</activeProfile>
 </activeProfiles>
</settings>

The final piece of the settings.xml puzzle is the activeProfiles element. This contains a set
of activeProfile elements, which each have a value of a profile id. Any profile id defined as an
activeProfile will be active, regardless of any environment settings. If no matching profile is found
nothing will happen. For example, if env-test is an activeProfile, a profile in a pom.xml (or
profile.xml with a corresponding id it will be active. If no such profile is found then execution will
continue as normal.

A.2.11. Encrypting Passwords in Maven Settings

Once you start to use Maven to deploy software to remote repositories and to interact with source control
systems directly, you will start to collect a number of passwords in your Maven Settings and without a
mechanism for encrypting these passwords, a developer's ~/.m2/settings.xml will quickly become
a security risk as it will contain plain-text passwords to source control and repository managers. Maven
2.1 introduced a facility to encrypt passwords in a user's Maven Settings (~/.m2/settings.xml).
To do this, you must first create a master password and store this master password in a security-
settings.xml file in ~/.m2/settings-security.xml. You can then use this master password to
encrypt passwords stored in Maven Settings (~/.m2/settings.xml).

To illustrate this feature, consider the process Maven uses to retrieve an unencrypted server password for
a user's Maven Settings as shown in Figure A.1, “Storing Unencrypted Passwords in Maven Settings”.
A user will reference a named server using an identifier in a project's POM, Maven looks for a matching
server in Maven Settings. When it finds a matching server element in Maven Settings, Maven will then
use the password associated with that server element and send this password along to the server. The
password is stored as plain-text in ~/.m2/settings.xml and it is readily available to anyone who
has read access to this file.

~/.m2

settings.xml
plain-text password

mvn Server A
➊ ➋

➊ Maven Retrieves password for Server A from ~/.m2/settings.
➋ Maven sends the password to the remote server.

Figure A.1. Storing Unencrypted Passwords in Maven Settings

255

Next, consider the process Maven uses to support encrypted passwords as shown in Figure A.2, “Storing
Encrypted Passwords in Maven Settings”.

settings-security.xml
master password

~/.m2

settings.xml
encrypted password
encrypted password

mvn Server A

➊

➋
➌

➊ Maven Retrieves the Encrypted Password for Server A from ~/.m2/settings.
➋ Maven retreives the master password from ~/.m2/security-settings.xml
➌ Maven decrypts the password and sends the decrypted password to the
remote server.

Figure A.2. Storing Encrypted Passwords in Maven Settings

To configure encrypted passwords, create a master password by running mvn -emp or mvn --
encrypt-master-password followed by your master password.

$ mvn -emp mypassword
{rsB56BJcqoEHZqEZ0R1VR4TIspmODx1Ln8/PVvsgaGw=}

Maven prints out an encrypted copy of the password to standard out. Copy this encrypted password and
paste it into a ~/.m2/settings-security.xml file as shown in

Example A.11. settings-security.xml with Master Password

<settingsSecurity>
 <master>{rsB56BJcqoEHZqEZ0R1VR4TIspmODx1Ln8/PVvsgaGw=}</master>
</settingsSecurity>

After you have created a master password, you can then encrypt passwords for use in your Maven
Settings. To encrypt a password with the master password, run mvn -ep or mvn --encrypt-
password. Assume that you have a repository manager and you need to send a username of
"deployment" and a password of "qualityFIRST". To encrypt this particular password, you would run
the following command:

$ mvn -ep qualityFIRST
{uMrbEOEf/VQHnc0W2X49Qab75j9LSTwiM3mg2LCrOzI=}

256

At this point, copy the encrypted password printed from the output of mvn -ep and paste it into your
Maven Settings.

Example A.12. Storing an Encrypted Password in Maven Settings (~/.m2/settings.xml)

<settings>
 <servers>
 <server>
 <id>nexus</id>
 <username>deployment</username>
 <password>{uMrbEOEf/VQHnc0W2X49Qab75j9LSTwiM3mg2LCrOzI=}</password>
 </server>
 </servers>
 ...
</settings>

When you run a Maven build that needs to interact with the repository manager, Maven will retrieve
the Master password from the ~/.m2/settings-security.xml file and use this master password to
decrypt the password stored in your ~/.m2/settings.xml file. Maven will then send the decrypted
password to the server.

What does this buy you? It allows you to avoid storing your passwords in ~/.m2/settings.xml as
plain-text passwords providing you with the peace of mind that your critical passwords are not being
stored, unprotected in a Maven Settings file. Note that this feature does not provide for encryption of
the password while it is being sent to the remote server. An enterprising attacker could still capture the
password using a network analysis tool.

For an extra level of security, you can encourage your developers to store the encrypted master password
on a removable storage device like a USB hard drive. Using this method, a developer would plug a
removable drive into a workstation when she wanted to perform a deployment or interact with a remote
server. To support this, your ~/.m2/settings-security.xml file would contain a reference to the
location of the settings-security.xml file using the relocation element.

Example A.13. Configuring Relocation of the Master Password

<settingsSecurity>
 <relocation>/Volumes/usb-key/settings-security.xml</relocation>
</settingsSecurity>

The developer would then store the settings-security.xml file at /Volumes/usb-key/
settings-security.xml which would only be available if the developer were sitting at the
workstation.

Appendix B. Appendix: Sun
Specification Alternatives
The Apache Geronimo project maintains implementations of various enterprise Java specifications.
Table B.1, “Alternate Spec Implementations Artifacts” lists the artifactId and artifact version for all
of the specifications implemented by the Geronimo project. To use one of these dependencies, use a
groupId of org.apache.geronimo.specs, locate the version of the Specification you want to use
and reference the dependency with the Artifact Id and Artifact Version listed in Table B.1, “Alternate
Spec Implementations Artifacts”.

Note
All artifacts in Table B.1, “Alternate Spec Implementations Artifacts”, have a groupId of
org.apache.geronimo.specs.

Table B.1. Alternate Spec Implementations Artifacts

Specification Spec
Version

Artifact Id Artifact
Version

Activation 1.0.2 geronimo-activation_1.0.2_spec 1.2

Activation 1.1 geronimo-activation_1.1_spec 1.0.1

Activation 1.0 geronimo-activation_1.0_spec 1.1

CommonJ 1.1 geronimo-commonj_1.1_spec 1.0

Corba 2.3 geronimo-corba_2.3_spec 1.1

Corba 3.0 geronimo-corba_3.0_spec 1.2

EJB 2.1 geronimo-ejb_2.1_spec 1.1

EJB 3.0 geronimo-ejb_3.0_spec 1.0

EL 1.0 geronimo-el_1.0_spec 1.0

Interceptor 3.0 geronimo-interceptor_3.0_spec 1.0

J2EE Connector 1.5 geronimo-j2ee-connector_1.5_spec 1.1.1

J2EE Deployment 1.1 geronimo-j2ee-deployment_1.1_spec 1.1

J2EE JACC 1.0 geronimo-j2ee-jacc_1.0_spec 1.1.1

J2EE Management 1.0 geronimo-j2ee-management_1.0_spec 1.1

J2EE Management 1.1 geronimo-j2ee-management_1.1_spec 1.0

J2EE 1.4 geronimo-j2ee_1.4_spec 1.1

JACC 1.1 geronimo-jacc_1.1_spec 1.0

258

Specification Spec
Version

Artifact Id Artifact
Version

JEE Deployment 1.1MR3geronimo-javaee-deployment_1.1MR3_spec 1.0

JavaMail 1.3.1 geronimo-javamail_1.3.1_spec 1.3

JavaMail 1.4 geronimo-javamail_1.4_spec 1.2

JAXR 1.0 geronimo-jaxr_1.0_spec 1.1

JAXRPC 1.1 geronimo-jaxrpc_1.1_spec 1.1

JMS 1.1 geronimo-jms_1.1_spec 1.1

JPA 3.0 geronimo-jpa_3.0_spec 1.1

JSP 2.0 geronimo-jsp_2.0_spec 1.1

JSP 2.1 geronimo-jsp_2.1_spec 1.0

JTA 1.0.1B geronimo-jta_1.0.1B_spec 1.1.1

JTA 1.1 geronimo-jta_1.1_spec 1.1

QName 1.1 geronimo-qname_1.1_spec 1.1

SAAJ 1.1 geronimo-saaj_1.1_spec 1.1

Servlet 2.4 geronimo-servlet_2.4_spec 1.1.1

Servlet 2.5 geronimo-servlet_2.5_spec 1.1.1

STaX API 1.0 geronimo-stax-api_1.0_spec 1.0.1

WS Metadata 2.0 geronimo-ws-metadata_2.0_spec 1.1.1

Note

The version numbers in the Artifact Version column may be out of date by the time you
read this book. To check on the version number, visit http://repo1.maven.org/maven2/org/
apache/geronimo/specs/ in a web browser, and click on the artifactId you want to add.
Choose the highest version of the spec you want to depend upon.

To illustrate how one would use Table B.1, “Alternate Spec Implementations Artifacts”, if we wanted
to write some code in our project which interacted with the JTA 1.0.1B specification, we would need
to add the following dependency to our project:

Example B.1. Adding JTA 1.0.1B to a Maven Project

<dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-jta_1.0.1B_spec</artifactId>
 <version>1.1.1</version>
</dependency>

http://repo1.maven.org/maven2/org/apache/geronimo/specs/
http://repo1.maven.org/maven2/org/apache/geronimo/specs/

259

Notice how the version of the artifact isn't going to line up with the version of the specification—
the previous dependency configuration adds version 1.0.1B of the JTA specification using the artifact
version of 1.1.1. Be aware of this when depending on the alternate Geronimo implementations, and
always double check that you are using the latest artifact version number for your specifications.

Appendix C. Creative Commons
License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works
3.0 United States license. For more information about this license, see http://creativecommons.org/
licenses/by-nc-nd/3.0/us/. You are free to share, copy, distribute, display, and perform the work under
the following conditions:

• You must attribute the work to Sonatype, Inc. with a link to http://www.sonatype.com.

• You may not use this work for commercial purposes.

• You may not alter, transform, or build upon this work.

If you redistribute this work on a web page, you must include the following link with the URL in the
about attribute listed on a single line (remove the backslashes and join all URL parameters):

<div xmlns:cc="http://creativecommons.org/ns#"
 about="http://creativecommons.org/license/results-one?q_1=2&q_1=1\
 &field_commercial=n&field_derivatives=n&field_jurisdiction=us\
 &field_format=StillImage&field_worktitle=Repository%3A+\Management\
 &field_attribute_to_name=Sonatype%2C+Inc.\
 &field_attribute_to_url=http%3A%2F%2Fwww.sonatype.com\
 &field_sourceurl=http%3A%2F%2Fwww.sonatype.com%2Fbook\
 &lang=en_US&language=en_US&n_questions=3">
 <a rel="cc:attributionURL" property="cc:attributionName"
 href="http://www.sonatype.com">Sonatype, Inc. /
 <a rel="license"
 href="http://creativecommons.org/licenses/by-nc-nd/3.0/us/">
 CC BY-NC-ND 3.0
</div>

When downloaded or distributed in a jurisdiction other than the United States of America, this work
shall be covered by the appropriate ported version of Creative Commons Attribution-Noncommercial-
No Derivative Works 3.0 license for the specific jurisdiction. If the Creative Commons Attribution-
Noncommercial-No Derivative Works version 3.0 license is not available for a specific jurisdiction,
this work shall be covered under the Creative Commons Attribution-Noncommercial-No Derivate
Works version 2.5 license for the jurisdiction in which the work was downloaded or distributed. A
comprehensive list of jurisdictions for which a Creative Commons license is available can be found on
the Creative Commons International web site at http://creativecommons.org/international.

If no ported version of the Creative Commons license exists for a particular jurisdiction, this work shall
be covered by the generic, unported Creative Commons Attribution-Noncommercial-No Derivative
Works version 3.0 license available from http://creativecommons.org/licenses/by-nc-nd/3.0/.

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://www.sonatype.com
http://creativecommons.org/international
http://creativecommons.org/licenses/by-nc-nd/3.0/

262

C.1. Creative Commons BY-NC-ND 3.0 US License

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States1

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN
AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE
MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in
which the Work in its entirety in unmodified form, along with one or more other contributions,
constituting separate and independent works in themselves, are assembled into a collective
whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as
defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-
existing works, such as a translation, musical arrangement, dramatization, fictionalization,
motion picture version, sound recording, art reproduction, abridgment, condensation, or any
other form in which the Work may be recast, transformed, or adapted, except that a work that
constitutes a Collective Work will not be considered a Derivative Work for the purpose of
this License. For the avoidance of doubt, where the Work is a musical composition or sound
recording, the synchronization of the Work in timed-relation with a moving image ("synching")
will be considered a Derivative Work for the purpose of this License.

c. "Licensor" means the individual, individuals, entity or entities that offers the Work under the
terms of this License.

d. "Original Author" means the individual, individuals, entity or entities who created the Work.

e. "Work" means the copyrightable work of authorship offered under the terms of this License.

f. "You" means an individual or entity exercising rights under this License who has not previously
violated the terms of this License with respect to the Work, or who has received express
permission from the Licensor to exercise rights under this License despite a previous violation.

1 http://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode

http://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode
http://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode

263

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising
from fair use, first sale or other limitations on the exclusive rights of the copyright owner under
copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You
a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright)
license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to
reproduce the Work as incorporated in the Collective Works; and,

b. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly
by means of a digital audio transmission the Work including as incorporated in Collective
Works.

The above rights may be exercised in all media and formats whether now known or hereafter
devised. The above rights include the right to make such modifications as are technically necessary
to exercise the rights in other media and formats, but otherwise you have no rights to make
Derivative Works. All rights not expressly granted by Licensor are hereby reserved, including but
not limited to the rights set forth in Sections 4(d) and 4(e).

4. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by
the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work
only under the terms of this License, and You must include a copy of, or the Uniform Resource
Identifier for, this License with every copy or phonorecord of the Work You distribute, publicly
display, publicly perform, or publicly digitally perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of a recipient of the Work
to exercise the rights granted to that recipient under the terms of the License. You may not
sublicense the Work. You must keep intact all notices that refer to this License and to the
disclaimer of warranties. When You distribute, publicly display, publicly perform, or publicly
digitally perform the Work, You may not impose any technological measures on the Work that
restrict the ability of a recipient of the Work from You to exercise the rights granted to that
recipient under the terms of the License. This Section 4(a) applies to the Work as incorporated
in a Collective Work, but this does not require the Collective Work apart from the Work itself
to be made subject to the terms of this License. If You create a Collective Work, upon notice
from any Licensor You must, to the extent practicable, remove from the Collective Work any
credit as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner
that is primarily intended for or directed toward commercial advantage or private monetary
compensation. The exchange of the Work for other copyrighted works by means of digital file-
sharing or otherwise shall not be considered to be intended for or directed toward commercial

264

advantage or private monetary compensation, provided there is no payment of any monetary
compensation in connection with the exchange of copyrighted works.

c. If You distribute, publicly display, publicly perform, or publicly digitally perform the Work (as
defined in Section 1 above) or Collective Works (as defined in Section 1 above), You must,
unless a request has been made pursuant to Section 4(a), keep intact all copyright notices for
the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the
Original Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/
or Licensor designate another party or parties (e.g. a sponsor institute, publishing entity, journal)
for attribution ("Attribution Parties") in Licensor's copyright notice, terms of service or by other
reasonable means, the name of such party or parties; the title of the Work if supplied; to the
extent reasonably practicable, the Uniform Resource Identifier, if any, that Licensor specifies to
be associated with the Work, unless such URI does not refer to the copyright notice or licensing
information for the Work. The credit required by this Section 4(c) may be implemented in any
reasonable manner; provided, however, that in the case of a Collective Work, at a minimum
such credit will appear, if a credit for all contributing authors of the Collective Work appears,
then as part of these credits and in a manner at least as prominent as the credits for the other
contributing authors. For the avoidance of doubt, You may only use the credit required by
this clause for the purpose of attribution in the manner set out above and, by exercising Your
rights under this License, You may not implicitly or explicitly assert or imply any connection
with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution Parties,
as appropriate, of You or Your use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution Parties.

d. For the avoidance of doubt, where the Work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor reserves the exclusive right to
collect whether individually or, in the event that Licensor is a member of a performance
rights society (e.g. ASCAP, BMI, SESAC), via that society, royalties for the public
performance or public digital performance (e.g. webcast) of the Work if that performance
is primarily intended for or directed toward commercial advantage or private monetary
compensation.

ii. Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive right to collect,
whether individually or via a music rights agency or designated agent (e.g. Harry Fox
Agency), royalties for any phonorecord You create from the Work ("cover version") and
distribute, subject to the compulsory license created by 17 USC Section 115 of the US
Copyright Act (or the equivalent in other jurisdictions), if Your distribution of such cover
version is primarily intended for or directed toward commercial advantage or private
monetary compensation.

e. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a
sound recording, Licensor reserves the exclusive right to collect, whether individually or via a
performance-rights society (e.g. SoundExchange), royalties for the public digital performance

265

(e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section
114 of the US Copyright Act (or the equivalent in other jurisdictions), if Your public digital
performance is primarily intended for or directed toward commercial advantage or private
monetary compensation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND ONLY TO THE EXTENT OF ANY
RIGHTS HELD IN THE LICENSED WORK BY THE LICENSOR. THE LICENSOR
MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE
WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT
LIMITATION, WARRANTIES OF TITLE, MARKETABILITY, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE
OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE
OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY
NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN
NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by
You of the terms of this License. Individuals or entities who have received Collective Works (as
defined in Section 1 above) from You under this License, however, will not have their licenses
terminated provided such individuals or entities remain in full compliance with those licenses.
Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration
of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the
right to release the Work under different license terms or to stop distributing the Work at any
time; provided, however that any such election will not serve to withdraw this License (or any
other license that has been, or is required to be, granted under the terms of this License), and
this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work (as defined in Section 1 above)
or a Collective Work (as defined in Section 1 above), the Licensor offers to the recipient a

266

license to the Work on the same terms and conditions as the license granted to You under this
License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not
affect the validity or enforceability of the remainder of the terms of this License, and without
further action by the parties to this agreement, such provision shall be reformed to the minimum
extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such
waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work
licensed here. There are no understandings, agreements or representations with respect to the
Work not specified here. Licensor shall not be bound by any additional provisions that may
appear in any communication from You. This License may not be modified without the mutual
written agreement of the Licensor and You.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection
with the Work. Creative Commons will not be liable to You or any party on any legal theory for
any damages whatsoever, including without limitation any general, special, incidental or consequential
damages arising in connection to this license. Notwithstanding the foregoing two (2) sentences, if
Creative Commons has expressly identified itself as the Licensor hereunder, it shall have all rights and
obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL,
Creative Commons does not authorize the use by either party of the trademark "Creative Commons"
or any related trademark or logo of Creative Commons without the prior written consent of Creative
Commons. Any permitted use will be in compliance with Creative Commons' then-current trademark
usage guidelines, as may be published on its website or otherwise made available upon request from
time to time. For the avoidance of doubt, this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

Appendix D. Book Revision History
Many readers have been asking us to keep track of specific changes to the book content, the following
sections list changes made to the book in reverse chronological order starting with 0.3.1.

D.1. Changes in Edition 0.2.1
The following changes were made:

• Various small typos were address throughout the book.

D.2. Changes in Edition 0.2
The following changes were made:

• Added a Table of Figures. (MVNREF-951)

• Added a Table of Examples. (MVNREF-962)

• Expanded and improved the book index. (MVNREF-793)

The following errors and typos were addressed:

• Fixed caption and labelling problem with Figure 6.2, “Dependencies within Sample Multi-module
Project”. (MVNREF-254)

• Fixed missing label on Example 6.2, “Order of Project Builds in Maven Reactor”. (MVNREF-305)

• Fixed section title in Section 6.2.1, “Advanced Reactor Options Example Project”. (MVNREF-226)

• Fixed improper section label in Section 1.3, “A Common Interface”, Section 1., “Comparing Maven
with Ant”, and throughout Chapter 6, Running Maven. (MVNREF-897)

• Added a mention of the short -rf version of --resume-from to Section 6.2.6, “Resuming a
"make" build”. (MVNREF-528)

D.3. Changes in Edition 0.1
This is the initial version of Maven: The Complete Reference.

The following changes were made:

• Removed all cross-references that referenced content in the former Part I of Maven: The Definitive
Guide. (MVNREF-19)

https://issues.sonatype.org/browse/MVNREF-95
https://issues.sonatype.org/browse/MVNREF-96
https://issues.sonatype.org/browse/MVNREF-79
???
https://issues.sonatype.org/browse/MVNREF-30
https://issues.sonatype.org/browse/MVNREF-22
https://issues.sonatype.org/browse/MVNREF-89
https://issues.sonatype.org/browse/MVNREF-52
https://issues.sonatype.org/browse/MVNREF-1

268

• Uploaded new book to Scribd as both a private staging version and a public production version.
Updated the book project's pom.xml accordingly. (MVNREF-210)

• Cloned Maven: The Definitive Guide's Github repository and created a new Github repository for
Maven: The Complete Reference. (MVNREF-311)

• Modified the book project build to publish book to new URL and to use new identifiers for all
generated artifacts. (MVNREF-412)

• Created a new book cover for the downloadable PDF version of Maven: The Complete Reference.
(MVNREF-513)

• Modified the title page for Maven: The Complete Reference. (MVNREF-614)

• Assigned new ISBN to Maven: The Complete Reference (978-0-9842433-4-1, 0-9842433-4-8).
(MVNREF-815)

• Created a GetSatisfaction page for Maven: The Complete Reference, here:
http://www.getsatisfaction.com/sonatype/products/sonatype_maven_the_complete_reference .
(MVNREF-916)

• Created automated Hudson jobs for publishing to staging and production. (MVNREF-2017)

• Updated front matter and copyright to match other Sonatype books. (MVNREF-1918)

• Modified the web site template for the book pages. (MVNREF-719)

• Add Maven: The Complete Reference to the Sonatype Books page. (MVNREF-1420)

• Created a download form for Maven: The Complete Reference PDF. (MVNREF-1621)

https://issues.sonatype.org/browse/MVNREF-2
https://issues.sonatype.org/browse/MVNREF-3
https://issues.sonatype.org/browse/MVNEX-4
https://issues.sonatype.org/browse/MVNREF-5
https://issues.sonatype.org/browse/MVNREF-6
https://issues.sonatype.org/browse/MVNREF-8
http://www.getsatisfaction.com/sonatype/products/sonatype_maven_the_complete_reference
https://issues.sonatype.org/browse/MVNREF-9
https://issues.sonatype.org/browse/MVNREF-20
https://issues.sonatype.org/browse/MVNREF-19
https://issues.sonatype.org/browse/MVNREF-7
https://issues.sonatype.org/browse/MVNREF-14
https://issues.sonatype.org/browse/MVNREF-16

Index
A
Adobe Flex, 215
advanced reactor options, 87
Apache Ant, 5

build.xml, 6
Apache Maven

archetypes, 205
command-line options, 81
comparison to Ant, 5, 5
configuration of, 95
definition of, 1
developing Maven, 177
developing plugins, 177
downloading, 9
getting help, 15
installation of, 9, 10

on FreeBSD, 12
on Linux, 11
on Mac OSX, 10
on Mac OSX with MacPorts, 11
on OpenBSD, 12
on Windows, 11

pom.xml, 7
project web site, 15
properties, 145
resource filtering, 145
running, 12, 81
site generation, 155
uninstalling, 14
upgrading, 13
user mailing list, 15

Apache Software License, 15
Apache Wicket, 211
AppFuse, 210
arbitrary properties, referencing, 26
Archetype plugin

generate goal, 205
archetypes, 205

3rd party archetypes, 209

AppFuse archetypes, 210
available archetypes, 208
Confluence plugin, 211
generating, 205
generating with m2eclipse, 208
JIRA plugin, 211
mojo archetype, 209
publishing, 212
quickstart archetype, 209
webapp archetype, 209
Wicket archetypes, 211

artifact identifier, 36
assemblies, 103, 103

activating in child projects, 109
as dependencies, 107
assembling via dependencies, 108
best practices, 136
building, 105
configuring POM, 106
descriptor, 106, 112, 113
descriptors, 104

bin, 104
jar-with-dependencies, 104
project, 105
src, 105

assembly descriptor, 112, 113
advanced options, 127
assembly contents, 114
binaries, 132
component descriptors, 136
container descriptor handlers, 136
customizing output locations, 120
default exclusion patterns, 118
dependency sets, 119
exclude/include dependencies by scope, 122
file sets, 116
files, 115
fine tuning includes/excludes, 123
module selection, 129
module sets, 128
project artifacts, 126
project attachments, 126
properties and output location, 121

270

property references, 113
repositories, 134
required information, 113
root directory, 135
sources, 130
transitive dependencies, 126

assembly descriptors, 104
Assembly plugin, 103

attaching execution, 106
configuring single goal, 108
descriptor, 112, 113
single goal, 105

B
batch mode, 85
best practices, 39

grouping dependencies, 39
boundaries for version ranges, specifying, 30
build environment, 18
build information (in pom.xml), 18
build lifecycle, 47, 56

clean lifecycle, 47
default lifecycle, 50
package-specific lifecycles, 52
phases, 47
site lifecycle, 51

build phases, 47
build portability, 65

environment portability, 66
organizational portability, 66
selecting the appropriate level of, 66
universal portability, 66
using profiles, 67

build profile
common environments, 74
listing active profiles, 73
platform classifiers, 77
profile activation, 70
protecting secrets, 76
tips and tricks, 74

build profiles, 65, 67
overriding a POM profile, 69
portability, 65

C
classifier, 37
classwords-1.1.jar file, 13
clean lifecycle, 47
Clean plugin

customizing behavior of, 49
command-line options, 81

activating build profiles, 83
advanced reactor options, 87
batch mode, 85
building a subset of projects, 89
defining properties, 81
displaying version information, 83
encrypting passwords, 84
failure modes, 84
getting help, 81
making dependents, 90
making subsets, 89
non-recursive build, 86
plugin updates, 86
resuming a make-like build, 90
resuming builds, 89
running in offline mode, 83
updating snapshots, 85
using custom POM, 83
using custom settings, 83
verbosity, 84
verifying checksums, 85

common interface, 2
compile dependencies, 28
compiling code, 59
conflict, dependency, 32
Confluence, 211
convention over configuration, 1
custom lifecycle, 200
custom plugins, 177

D
default lifecycle, 50

compile phase, 59
deploy phase, 62
install phase, 62

271

process-resources phase, 56
process-test-resources phase, 61
test phase, 61
test-compile phase, 61

dependencies, 27
conflicts with, resolving, 32
optional, 28
scope of, 28
test-scoped, 28
transitive (see transitive dependencies)

dependency management, 4, 28, 34
compile scope, 28
optional dependencies, 28
plugin dependencies, 98
provided scope, 28
runtime scope, 28
Sun specification alternatives, 257
system scope, 28
test scope, 28
transitive dependencies, 31
version ranges, 30

developer information (project information), 18
developing plugins

creating a plugin, 185
custom plugins, 185
definition of a plugin, 180
example mojo, 186
lifecycle, 199
logging from a mojo, 191
mojo, 180
mojo annotations, 192
mojo configuration, 183
mojo failure, 193
mojo parameter annotations, 198
mojo parameters, 194, 194
multi-valued mojo parameters, 196
Plexus, 178, 179
plexus components, 198
plugin dependencies, 185
plugin descriptor, 180, 182
plugin prefix, 188

E
EAR packaging, 54
effective Maven settings, 91
effective POM, 23, 91
effective POMs, 23
EJB packaging, 53
encrypting passwords, 84, 254
env variable, 26
env.* properties, 250
environment variables, referencing, 250
excluding transitive dependencies, 32, 32
exclusive boundaries (version ranges), 30
external dependencies, 27

F
Flexmojos, 215

archetype, 222
compiling Flex source, 239
configuring build environment, 215
developing Flexmojos, 242
Flex application, 227
Flex library, 222
Flexmojos source repository, 242
generating Actionscript documentation, 238
generating Flex Builder project files, 240
generating reports, 240
lifecycle, 235
Maven settings, 222
multi-module web application, 229
plugin goals, 237
proxying Sonatype's repository, 216
referencing a remote repository, 215
referencing Sonatype's repository, 216
SWC lifecycle, 235
SWF lifecycle, 236
unit test environment, 220

Flexmojos plugin, 215

G
goal execution, 99
group identifier, 36
grouping dependencies, 39

272

H
Help plugin

active-profiles goal, 91
describe goal, 91, 91
describing plugins, 95
effective-pom goal, 23, 91
effective-settings goal, 91
using, 91

I
IDE integration, 4

Eclipse IDE, 208
implicit variables, list of, 26
inclusive boundaries (version ranges), 30
incremental versions (projects), 24
inheritance between projects or modules

choosing multimodule projects instead of, 41
installing Maven (see Apache Maven, installation
of)

on Mac OS X, 10
internal dependencies, 27, 27

(see also dependencies)
Inversion of Control (IoC), 177

J
JAR packaging, 52
Java Development Kit (JDK), 9
Java system properties, referencing, 26, 251
JIRA, 211
JUnit, 61

L
LICENSE.txt file, 12
licensing information (project information), 18
listing active profiles, 91
local repository, 13

installing artifacts to, 62
lower boundaries (version ranges), 30

M
m2 directory, contents of, 13
M2_HOME environment variable

Maven installation and, 10
Mac OS X, installing Maven on, 10
major versions (projects), 24
make-like builds, 87
Maven, installing

on Mac OS X, 10
Maven assemblies, 103
maven coordinates, 36

artifactId, 36
classifier, 37
groupId, 36
version, 36

maven directory, 12
Maven Plugin packaging, 53
Maven project web site, 15
Maven settings, 13

activation, 249
active profiles, 254
encrypting passwords, 254
mirrors, 248
overview, 245
plugin repositories, 253
profiles, 249
properties, 250
proxies, 248
repositories, 251
server authentication, 163
server file permissions, 164
servers, 246
simple values, 245

maven settings
storing passwords, 76

Maven user mailing list, 15
minor versions (projects), 24
module inheritance

choosing multimodule projects instead of, 41
mojo, 180
multi-module project, 43
multi-module projects, 41
multimodule projects, in general

inheritance versus, 41
mvn script, 12

273

N
Nexus, 216
non-recursive build, 86
NOTICE.txt file, 12

O
offline mode, 83
optional dependencies, 28
ordering of version qualifiers, 24
organizational information (project information),
18
overriding project directories, 58, 60, 61

P
package-specific lifecycles, 52
packaging

EAR, 54
EJB, 53
JAR, 52
Maven Plugin, 53
miscellaneous types, 55
POM, 53
SWF, 55
WAR, 54

parent project, 37
PATH variable, Maven installation and, 10
Plexus, 177, 178

compared to Spring, 179
plugin configuration, 95

adding plugin dependencies, 98
default command line parameters, 100
default lifecycle parameters, 100
execution-specific parameters, 99
global parameters, 99
parameters, 95

plugin dependencies, 98
plugin documentation, 91
plugin prefix, 188
plugins

definition of, 180
POM (Project Object Model), 17

referencing properties in, 251

syntax, 24
POM packaging, 53
pom.xml, 17
pom.xml file, 17, 17

(see also POM)
build environment, 18
build information in, 18
project information in, 18
referencing properties in, 251

profile activation, 70
configuration, 71
listing active profiles, 73
platform classifiers, 77
property trigger, 73

project dependencies (see dependencies)
project information (in pom.xml), 18
project inheritance, 37

choosing multimodule projects instead of, 41
Project Object Model (POM), 4, 17

assemblies, 108
best practices, 39
build profiles, 68
comparison to build.xml, 17
comparison to Makefile, 17
contents of, 18
definition of, 17
distribution management, 163
effective POM, 23
project dependencies (see dependencies)
property references, 25
Super POM, 19
version identifier, 24

project relationships, 35
inheritance, 37

project variable, 26
project versions, about, 24, 24

(see also version attribute)
dependency version ranges, 30

project.* properties, 251
properties, 25, 145, 145

arbitrary properties, 26
environment variables, 26, 145, 148
Java system properties, 26

274

Maven settings, 145, 147
project properties, 145, 146
project variables, 26
referencing in pom.xml, 25
resource filtering, 150
settings variables, 26
System properties, 146, 148
User-defined properties, 149

provided dependencies, 28
publishing archetypes, 212

Q
qualifiers for project versions, 24

ordering of, 24

R
ranges for dependency versions, 30
README.txt file, 12
references to properties, in pom.xml, 25
remote repositories, 4

deploying artifacts to, 62
replacing transitive dependencies, 32
resolving dependency conflicts, 32
resource filtering, 58, 145, 150
Resources plugin

resources goal, 56
running Maven, 81
runtime dependencies, 28

S
scope, dependency, 28

transitive dependencies and, 31
searching for artifacts, 4
settings variable, 26
settings.* properties, 251
settings.xml file, 13, 18

properties in
referencing, 251

site deployment, 163
site generation, 155

APT format, 161
breadcrumbs, 173

building a project site, 155
configuring server authentication, 163
custom CSS, 165
custom site template, 165
custom skins, 170
custom theme CSS, 171
customizing header, 158
customizing look and feel, 157
customizing menu, 157
customizing navigation, 159
customizing site appearance, 164
deploying a site, 163
directory structure, 160
doxia macros, 175
file and directory permissions, 164
FML format, 162
header links, 173
listing version in header, 174
project documentation, 161
publication date, 174

site lifecycle, 51
skipping unit tests, 62
SNAPSHOT versions, 25
snapshot versions, 25
Sonatype, 15
Super POM, 19
Surefire plugin

ignoring test failure, 62
skipping unit tests, 62

SWF packaging, 55
system properties, referencing, 26, 251
system-scope dependencies, 28

T
test-scoped dependencies, 28
testing

using test-scoped dependencies, 28
TestNG, 61
transitive dependencies, 31

resolving conflicts with, 32

275

U
uninstalling Maven, 14
unit testing, 61
unit tests

test-scoped dependencies, 28
universal reuse, 3, 4
upgrading Maven (see Apache Maven, upgrading)
upper boundaries (version ranges), 30

V
verbose output, 84
version attribute (pom.xml), 24

dependency version ranges, 30
version identifier, 36

build numbers, 24
format of, 24
SNAPSHOT versions, 25

version information, 12
version ranges, 30

W
WAR packaging, 54
writing documentation, 161
writing plugins, 177

Maven Training by Sonatype

http://www.sonatype.com/training

With Sonatype training, you will learn Maven fundamentals and best practices directly
from Maven and Nexus experts. If your team is using Nexus, this class is the easiest
way to make sure that everyone starts from the same foundation.

MVN-101 Maven Mechanics
An online instructor-led course of two half-day sessions, ideal for programmers who
work with Maven projects and need to understand how to work with an existing
Maven build. This class is also appropriate for experienced Maven users who are inter-
ested in becoming more familiar with Maven fundamentals.

MVN-201 Development Infrastructure Design
An online instructor-led course of two half-day sessions, ideal for Development Infra-
structure Engineers who are responsible for maintaining enterprise development infra-
structure. This class includes content on advanced repository management using
Nexus and continuous integration using Hudson.

Nexus Professional

http://www.sonatype.com/products/nexus

Nexus Professional 1.4 is now available with a wide array of new features. This release
introduces new staging and repository management capabilities as well as improved
permissions management tools. Download your free, 30-day evaluation today.

"At Intuit, we recognize that as builds grow and the teams who create them change
over time, swift, accurate repository management becomes critical. Nexus provides
a comprehensive, easy-to-use open source solution that lets teams and developers
track, search, organize and access build components."

 - Kaizer Sogiawala, Software Con�guration Management Engineer, Intuit.

"We have adopted Maven for all our software development projects and have
started using Nexus to better support our development processes. The support for
promotion and procurement work�ows in Nexus Professional now expands Nexus
with a robust set of additional features which make it easier for us to maintain
consistency between our development, testing and production environments."

 - Chris Maki, Principal Software Engineer, Overstock.com

	Maven: The Complete Reference
	Table of Contents
	Copyright
	Foreword: 0.3.1
	1. Changes in Edition 0.2.1

	Preface
	1. How to Use this Book
	2. Your Feedback
	3. Font Conventions
	4. Maven Writing Conventions
	5. Acknowledgements

	Chapter 1. Introducing Apache Maven
	1.1. Maven... What is it?
	1.2. Convention Over Configuration
	1.3. A Common Interface
	1.4. Universal Reuse through Maven Plugins
	1.5. Conceptual Model of a "Project"
	1.6. Is Maven an alternative to XYZ?
	1.. Comparing Maven with Ant

	Chapter 2. Installing Maven
	2.1. Verify your Java Installation
	2.2. Downloading Maven
	2.3. Installing Maven
	2.3.1. Installing Maven on Mac OSX
	2.3.1.1. Installing Maven on OSX using MacPorts

	2.3.2. Installing Maven on Microsoft Windows
	2.3.3. Installing Maven on Linux
	2.3.4. Installing Maven on FreeBSD or OpenBSD

	2.4. Testing a Maven Installation
	2.5. Maven Installation Details
	2.5.1. User-specific Configuration and Repository
	2.5.2. Upgrading a Maven Installation
	2.5.3. Upgrading from Maven 1.x to Maven 2.x

	2.6. Uninstalling Maven
	2.7. Getting Help with Maven
	2.8. About the Apache Software License

	Chapter 3. The Project Object Model
	3.1. Introduction
	3.2. The POM
	3.2.. The Super POM
	3.2.2. The Simplest POM
	3.2.3. The Effective POM
	3.2.4. Real POMs

	3.3. POM Syntax
	3.3.1. Project Versions
	3.3.1.1. Version Build Numbers
	3.3.1.2. SNAPSHOT Versions

	3.3.2. Property References

	3.4. Project Dependencies
	3.4.1. Dependency Scope
	3.4.2. Optional Dependencies
	3.4.3. Dependency Version Ranges
	3.4.4. Transitive Dependencies
	3.4.4.1. Transitive Dependencies and Scope

	3.4.5. Conflict Resolution
	3.4.6. Dependency Management

	3.5. Project Relationships
	3.5.1. More on Coordinates
	3.5.2. Project Inheritance

	3.6. POM Best Practices
	3.6.1. Grouping Dependencies
	3.6.2. Multi-module vs. Inheritance
	3.6.2.1. Simple Project
	3.6.2.2. Multi-module Enterprise Project

	Chapter 4. The Build Lifecycle
	4.1. Introduction
	4.1.1. Clean Lifecycle (clean)
	4.1.2. Default Lifecycle (default)
	4.1.3. Site Lifecycle (site)

	4.2. Package-specific Lifecycles
	4.2.1. JAR
	4.2.2. POM
	4.2.3. Maven Plugin
	4.2.4. EJB
	4.2.5. WAR
	4.2.6. EAR
	4.2.7. Other Packaging Types

	4.3. Common Lifecycle Goals
	4.3.1. Process Resources
	4.3.2. Compile
	4.3.3. Process Test Resources
	4.3.4. Test Compile
	4.3.5. Test
	4.3.6. Install
	4.3.7. Deploy

	Chapter 5. Build Profiles
	5.1. What Are They For?
	5.1.1. What is Build Portability
	5.1.1.1. Non-Portable Builds
	5.1.1.2. Environment Portability
	5.1.1.3. Organizational (In-House) Portability
	5.1.1.4. Wide (Universal) Portability

	5.1.2. Selecting an Appropriate Level of Portability

	5.2. Portability through Maven Profiles
	5.2.1. Overriding a Project Object Model

	5.3. Profile Activation
	5.3.1. Activation Configuration
	5.3.2. Activation by the Absence of a Property

	5.4. Listing Active Profiles
	5.5. Tips and Tricks
	5.5.1. Common Environments
	5.5.2. Protecting Secrets
	5.5.3. Platform Classifiers

	5.6. Summary

	Chapter 6. Running Maven
	6.1. Maven Command Line Options
	6.1.1. Defining Properties
	6.1.2. Getting Help
	6.1.3. Using Build Profiles
	6.1.4. Displaying Version Information
	6.1.5. Running in Offline Mode
	6.1.6. Using a Custom POM or Custom Settings File
	6.1.7. Encrypting Passwords
	6.1.8. Dealing with Failure
	6.1.9. Controlling Maven's Verbosity
	6.1.10. Running Maven in Batch Mode
	6.1.11. Downloading and Verifying Dependencies
	6.1.12. Controlling Plugin Updates
	6.1.13. Non-recursive Builds

	6.2. Using Advanced Reactor Options
	6.2.1. Advanced Reactor Options Example Project
	6.2.2. Resuming Builds
	6.2.3. Specifying a Subset of Projects
	6.2.4. Making a Subset of Projects
	6.2.5. Making Project Dependents
	6.2.6. Resuming a "make" build

	6.3. Using the Maven Help Plugin
	6.3.1. Describing a Maven Plugin

	Chapter 7. Maven Configuration
	7.1. Configuring Maven Plugins
	7.1.1. Plugin Configuration Parameters
	7.1.2. Adding Plugin Dependencies
	7.1.3. Setting Global Plugin Parameters
	7.1.4. Setting Execution Specific Parameters
	7.1.5. Setting Default Command Line Execution Parameters
	7.1.6. Setting Parameters for Goals Bound to Default Lifecycle

	Chapter 8. Maven Assemblies
	8.1. Introduction
	8.2. Assembly Basics
	8.2.1. Predefined Assembly Descriptors
	8.2.2. Building an Assembly
	8.2.3. Assemblies as Dependencies
	8.2.4. Assembling Assemblies via Assembly Dependencies

	8.3. Overview of the Assembly Descriptor
	8.4. The Assembly Descriptor
	8.4.1. Property References in Assembly Descriptors
	8.4.2. Required Assembly Information

	8.5. Controlling the Contents of an Assembly
	8.5.1. Files Section
	8.5.2. FileSets Section
	8.5.3. Default Exclusion Patterns for fileSets
	8.5.4. dependencySets Section
	8.5.4.1. Customizing Dependency Output Location
	8.5.4.2. Interpolation of Properties in Dependency Output Location
	8.5.4.3. Including and Excluding Dependencies by Scope
	8.5.4.4. Fine Tuning: Dependency Includes and Excludes
	8.5.4.5. Transitive Dependencies, Project Attachments, and Project Artifacts
	8.5.4.6. Advanced Unpacking Options
	8.5.4.7. Summarizing Dependency Sets

	8.5.5. moduleSets Sections
	8.5.5.1. Module Selection
	8.5.5.2. Sources Section
	8.5.5.3. Interpolation of outputDirectoryMapping in moduleSets
	8.5.5.4. Binaries section
	8.5.5.5. moduleSets, Parent POMs and the binaries Section

	8.5.6. Repositories Section
	8.5.7. Managing the Assembly’s Root Directory
	8.5.8. componentDescriptors and containerDescriptorHandlers

	8.6. Best Practices
	8.6.1. Standard, Reusable Assembly Descriptors
	8.6.2. Distribution (Aggregating) Assemblies

	8.7. Summary

	Chapter 9. Properties and Resource Filtering
	9.1. Introduction
	9.2. Maven Properties
	9.2.1. Maven Project Properties
	9.2.2. Maven Settings Properties
	9.2.3. Environment Variable Properties
	9.2.4. Java System Properties
	9.2.5. User-defined Properties

	9.3. Resource Filtering

	Chapter 10. Site Generation
	10.1. Introduction
	10.2. Building a Project Site with Maven
	10.3. Customizing the Site Descriptor
	10.3.1. Customizing the Header Graphics
	10.3.2. Customizing the Navigation Menu

	10.4. Site Directory Structure
	10.5. Writing Project Documentation
	10.5.1. APT Example
	10.5.2. FML Example

	10.6. Deploying Your Project Website
	10.6.1. Configuring Server Authentication
	10.6.2. Configuring File and Directory Modes

	10.7. Customizing Site Appearance
	10.7.1. Customizing the Site CSS
	10.7.2. Create a Custom Site Template
	10.7.3. Reusable Website Skins
	10.7.4. Creating a Custom Theme CSS

	10.8. Tips and Tricks
	10.8.1. Inject XHTML into HEAD
	10.8.2. Add Links under Your Site Logo
	10.8.3. Add Breadcrumbs to Your Site
	10.8.4. Add the Project Version
	10.8.5. Modify the Publication Date Format and Location
	10.8.6. Using Doxia Macros

	Chapter 11. Writing Plugins
	11.1. Introduction
	11.2. Programming Maven
	11.2.1. What is Inversion of Control?
	11.2.2. Introduction to Plexus
	11.2.3. Why Plexus?
	11.2.4. What is a Plugin?

	11.3. Plugin Descriptor
	11.3.1. Top-level Plugin Descriptor Elements
	11.3.2. Mojo Configuration
	11.3.3. Plugin Dependencies

	11.4. Writing a Custom Plugin
	11.4.1. Creating a Plugin Project
	11.4.2. A Simple Java Mojo
	11.4.3. Configuring a Plugin Prefix
	11.4.4. Logging from a Plugin
	11.4.5. Mojo Class Annotations
	11.4.6. When a Mojo Fails

	11.5. Mojo Parameters
	11.5.1. Supplying Values for Mojo Parameters
	11.5.2. Multi-valued Mojo Parameters
	11.5.3. Depending on Plexus Components
	11.5.4. Mojo Parameter Annotations

	11.6. Plugins and the Maven Lifecycle
	11.6.1. Executing a Parallel Lifecycle
	11.6.2. Creating a Custom Lifecycle
	11.6.3. Overriding the Default Lifecycle

	Chapter 12. Using Maven Archetypes
	12.1. Introduction to Maven Archetypes
	12.2. Using Archetypes
	12.2.1. Using an Archetype from the Command Line
	12.2.2. Using the Interactive generate Goal
	12.2.3. Using an Archetype from m2eclipse

	12.3. Available Archetypes
	12.3.1. Common Maven Archetypes
	12.3.1.1. maven-archetype-quickstart
	12.3.1.2. maven-archetype-webapp
	12.3.1.3. maven-archetype-mojo

	12.3.2. Notable Third-Party Archetypes
	12.3.2.1. AppFuse
	12.3.2.2. Confluence and JIRA plugins
	12.3.2.3. Wicket

	12.4. Publishing Archetypes

	Chapter 13. Developing with Flexmojos
	13.1. Introduction
	13.2. Configuring Build Environment for Flexmojos
	13.2.1. Referencing a Repository with the Flex Framework
	13.2.1.1. Referencing Sonatype's Flexmojos Repository in a POM
	13.2.1.2. Proxying Sonatype's Flexmojos Repository with Nexus

	13.2.2. Configuring Environment to Support Flex Unit Tests
	13.2.3. Adding FlexMojos to Your Maven Settings' Plugin Groups

	13.3. Creating a Flex Mojos Project from an Archetype
	13.3.1. Creating a Flex Library
	13.3.2. Creating a Flex Application
	13.3.3. Creating a Multi-module Project: Web Application with a Flex Dependency

	13.4. The FlexMojos Lifecycle
	13.4.1. The SWC Lifecycle
	13.4.2. The SWF Lifecycle

	13.5. FlexMojos Plugin Goals
	13.5.1. Generating Actionscript Documentation
	13.5.2. Compiling Flex Source
	13.5.3. Generating Flex Builder Project Files

	13.6. FlexMojos Plugin Reports
	13.6.1. Generating Actionscript Documentation Report

	13.7. Developing and Customizing Flexmojos
	13.7.1. Get the Flexmojos Source Code

	Appendix A. Appendix: Settings Details
	A.1. Quick Overview
	A.2. Settings Details
	A.2.1. Simple Values
	A.2.2. Servers
	A.2.3. Mirrors
	A.2.4. Proxies
	A.2.5. Profiles
	A.2.6. Activation
	A.2.7. Properties
	A.2.8. Repositories
	A.2.9. Plugin Repositories
	A.2.10. Active Profiles
	A.2.11. Encrypting Passwords in Maven Settings

	Appendix B. Appendix: Sun Specification Alternatives
	Appendix C. Creative Commons License
	C.1. Creative Commons BY-NC-ND 3.0 US License

	Appendix D. Book Revision History
	D.1. Changes in Edition 0.2.1
	D.2. Changes in Edition 0.2
	D.3. Changes in Edition 0.1

	Index

