
Tutorial for DMTCP Plugins

March, 2013

Contents

1 Introduction 1

2 Anatomy of a plugin 2

3 Writing Plugins 2
3.1 Invoking a plugin . 2
3.2 The plugin mechanisms . 2

3.2.1 Plugin events . 3
3.2.2 Plugin wrapper functions . 3
3.2.3 Plugin coordination among multiple or distributed processes 4
3.2.4 Using plugins to virtualize ids and other names . 4

4 Application-Initiated Checkpoints 4

A Appendix: Plugin Manual 5
A.1 Plugin events . 5

A.1.1 dmtcp event hook . 5
A.1.2 DMTCP NEXT EVENT HOOK . 5
A.1.3 Event Names . 6

A.2 Publish/Subscribe . 8
A.3 Wrapper functions . 8
A.4 Miscellaneous utility functions . 8

1 Introduction

Plugins enable one to modify the behavior of DMTCP. Two of the most common uses of plugins are:

1. to execute an additional action at the time of checkpoint, resume, or restart.

2. to add a wrapper function around a call to a library function (including wrappers around system calls).

Plugins are used for a variety of purposes. The DMTCP ROOT/contrib directory contains packages that
users and developers have contributed to be optionally loaded into DMTCP.

Plugin code is expressive, while requiring only a modest number of lines of code. The plugins in the
contrib directory vary in size from 400 lines to 3000 lines of code.

Beginning with DMTCP version 2.0, much of DMTCP itself is also now a plugin. In this new de-
sign, the core DMTCP code is responsible primarily for copying all of user space memory to a checkpoint
image file. The remaining functions of DMTCP are handled by plugins, found in DMTCP ROOT/plugin.
Each plugin abstracts the essentials of a different subsystem of the operating system and modifies its
behavior to accommodate checkpoint and restart. Some of the subsystems for which plugins have been

1

written are: virtualization of process and thread ids; files(open/close/dup/fopen/fclose/mmap/pty); events
(eventfd/epoll/poll/inotify/signalfd); System V IPC constructs (shmget/semget/msgget); TCP/IP sockets
(socket/connect/bind/listen/accept); and timers (timer create/clock gettime). (The indicated system calls
are examples only and not all-inclusive.)

2 Anatomy of a plugin

A plugin modifies the behavior of either DMTCP or a target application, through three primary mechanisms,
plus virtualization of ids.

Wrapper functions: One declares a wrapper function with the same name as an existing library function
(including system calls in the run-time library). The wrapper function can execute some prolog code,
pass control to the “real” function, and then execute some epilog code. Several plugins can wrap the
same function in a nested manner. One can also omit passing control to the “real” function, in order
to shadow that function with an alternate behavior.

Events: It is frequently useful to execute additional code at the time of checkpoint, or resume, or restart.
Plugins provide hook functions to be called during these three events and numerous other important
events in the life of a process.

Coordinated checkpoint of distributed processes: DMTCP transparently checkpoints distributed com-
putations across many nodes. At the time of checkpoint or restart, it may be necessary to coordinate
information among the distributed processes. For example, at restart time, an internal plugin of
DMTCP allows the newly re-created processes to “talk” to their peers to discover the new network
addresses of their peers. This is important since a distributed computation may be restarted on a
different cluster than its original one.

Virtualization of ids: Ids (process id, timer id, sysv ipc id, etc.) are assigned by the kernel, by a peer
process, and by remote processes. Upon restart, the external agent may wish to assign a different
id than the one assigned prior to checkpoint. Techniques for virtualization of ids are described in
Section 3.2.4.

3 Writing Plugins

3.1 Invoking a plugin

Plugins are just dynamic run-time libraries (.so files).
gcc -shared -fPIC -IDMTCP ROOT/dmtcp/include -o PLUGIN1.so PLUGIN1.c

They are invoked at the beginning of a DMTCP computation as command-line options:
dmtcp launch --with-plugin PLUGIN1.so:PLUGIN2.so myapp

Note that one can invoke multiple plugins as a colon-separated list. One should either specify a full
path for each plugin (each .so library), or else to define LD LIBRARY PATH to include your own plugin
directory.

3.2 The plugin mechanisms

The mechanisms of plugins are most easily described through examples. This tutorial will rely on the
examples in DMTCP ROOT/test/plugin. To get a feeling for the plugins, one can “cd” into each of the
subdirectories and execute: “make check”.

2

3.2.1 Plugin events

For context, please scan the code of DMTCP ROOT/plugin/example/example.c. Executing “make check” will
demonstrate the intended behavior. Plugin events are handled by including the function dmtcp event hook.
When a DMTCP plugin event occurs, DMTCP will call the function dmtcp event hook for each plugin.
This function is required only if the plugin will handle plugin events. See Appendix A for further details.

void dmtcp_event_hook(DmtcpEvent_t event, DmtcpEventData_t *data)

{

switch (event) {

case DMTCP_EVENT_WRITE_CKPT:

printf("\n*** The plugin is being called before checkpointing. ***\n");

break;

case DMTCP_EVENT_RESUME:

printf("*** Resume: the plugin has now been checkpointed. ***\n");

break;

case DMTCP_EVENT_RESTART:

printf("*** The plugin is now being restarted. ***\n");

break;

...

default:

break;

}

DMTCP_NEXT_EVENT_HOOK(event, data);

}

3.2.2 Plugin wrapper functions

In its simplest form, a wrapper function can be written as follows:

unsigned int sleep(unsigned int seconds) {

static unsigned int (*next_fnc)() = NULL; /* Same type signature as sleep */

struct timeval oldtv, tv;

gettimeofday(&oldtv, NULL);

time_t secs = val.tv_sec;

printf("sleep1: "); print_time(); printf(" ... ");

unsigned int result = NEXT_FNC(sleep)(seconds);

gettimeofday(&tv, NULL);

printf("Time elapsed: %f\n",

(1e6*(val.tv_sec-oldval.tv_sec) + 1.0*(val.tv_usec-oldval.tv_usec)) / 1e6);

print_time(); printf("\n");

return result;

}

In the above example, we could also shadow the standard “sleep” function by our own implementation,
if we omit the call to “NEXT FNC”.
To see a related example, try:

cd DMTCP ROOT/test/plugin/sleep1; make check

Wrapper functions from distinct plugins can be nested. For a nesting of plugin sleep2 around sleep1, do:
cd DMTCP ROOT/test/plugin; make; cd sleep2; make check

3

If one adds a wrapper around a function from a library other than libc.so (e.g., libglx.so), it is best to
dynamically link to that additional library:

gcc ... -o PLUGIN1.so PLUGIN1.c -lglx.so

3.2.3 Plugin coordination among multiple or distributed processes

It is often the case that an external agent will assign a particular initial id to your process, but later assign
a different id on restart. Each process must re-discover its peers at restart time, without knowing the
pre-checkpoint ids.

DMTCP provides a “Publish/Subscribe” feature to enable communication among peer processes. Two
plugin events allow user plugins to discover peers and pass information among peers. The two events
are: DMTCP EVENT REGISTER NAME SERVICE DATA and DMTCP EVENT SEND QUERIES. DMTCP guarantees to
provide a global barrier between the two events.

An example of how to use the Publish/Subscribe feature is contained in DMTCP ROOT/test/plugin/example-db .
The explanation below is best understood in conjunction with reading that example.

A plugin processing DMTCP EVENT REGISTER NAME SERVICE DATA should invoke:
int dmtcp send key val pair to coordinator(const void *key, size t key len, const void *val, size t val len).

A plugin processing DMTCP EVENT SEND QUERIES should invoke:
int dmtcp send query to coordinator(const void *key, size t key len, void *val, size t *val len).

3.2.4 Using plugins to virtualize ids and other names

Often an id or name will change between checkpoint and restart. For example, on restart, the real pid of a
process will change from its pid prior to checkpoint. Some DMTCP internal plugins maintain a translation
table in order to translate between a virtualized id passed to the user code and a real id maintained inside
the kernel. The utility to maintain this translation table can also be used within third-party plugins. For
an example of adding virtualization to a plugin, see the plugin in plugin/ipc/timer.

In some less common cases, it can happen that a virtualized id is passed to a library function by the
target application. Yet, that same library function may be passed a real id by a second function from within
the same library. In these cases, it is the responsibility of the plugin implementor to choose a scheme that
allows the first library function to distinguish whether its argument is a virtual id (passed from the target
application) or a real id (passed from within the same library).

4 Application-Initiated Checkpoints

Application-initiated checkpoints are even simpler than full-featured plugins. In the simplest form, the
following code can be executed both with dmtcp launch and without.:

#include <stdio.h>

#include "dmtcp.h"

int main() {

if (dmtcpCheckpoint() == DMTCP_NOT_PRESENT) {

printf("dmtcpcheckpoint: DMTCP not present. No checkpoint is taken.\n");

}

return 0;

}

For this program to be aware of DMTCP, it must be compiled with -fPIC and -ldl :
gcc -fPIC -IDMTCP ROOT/dmtcp/include -o myapp myapp.c -ldl

The most useful functions are:

4

int dmtcpIsEnabled() — returns 1 when running with DMTCP; 0 otherwise.

int dmtcpCheckpoint() — returns DMTCP AFTER CHECKPOINT, DMTCP AFTER RESTART, or
DMTCP NOT PRESENT.

int dmtcpDelayCheckpointsLock() — DMTCP will block any checkpoint requests.

int dmtcpDelayCheckpointsUnlock() — DMTCP will execute any blocked checkpoint requests, and will
permit new checkpoint requests.

The last two functions follow the common pattern of returning 0 on success and DMTCP NOT PRESENT

if DMTCP is not present. See the subdirectories DMTCP ROOT/test/plugin/applic-initiated-ckpt and
DMTCP ROOT/test/plugin/applic-delayed-ckpt, where one can execute make check for a live demonstra-
tion.

A Appendix: Plugin Manual

A.1 Plugin events

A.1.1 dmtcp event hook

In order to handle DMTCP plugin events, a plugin must define dmtcp event hook.

NAME

dmtcp_event_hook - Handle plugin events for this plugin

SYNOPSIS

#include "dmtcp/plugin.h"

void dmtcp_event_hook(DmtcpEvent_t event, DmtcpEventData_t *data)

DESCRIPTION

When a plugin event occurs, DMTCP will look for the symbol

dmtcp_event_hook in each plugin library. If the symbol is found,

that function will be called for the given plugin library. DMTCP

guarantees only to invoke the first such plugin library found in

library search order. Occurrences of dmtcp_event_hook in later

plugin libraries will be called only if each previous function

had invoked DMTCP_NEXT_EVENT_HOOK. The argument, <event>, will be

bound to the event being declared by DMTCP. The argument, <data>,

is required only for certain events. See the following section,

‘‘Plugin Events’’ for a list of all events.

SEE ALSO

DMTCP_NEXT_EVENT_HOOK

A.1.2 DMTCP NEXT EVENT HOOK

A typical definition of dmtcp event hook will invoke DMTCP NEXT EVENT HOOK.

NAME

DMTCP_NEXT_EVENT_HOOK - call dmtcp_event_hook in next plugin library

SYNOPSIS

5

#include "dmtcp/plugin.h"

void DMTCP_NEXT_EVENT_HOOK(event, data)

DESCRIPTION

This function must be invoked from within a plugin function library

called dmtcp_event_hook. The arguments <event> and <data> should

normally be the same arguments passed to dmtcp_event_hook.

DMTCP_NEXT_EVENT_HOOK may be called zero or one times. If invoked zero

times, no further plugin libraries will be called to handle events.

The behavior is undefined if DMTCP_NEXT_EVENT_HOOK is invoked more than

once. The typical usage of this function is to create a wrapper around

the handling of the same event by later plugins.

SEE ALSO

dmtcp_event_hook

There are examples of compiling a plugin in the examples in DMTCP ROOT/test/plugin.

A.1.3 Event Names

The rest of this section defines plugin events. The complete list of plugin events is always contained in
DMTCP ROOT/dmtcp/include/dmtcp/plugin.h .

DMTCP guarantees to call the dmtcp event hook function of the plugin when the specified event occurs.
Plugins that pass significant data through the data parameter are marked with an asterisk: ∗. Most

plugin events do not pass data through the data parameter.
Note that the events

RESTART / RESUME / REFILL / REGISTER NAME SERVICE DATA / SEND QUERIES
should all be processed after the call to DMTCP NEXT EVENT HOOK() in order to guarantee that the
internal DMTCP plugins have first restored full functionality.

Checkpoint-Restart

DMTCP EVENT WRITE CKPT — Invoked at final barrier before writing checkpoint

DMTCP EVENT RESTART — Invoked at first barrier during restart of new process

DMTCP EVENT RESUME — Invoked at first barrier during resume following checkpoint

Coordination of Multiple or Distributed Processes during Restart (see Appendix A.2. Pub-
lish/Subscribe)

DMTCP EVENT REGISTER NAME SERVICE DATA∗ restart/resume

DMTCP EVENT SEND QUERIES∗ restart/resume

WARNING: EXPERTS ONLY FOR REMAINING EVENTS

Init/Fork/Exec/Exit

DMTCP EVENT INIT — Invoked before main (in both the original program and any new program called
via exec)

DMTCP EVENT EXIT — Invoked on call to exit/ exit/ Exit return from main?;

6

DMTCP EVENT PRE EXEC — Invoked prior to call to exec

DMTCP EVENT POST EXEC — Invoked before DMTCP EVENT INIT in new program

DMTCP EVENT ATFORK PREPARE — Invoked before fork (see POSIX pthread atfork)

DMTCP EVENT ATFORK PARENT — Invoked after fork by parent (see POSIX pthread atfork)

DMTCP EVENT ATFORK CHILD — Invoked after fork by child (see POSIX pthread atfork)

Barriers (finer-grained control during checkpoint-restart)

DMTCP EVENT WAIT FOR SUSPEND MSG — Invoked at barrier during coordinated checkpoint

DMTCP EVENT SUSPENDED — Invoked at barrier during coordinated checkpoint

DMTCP EVENT LEADER ELECTION — Invoked at barrier during coordinated checkpoint

DMTCP EVENT DRAIN — Invoked at barrier during coordinated checkpoint

DMTCP EVENT REFILL — Invoked at first barrier during resume/restart of new process

Threads

DMTCP EVENT THREADS SUSPEND — Invoked within checkpoint thread when all user threads have
been suspended

DMTCP EVENT THREADS RESUME — Invoked within checkpoint thread before any user threads are
resumed.
For debugging, consider calling the following code for this event: static int x = 1; while(x);

DMTCP EVENT PRE SUSPEND USER THREAD — Each user thread invokes this prior to being sus-
pended for a checkpoint

DMTCP EVENT RESUME USER THREAD — Each user thread invokes this immediately after a re-
sume or restart (isRestart() available to plugin)

DMTCP EVENT THREAD START — Invoked before start function given by clone

DMTCP EVENT THREAD CREATED — Invoked within parent thread when clone call returns (like
parent for fork)

DMTCP EVENT PTHREAD START — Invoked before start function given by pthread created

DMTCP EVENT PTHREAD EXIT — Invoked before call to pthread exit

DMTCP EVENT PTHREAD RETURN — Invoked in child thread when thread start function of pthread create
returns

7

A.2 Publish/Subscribe

Section 3.2.3 provides an explanation of the Publish/Subscribe feature for coordination among peer pro-
cesses at resume- or restart-time. An example of how to use the Publish/Subscribe feature is contained in
DMTCP ROOT/test/plugin/example-db .

The primary events and functions used in this feature are:
DMTCP EVENT REGISTER NAME SERVICE DATA

int dmtcp send key val pair to coordinator(const void *key, size t key len, const void *val, size t val len)
DMTCP EVENT SEND QUERIES

int dmtcp send query to coordinator(const void *key, size t key len, void *val, size t *val len)

A.3 Wrapper functions

For a description of including wrapper functions in a plugin, see Section 3.2.2.

A.4 Miscellaneous utility functions

Numerous DMTCP utility functions are provided that can be called from within dmtcp event hook(). For
a complete list, see DMTCP ROOT/dmtcp/include/dmtcp/plugin.h . The utility functions are still under
active development, and may change in small ways. Some of the more commonly used utility functions
follow. Functions that return “char *” will not allocate memory, but instead will return a pointer to a
canonical string, which should not be changed.

void dmtcp_get_local_ip_addr(struct in_addr *in);

const char* dmtcp_get_tmpdir(); /* given by --tmpdir, or DMTCP_TMPDIR, or TMPDIR */

const char* dmtcp_get_ckpt_dir();

/* given by --ckptdir, or DMTCP_CHECKPOINT_DIR, or curr dir at ckpt time */

const char* dmtcp_get_ckpt_files_subdir();

int dmtcp_get_ckpt_signal(); /* given by --mtcp-checkpoint-signal */

const char* dmtcp_get_uniquepid_str();

const char* dmtcp_get_computation_id_str();

uint64_t dmtcp_get_coordinator_timestamp();

uint32_t dmtcp_get_generation(); /* number of ckpt/restart sequences encountered */

const char* dmtcp_get_executable_path();

int dmtcp_get_restart_env(char *name, char *value, int maxvaluelen);

/* For ’name’ in environment, copy its value into ’value’ param, but with

* at most length ’maxvaluelen’.

* Return 0 for success, and return code for various errors

* See contrib/modify-env for an example of its use.

*/

8

