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Chapter 12

Calibrating Pairs of Clocks

In this chapter we tackle the difficult problem of calibrating the accuracy of packet filter
timestamps. “Wire times,” as defined inx 10.1, lie at the heart of much of our study, and the packet
filter timestamps are the only means we have for estimating wire times. Yet, we have no independent
means of verifying that the timestamps reported by the packet filters are indeed accurate. We must
instead develop self-consistency techniques for calibrating the timestamps against themselves. For
the most part, we are successful in doing so.

Undetected clock errors can result in serious systematic errors in our analysis of network
dynamics, since superficially a clock error is indistinguishable from variations in packet transit
times. These latter variations occur all the time due to queueing in the network, and we are interested
in accurately analyzing them.

We begin by defining inx 12.1 basic terminology for describing the different clock at-
tributes of “resolution,” “offset,” “accuracy,” and “skew.” We next discuss inx 12.2 why we did
not require the clocks in our study to be synchronized, and how, if we had, use of the popular Net-
work Time Protocol (NTP) would not necessarily have eliminated clock problems. Since the clocks
at the connection endpoints lacked synchronization, we introduce inx 12.3 “relative” counterparts
of “offset,” “accuracy” and “skew,” for discussing potential disagreements between two network
clocks.

We then turn to methods for assessing clock resolution and relative clock accuracy
(x 12.4, x 12.5); detecting clock adjustments (x 12.6), in which a clock quickly jumps or skews
forward or backward because it is being set to a new absolute time; and detecting relative clock
skew (x 12.7). Clock adjustments and skew can introduce large, artificial network “dynamics,” so it
is particularly important to detect and remove these effects.

We finish inx 12.9 with a look at how well a clock's synchronization correlates with stable
clock behavior (lack of adjustments and of skew). We show that, unfortunately, a high degree of
synchronization between two clocks does not necessarily mean that the clocks are free of relative
errors.

12.1 Basic clock terminology

In this section we define basic terminology for discussing the characteristics of the clocks
used in our study. The Network Time Protocol (NTP; [Mi92a]) defines a nomenclature for dis-
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cussing clock characteristics, which we will use as appropriate. It is important to note, however,
that the main goal of NTP is to provide accurate timekeeping over fairly long time scales, such as
minutes to days, while for our purposes we are concerned with much shorter-term accuracy, namely
between the beginning of a network transfer and its end. This difference in goals sometimes leads
to different definitions of terminology, as discussed below.

12.1.1 Resolution

A clock's resolutionis the smallest unit by which the clock's time is updated. It gives a
lower bound on the clock's uncertainty. (Note that clocks can have very fine resolutions and yet
be wildly inaccurate.)It is crucial that this uncertainty be propagated when deriving estimates of
network properties from timestamps produced by the clock.

Note that we define resolution relative to the clock's reported time and not to true time,
so for example a resolution of 10 msec only means that the clock updates its notion of time in
0.01 second increments, not that this is the true amount of time between updates.

12.1.2 Offset

We define a clock'soffsetat a particular moment as the difference between the time re-
ported by the clock and the “true” time as defined by national standards. If the clock reports a time
Tc and the true time isTt, then the clock's offset isTc � Tt.

12.1.3 Accuracy

We will refer to a clock asaccurateat a particular moment if the clock's offset is zero,
and more generally a clock'saccuracyis how close the absolute value of the offset is to zero. For
NTP, accuracy also includes a notion of the frequency of the clock; for our purposes, we split out
this notion into that ofskew, because we define accuracy in terms of a single moment in time rather
than over an interval of time.

12.1.4 Skew and drift

A clock's skewat a particular moment is the frequency difference (first derivative of its
offset with respect to true time) between the clock and national standards.

As noted in [Mi92a], real clocks exhibit some variation in skew. That is, the second
derivative of the clock's offset with respect to true time is generally non-zero. [Mi92a] defines
this quantity as the clock'sdrift. We in general will only talk about this notion in terms of clock
adjustments, during which the clock's time is rapidly altered, because during the small time scales
of interest for our study, only large drift values have discernable effects.1

1We will see inx 12.7 that, for the time scale of a single TCP connection in our study, relative clock skew is nearly
always very close to linear, indicating near-zero relative drift over small time scales.
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12.2 Lack of synchronized clocks

When designing the Network Probe Daemon (NPD) experiment, we made an early deci-
sion not to require synchronization between the clocks at the participating NPD sites. There were
two reasons for this decision. First, one of the most important requirements of the experiment was
to enlist as many participating sites as possible, in the quest for obtaining plausibly representa-
tive results. It was felt that requiring sites to install clock synchronization as well as bring up the
measurement daemon would significantly add to the burden of participating in the study.

Furthermore, it is not clear that requiring clock synchronization would help in the mea-
surement analysis. The main reason why it might not is because the most common form of clock
synchronization used by Internet hosts is the Network Time Protocol (NTP). Use of NTP for the
NPD experiment has two important shortcomings. First, NTP's accuracy depends in part on the
properties (particularly delay) of the Internet paths used by the NTP peers, and these are exactly the
properties that we wish to measure, so it would be less than completely sound to use NTP to cali-
brate our measurements. Second, NTP focuses on clockaccuracy, which can come at the expense
of short-term clock skew and drift. For example, when a host's clock is indirectly synchronized via
NTP to a time source, if the synchronization intervals occur infrequently, then the host will some-
times be faced with the problem of how to adjust its current, incorrect time,Ti, with a considerably
different, more accurate time it has just learned,Ta. Two general ways in which this is done are to
either immediately set the current time toTa, or to adjust the local clock's update frequency (hence,
its skew) so that at some point in the future the local timeT 0

i will agree with the more accurate time
T 0

a. (We will see examples of both of these inx 12.7.)
A key point is that, for the NPD experiment, we are much more interested in correctly

estimatingdifferencesbetween two timestamps than with the correctness of individual timestamps.
That is, we care much more about clock skew than clock accuracy, because it is the differences that
measure network delays. So, given a choice, we would prefer to buy very low clock skew at the ex-
pense of diminished clock accuracy, but NTP makes the opposite trade-off. In this respect, we prefer
to synchronize the clocksa posteriorias we do here, after having completed the measurements.

In the future, it may be possible to obtain highly accurate clock synchronization via a
mechanism separate from using the network itself; for example, GPS (Global Positioning System)
receivers. That would allow us to have both accuracy and very low skew, which would be ideal
for network measurement. Unfortunately, obtaining such separate synchronization today remains
rare, so it behooves us to see how much use we can make of unsynchronized or NTP-synchronized
clocks.

Finally, one might hope that a highly accurate clock will have very low skew, because if it
had high skew it would not tend to be highly accurate. Inx 12.9 we briefly investigate the degree to
which this held for the closely-synchronized hosts, and find that it is only somewhat true. We also
briefly argue in that section that, even with separate synchronization such as GPS receivers, sound
measurement still calls for calibrating the timestamps.

12.3 Terminology for comparing clocks

A fundamental part of our experimental design was to arrange to record packet departures
and arrivals atboth ends of the end-to-end TCP connections between the NPD hosts. Doing so
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is crucial for discriminating between network conditions on the forward path, in which the data
packets flowed, and the reverse path, over which only the receiver's acks flowed (since the TCP
transfers were unidirectional). While recording packets at only one of the connection's endpoints is
logistically much easier, analyzing network effects then becomes much more difficult, because the
forward and reverse path become deeply intertwined.

Tracing packets at both ends, however, immediately raises questions about how to com-
pare the timestamps produced by the packet filters at the two endpoints. In this section, we develop
terminology for discussing differences between the two clocks producing the timestamps. The defi-
nitions are, for the most part, analogous to those inx 12.1, except that, instead of comparing a single
clock against “true” time, we are comparing one clock against another.

We first introduce the meta-notation of a subscript “s” denoting time measured at the TCP
sender, and “r” denoting time at the TCPreceiver. Because our transfers are unidirectional, data
flows only from the sender to the receiver, and acks flow from the receiver to the sender. LetCs and
Cr refer to the clocks at the sender and receiver, andRs andRr their respective resolutions.

We defineCr 's offset relative toCs at a particular true timeT asTr � Ts, that is, the
instantaneous difference between the readings ofCr andCs at timeT . For convenience we will
sometimes refer to this asCr 's relative offset at timeT , withCs implicitly being the clock to which
Cr is compared.

Similarly, Cr 's relative skew is the first derivative ofCr 's relative offset with respect to
true time. Since we lack an independent means of measuring true time, we can only estimateCr 's
relative skew in terms of time as measured by eitherCs orCr. Seex 12.7 for further discussion.

If Cr is accurate relative toCs (their relative offset is zero), then we will refer to the pair
of clocks as “synchronized.” Note that clocks can be highly synchronized yet arbitrarily inaccurate
in terms of how well they tell true time. This point is important because, for the analysis of our
measurements, synchronization betweenCs andCr is more useful than the absolute accuracy of
the clocks. The same is somewhat true of skew, too: as long as the absolute skew is not too great
(x 12.7.9), then minimal relative skew is more important, as it can induce systematic trends in packet
transit times measured by comparing timestamps produced by the two clocks. In addition, since we
lack an independent time standard in our study, we have no general way of assessing absolute skew,
only relative skew.

These distinctions arise because what is often most important for our measurements are
differencesin time as computed by comparing the timestamps from the two clocks. The process of
computing the difference removes any error due to clock inaccuracies with respect to true time; but
it is crucial that the differences themselves reflect good approximations to differences in true time.

For resolution, what we care about is not “relative resolution” butjoint resolution, which
we define asRs;r = Rs + Rr. This definition reflects the fact that, when comparing timestamps
from Cs with those fromCr, the corresponding uncertainties must beaddedto properly propagate
the resulting total uncertainty.

While the presence of generally-unsynchronized clocks in our study presents a number
of measurement headaches, it also provides an opportunity for detecting certain types of clock
errors—namely adjustments and skew—that sometimes cannot be determined at all when analyzing
timestamps produced by a single clock. We delve into methods for detecting such errors in detail in
the subsequent sections.
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12.4 Assessing clock resolution

All of the computers participating in our study ran some variant of the Unix operating
system. Unix defines a data structure for recording timestamps that has two fields, one for how
many seconds have elapsed since a particular epoch, and one for how many microseconds have
elapsed since the beginning of the current second. Thus, timestamp resolution is never better than
1 �sec. It can be much worse.

The basic idea behind estimating the resolution of the packet filter timestamps produced
by the clocks in our study is to examine consecutive timestamps to determine the smallest difference
between them. Unfortunately, Unix systems differ on how they report the time on subsequent calls
during which the (digital) clock has not advanced. Some systems simply return the same unchanged
time as given for previous calls. These are easy to detect, by disregarding timestamp differences of
zero when determining clock resolution.

Others Unix systems add a small increment to the reported time to maintain monotone-
increasing timestamps. We will refer to these adjustments asmonotonicity increments. For such
systems, we donot want to consider monotonicity increments when evaluating the clock's reso-
lution, since they are artifacts of a more coarse resolution. Such systems generally increase the
clock by 1�sec to maintain monotonicity, but we cannot simply disregard timestamp differences of
exactly 1�sec, because it is possible that other processes running on the same machine (or even the
packet filter, when discarding unwanted traffic) have queried the clock multiple times, making the
increasen �sec. We proceed by hoping that occasionallyn is small (in particular,n < 5), so that,
if we observe a very small, positive timestamp difference, then we can infer that the system uses
monotonicity increments.

12.4.1 Method for assessing resolution

Taking these considerations into account, we use the following method for estimating the
clock resolutionbR:

1. LetTi; 0 � i � n be theith packet filter timestamp, givenn+ 1 successive timestamps.

2. Let�Ti = Ti � Ti�1; 1 � i � n, the differences between successive timestamps.

3. If any�Ti is less than zero then the timestamps exhibittime travel, and the timing is untrust-
worthy (x 10.3.7).

4. If any�Ti is greater than zero but less than5 �sec, then setbR0 to the smallest�Ti greater
than100 �sec.

5. Otherwise, setbR0 to the smallest�Ti greater than zero.

This method either producesbR0, an initial bound on the clock resolution, or the determination that
the timestamps are polluted by time travel. If the former, we then form our estimatebR as bR0 rounded
to two decimal digits.2 The rounding is primarily to introduce a reminder thatbR is only a rough

2The exact algorithm used bytcpanaly is slightly more complicated. It executes the above algorithm “on the fly,”
for historical reasons. To minimize computation,tcpanaly only decreasesbR0 if a new value is at least 2.5% smaller
than the best value so far.
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estimate, and not to be taken too exactly. It is also useful for ensuring that a resolution like 10 msec
is expressed as such, rather than 9.999 msec, as can happen if two timestamps differ by slightly less
than 10 msec because of a monotonicity increment.

Note that this computation ofbR produces at best an upper bound onR, the clock's true
resolution, because it may happen that the packet filter never receives back-to-back packets as little
asR seconds apart. For our purposes, this inaccuracy is acceptable, because the extra error intro-
duced is conservative in the sense that it only widens the uncertainties we associate with our timing
analysis.

12.4.2 Results of assessing resolution

tcpanaly uses the method outlined in the previous section to estimate the timestamp
resolution of each trace it analyzes. We would hope to always observe roughly the same value for
each particular packet filter, since a computer clock's resolution changes only very rarely (due to a
hardware or perhaps operating system upgrade). This is indeed the case. Here we summarize the
resolutions of the timestamps returned by the different packet filters.3

Three of the systems,oce , ucol (duringN1), andxor , always had an estimated resolu-
tion of 10 msec. Their operating systems were IRIX 4.0, SunOS 4.1.3, and Solaris 2.3. A number of
other sites running these operating systems also participated in the study, all with finer resolutions,
so the limitations must be due to either hardware constraints or user configuration, rather than be-
ing fixed by the operating systems. We did not further investigate the hardware differences, as our
primary interest is in accurately estimating a packet filter's timestamp resolution, and not the details
of why the resolution is what it is.

The coarse 10 msec resolution proves problematic during our later analysis, because it
makes it difficult to resolve, for example, bottleneck bandwidths with any sort of precision. We
address this difficulty inx 14.7.

One system,sandia , also running IRIX 4.0, always had an estimated resolution of either
1 msec or 990�sec.

All of the Digital Unix OSF/1 systems (harv , mit , umann, ucol in N2) always had a
resolution of980 �sec or970 �sec, which matches a clock advance of210 = 1; 024 ticks/sec.

Some of the SunOS (nrao , umont , unij ) and BSDI (austr , rain ) always had reso-
lutions� 200 �sec, while other SunOS and BSDI systems had finer resolutions, again suggesting
hardware differences or user configuration.

Of the remainder, all exhibited resolutions finer than200 �sec, though not in every trace.
The median resolutions over all of the traces were almost always in the 10-300�sec range. This
turns out to be ample for our purposes.

Finally, we note that estimates based on packet traces from a given hostH receivinga
unidirectional data transfer tend to be slightly larger (more coarse) than those from traces ofH

sendingthe data. The difference is on the order of 3–25%. It can be understood in terms of the
overestimation effect discussed in the previous section, namely that, if the packet filter never sees
back-to-back packets with a spacing equal to the clock resolution, thentcpanaly has no opportu-
nity to accurately estimate the resolution. A TCP sender will often send two packets back-to-back as

3Recall that some NPD sites used a separate computer for monitoring the NPD traffic (Table XIV). All of the analysis
in this chapter concerns the clock of the host used intracing the traffic, as that is the only clock relevant to our subsequent
analysis.
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the window slides or the congestion window opens (x 9.2.2), and these then provide an opportunity
to observe minimally-spaced timestamps. TCP receivers, on the other hand, receive these packets
spaced out by the bottleneck bandwidth (Chapter 14), generally well above the clock resolution.
Furthermore, most implementations will wait to send an ack until the receiving application has read
at least two packets' worth of data (x 11.6.1), which will entail extra delay, perhaps more than the
clock's true resolution.

12.5 Assessing relative clock offset

In this section we discuss how to estimate the relative offset between two network clocks.
The closer the offset is to zero, the greater the relative clock accuracy (degree of synchronization).
For our purposes, estimating relative offset is not crucial to our subsequent analysis of network
dynamics. We only need to do so in order to construct legible plots of the two-way flow of packets
and acks, and to qualitatively investigate the relationship between large relative offset and other
clock problems such as relative skew. Accordingly, we are satisfied with the method developed in
this section even though it is not highly accurate.

12.5.1 Method for assessing relative offset

Let �Tps be the time required to send a packetps from hosts to hostr. In general, we
refer to this time as the “one-way transit time” or “OTT.” Supposeps is sent fromswith a timestamp
Ts from s's clock, and it is received atr with at local timestampTr. If the clockCr were perfectly
synchronized withCs, then we would have�Tps = Tr � Ts (providingCr andCs have no skew
with respect to true time).

More generally, if the relative offset betweenCr andCs is�Cr;s, then we have:

�Tps = Tr � Ts ��Cr;s;

and hence:

�Cr;s = Tr � Ts ��Tps : (12.1)

Unfortunately, we do not know�Tps, so we cannot use this equation to determine�Cr;s. But we
canestimate�Tps and then use that estimate to estimate�Cr;s as follows. First, define:

� eTps = Tr � Ts; (12.2)

that is, the “raw” difference in the timestamps for packetps's trip through the network. Thus,� eTps
differs from�Tps by only a constant; in particular, the constant we wish to estimate. We can then
rewrite Eqn 12.1 as:

�Cr;s = � eTps ��Tps : (12.3)

In general,�Tps , and hence� eTps , depends on both network conditions and the size of
packetps. We have little control over the size ofps, because for a unidirectional transfer it is almost
always large for packets from the sender to the receiver (the exception being the SYN and FIN
handshake packets that delimit the connection, and the occasional very small data packet sent due
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to buffer boundary mismatches), and always small for the acks sent in the reverse direction. We can,
however, attempt to control for network conditions, by selecting theminimalobserved� eTps . (Here
we are applying the assumption that minima occur during times when the network is unloaded.)
Selecting the minimal value works because (most) network-induced noise isadditiveandpositive
(x 12.6.2). Term the minimal value� eTps .

Similarly, we compute� eTpr for the acks sent in the opposite direction. Since
�Cr;s = ��Cs;r, we expect to find� eTps � �� eTpr . They will not be exactly the same due to differ-
ences in the sizes of the packets used to compute each, imprecisions due to limited clock resolutions,
the possibility that one or both of the network paths wereneverunloaded during the transfer, dif-
ferences in skew betweenCr andCs, and asymmetries in the routes in the two directions, which
we know from Chapter 8 are quite common. While keeping these uncertainties in mind, we can
manipulate Eqn 12.3 as follows. Combining:

�Cr;s = � eTps ��Tps

�Cs;r = � eTpr ��Tpr :

with:

�Cr;s = ��Cs;r;

we have:

2�Cr;s = � eTps ��Tps � (� eTpr ��Tpr)

= � eTps �� eTpr + (�Tpr ��Tps): (12.4)

We then combine Eqn 12.4 with two approximations, the first being that the most accurate instances
of � eTps and� eTpr are� eTps and� eTpr , and the second that:

�Tpr = �Tps: (12.5)

Eqn 12.5 corresponds to an assumption that the OTTs in the two directions are the same. We know
that this is not in general true, for the reasons given above, but are otherwise at a loss at how to
rectify the clock readings. It is the inaccuracy of Eqn 12.5 that requires us to make only casual use
of the estimate forCr;s, as discussed at the beginning of the section. We note that the Network Time
Protocol must make this same assumption when attempting to synchronize clocks over the Internet.
See Claffy et al. for further discussion [CPB93a].

With this assumption, we then have:

�Cr;s �
� eTps � � eTpr

2
: (12.6)

We note that, when performing the same calculation, we can also determine min-RTTsr,
the minimal round trip time betweens andr, as:

min-RTTsr = min�Tps +min�Tpr

� � eTps + � eTpr : (12.7)

Eqn 12.7 offers an immediate self-consistency check: it should always be positive due to the un-
derlying “network physics.” Surprisingly, this test fails for 57N1 trace pairs and 30N2 pairs. We
discuss these failures in more detail inx 12.8.1 below.
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12.5.2 Relative offset for full-sized sender packets

As discussed above, the bulk transfer senders sometimes will send full, Maximum Seg-
ment Size (MSS;x 9.2) packets, and other times shorter packets, including some with no data
whatsoever. If the path froms to r is slow (low bandwidth), then the shorter packets might arrive
appreciably more quickly than the full-sized packets. Sometimes it is more convenient to discuss
the relative clock offset and minimal RTT as computed when considering only the full-sized packets
sent bys (and continuing to consider all of the packets sent byr, which tend to be acks of uniform
size). To do so, we introduce the terms�CMSS

r;s and min-RTTMSS
sr .

12.5.3 Results of assessing relative offset

Using the methodology developed inx 12.5.1, we evaluated the relative clock offsets
in N1 andN2 to see what sort of variation they exhibited. A single computation of�Cr;s does
not tell anything about the absolute accuracy of eitherCr or Cs, but we would expect that many
computations of different�Cri;sj 's will reveal clusterings among the truly accurate clocks, and a
large spread among the inaccurate clocks.

Maximum relative offset

In N1, the largest observed offset was 207,982 seconds (2.4 days!). Overall, 42 times we
observed an offset greater in magnitude than 1,000 seconds, almost all greater than 10,000 seconds.
All of the host pairs with these large offsets includedaustr , and the problem clearly lay with its
clock. We will see the reason for this inx 12.7.7 below.

In N2, the largest offset was 824 seconds (13+ minutes). We observed an offset larger
than 6 minutes 782 times, always withoce as one of the hosts. We will likewise see inx 12.7.8
thatoce 's clock and network paths have puzzling properties. These two outliers are thus suggestive
that, upon observing a very large relative clock offset, we should consider the possibility of other
clock errors.

Median relative offset

We next look at clustering host clocks based on the magnitude of their median relative
clock offset for all the traces in which they participated. We use the median offset in order to isolate
hosts that consistently had large relative offsets, instead of those that only occasionally had large
offsets, since the latter could be skewed by unfortunately-frequent pairing of a host with an accurate
clock together with a host with a poor clock. We use the median of the absolute value of the offset
rather than the median of the offset itself as a way of detecting hosts that often “swing” from being
too slow to too fast. For each host, we analyze the relative offsets for those traces in which it was
the source; these are quite similar (though opposite in sign) to the offsets when it was the receiver,
and limiting our analysis to just when the host was the source simplifies the presentation.

Figures 12.1 and 12.2 shows the median magnitudes of each host's relative clock offset.
In both, oce is a clear outlier, being typically 5–15 minutes different from the other clock. Note
that, forN1, austr is not a particularly striking outlier, even though in the previous section we
identified it as having the largestmaximumclock offset magnitudes. The reason it is not an outlier
in Figure 12.1 is that its clock ranaccuratelyfor most ofN1, and only degraded late during the
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experimental run (see below). Hence itsmedianrelative offset overall of the transfers it participated
in is quite small.

Both figures show other apparent outliers in addition tooce . We need to be careful before
removing them, though, as there is a possibility that some of them have unusually high proportions
of their connections to the other outliers, and hence are outliers only by “association.” Thus we
remove the connections involving the largest outlier and recompute the plot, then remove those
involving what is now the largest remaining outlier and recompute the plot, and so on, similar to
the approach developed inx 7.6.1 for assessing the “persistence” of Internet routes. ForN1, this
process removesoce , korea , bnl , harv , sdsc , xor , lbli , andpubnix as being outliers. Note
that, during the iterative process,austr ceased to be an outlier, even though in Figure 12.1 it looks
like it has almost as large a median offset aspubnix : this is because it was an outlier only by
association with larger outliers. After eliminating these hosts, the remainder all have median offsets
< 1:25 sec. We consider this group of 17 hosts asclosely synchronized. We can, if we wish,
continue the process to find a core group ofhighly synchronizedhosts: they areaustr (!), bsdi ,
mit , nrao , andukc , all with median offsets< 10 msec between one another.

For N2, outlier removal eliminates the six largest spikes in Figure 12.2, namely,oce ,
ucla , lbli , bnl , wustl , anducl , these last two having relatively small median offsets of 3 and
1.5 sec, respectively. We consider the remaining group of 25 hosts as closely synchronized. They
all have median offsets< 600 msec, and, iflbl is removed from the group, they are all below 250
msec. Eliminating six more of the hosts with the largest median offset leaves a group of 18 syn-
chronized hosts, with median offsets below 50 msec. We can further winnow the group down to a
final set of highly synchronized hosts,adv , connix , harv , near , nrao , pubnix , sdsc , sintef2

(but notsintef1 ), ucol , andunij , all of which have median offsets between each other of less
than 10 msec. Note that this group includes hosts on both coasts of North America as well as two in
Europe, indicating synchronization well below that of the propagation time between the hosts–very
good, and around the accuracy limit for NTP reported in [Mi92b], even though we are performing a
cruder estimate of accuracy (and of relative accuracy rather than absolute accuracy).

We will make use of these different groups of closely-synchronized and highly-
synchronized hosts inx 12.9 when we test whether high clock accuracy (which we assume can
be inferred from close synchronization, although this is not necessarily the case) tends to correlate
with low relative clock skew.

Evolution of relative offset

We finish with a look at how a host's relative offset evolves over the course of an experi-
mental run. The evolution is interesting because it provides a large-scale look at how clock accuracy
changes. Our interest here is phenomenological—to develop an appreciation for clock inaccuracies
and an awareness of how they occur.

To assess offset evolution, for each host we constructed a plot with the relative offsets (in
seconds) computed for those connections for which it served as the data source, using the method-
ology given inx 12.5, on they-axis; versus the time of the connection (days since the beginning of
the experiment) on thex-axis. Since the plots are for the host as the data source, the offsets reflect
the receiver's clock minus the host's clock. Hence, positive values indicate the host's clock was
running behind the receiver's clock. Note that we include the sign of the offset in the plot—there is
no need to use only the magnitude, as we did above.
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Figure 12.3: Evolution ofaustr 's relative clock offset over the course ofN1

Figure 12.3 shows such a plot for theaustr tracing host's clock over the course of theN1

experimental run. This is the site that we identified above as sometimes having very large relative
clock offsets, on the order of days, yet also, surprisingly, found not to be an outlier in terms of its
medianrelative offset. From the figure, it is immediately clear how to reconcile the findings: up
until the 14th day ofaustr 's participation inN1, it kept good time, but after that point its clock
came unglued and ran very slowly, such that the clocks of the other hosts to which it transferred data
ran further and further ahead of it (hence, higher and higher offsets). We look at this phenomenon
further inx 12.7.7.

Figure 12.4 shows the evolution ofN1's greatest median offset outlier,oce , after elimi-
nating its connections withaustr . The central points in the plot reflect connections for whichoce

was paired with sites that had a clock closely synchronized to true time (or at least, so we presume,
because of the preponderance of such clocks in the plot).4 “Noise” values distant from the central
points reflect pairings with other sites that had poorly-synchronized clocks.

We see that the 5 minute median offset actually grew increasingly negative over the course
of N1. A robust linear fit (shown in the plot) to the points yields an overall offset decrease of about
1.5 sec/day. This is quite small compared to the magnitude of the offsets themselves.

Figure 12.5 shows the evolution ofbnl 's relative clock offset, with connections tooce

removed. The central line appears to show an increasing trend, but a somewhat complicated one.
To look at it in greater detail, Figure 12.6 examines just the region of the line. We observe what
appear to be three separate regions of clearly upward trend, one spanning 0–5 days, one spanning
8–14 days, and one spanning 15–16 days. Each increase corresponds to about 0.7 sec/day. What
is puzzling are the offset shifts between the regions. These appear to be too small to have been

4As discussed inx 12.2, and revisited below inx 12.9, we did not require NTP synchronization of the clocks of the
sites in our study. In addition, we assume that when we discover highly synchronized clocks, that the synchronization was
achieved using NTP. Regrettably, we did not ask the participating sites specifics regarding the site's clock synchronization.
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Figure 12.4: Evolution ofoce 's relative clock offset over the course ofN1
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Figure 12.6: Expanded view of the central line in the previous figure

caused by someone adjustingbnl 's clock by hand, and too far from true to have been induced
by NTP synchronization. Perhaps the changes came from temporary changes in machine-room
temperatures, which are known to alter clock skew [Mi92b].

Figure 12.7 shows the evolution ofxor 's clock duringN1, after removing connections to
austr andoce . It shows not only a steadily increasing relative offset, but a 2-minute adjustment
around day 6. We look at clock adjustments in more detail inx 12.6 below.

Figure 12.8 shows the evolution ofoce 's relative offset over the course ofN2 (as op-
posed toN1 in Figure 12.4). The sustained decreasing offset is striking; the fit corresponds to
�1:4 sec/day. Figure 12.9 shows the evolution oflbli 's clock duringN2. While overall the clock
has a clear persistent skew, the skew is reversed around day 8, perhaps in an effort to correct the
clock's inaccuracy. But the effort ends a few days later and the original skew returns. However,
around day 27 the clock's relative offset jumps by over a minute, reflecting a different sort of cor-
rection.

Figure 12.10 shows howsandia 's clock evolved duringN2. For most of the experimental
run the clock performs very smoothly, but around day 20 it began a slow increase over the next week,
eventually reaching 3 seconds. During this week it initiated transfers to a number of different other
sites, so this effect is definitely due to its own clock variation rather than those of its NPD peers.

Figure 12.11 presents our last example of interesting clock offset evolution, that for
umont 's clock duringN2. What is striking here are the presence of offset “towers” that, over
the course of hours, slowly elevate the relative offset from nearly zero to several hundred millisec-
onds. Apparently what is happening is thatumont 's clock has a fairly hearty intrinsic skew, but
NTP synchronization is detecting this and periodically resetting the clock as it strays too far. We
will see more regarding this behavior ofumont 's clock below inx 12.6.5.
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12.6 Detecting clock adjustments

As shown quite strikingly in Figures 12.7 and 12.9, computer clocks are sometimes sub-
ject to abrupt adjustments in which the clock's notion of the current time is changed, either gradually
or instantaneously (x 12.2). Gradual change is produced by artificially altering the clock's skew, so
that it slowly alters its offset towards the target. Instantaneous change is produced by simply loading
a new value into the clock register.

In order to characterize Internet packet dynamics, we will make heavy use in later chapters
of variation in one-way trip times (OTTs). A clock adjustment will result in a systematic shift in
OTTs between those computed prior to the adjustment and those computed after (illustrated below).
If undetected, such a shift can lead to completely erroneous findings of periods of sustained high
delay. Since we are very interested in the possibility that network dynamics truly have this property
anyway, it is vital that we reliably detect clock adjustments so as not to be fooled by them into
drawing such a conclusion.

Backward clock adjustments, in which a clock is set to a value it already registered in
the past, can sometimes be easily detectedif the adjustment is large, by the presence of a pair of
timestampsT1 andT2 for which T2 < T1 even thoughT2 was recorded afterT1. We refer to this
sort of adjustment as “time travel,” and already analyzed it inx 10.3.7. In this section we tackle the
harder problem of clock adjustments (both forward and backward) that arenot apparent by trivial
inspection of the timestamp sequences.

12.6.1 A graphical technique for detecting adjustments

Suppose we have a trace pair betweens andr. One simple way to detect whether a clock
adjustment occurred during the trace is to plot both the OTTs for the packets froms to r and those in
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Figure 12.12: OTT-pair plot illustrating a clock adjustment (sender packets are filled, receiver pack-
ets are hollow)

the reverse direction. (Packets that are dropped have no OTT associated with them and are omitted
from the plot.)

Figure 12.12 shows such a plot made for a connection fromsdsc to usc in N1. The
solid black squares indicate the OTT for packets sent from the sender to the receiver, and the hollow
squares reflect the OTTs of the acks sent from the receiver to the sender. The OTTs have been ad-
justed using Eqn 12.6 to approximately synchronize the two clocks. (In this case, the approximation
does not work particularly well, since there is more than one clock offset to estimate!)

The figure shows a striking level-shift occurring for the sender's OTTs around time
T = 0:7 seconds, a fall of about 10 msec. Furthermore, the OTTs in the opposite direction show
an equal andoppositechange. This equal and opposite change is a crucial aspect of the plot, as it
is the signature of a clock adjustment. If the shift were due to a change in network path properties
(for example, a route change), then in general we would expect that (1) either it would occur in only
one direction, or (2) if it occurred in both directions due to a coupled effect, it would have the same
sign.

For a networking change to result in an equal-but-opposite level shift, some resource
needs to have been shifted between the two directions of the network path, and furthermore the
resource needs to affect the transit times of the small acks equally with those of the large data
packets. It is difficult to see what sort of networking change could do this (but seex 12.7.8). The
change, however, makes perfect sense if, at around timeT = 0:7 seconds,sdsc 's clock was set
ahead 10 msec, orusc 's clock was set back 10 msec. In either of these cases, the difference in the
timestamps for packets sent fromsdsc to usc , i.e., the quantity� eTps defined in Eqn 12.2, will
decrease by 10 msec, and similarly� eTpr will increaseby 10 msec. This is exactly the behavior
shown in the plot.
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12.6.2 Removing noise from OTT measurements

Two other points concerning Figure 12.12 merit attention. The first is the presence of
a few unusually small sender packet OTTs, one of about 7 msec aroundT = 0, and the other of
around�3 msec aroundT = 2:3 (it is negative because for the plots the clocks were rectified using
�CMSS

r;s , as discussed inx 12.5.2). Both of these reflect sender packets that did not carry any data
(the SYN and FIN connection management packets). These travel through the network more quickly
than full-sized data packets. Often in OTT plots we will include such packets (as they are a useful
reminder of one source of OTT variation), but we need to be careful when developing techniques
for analyzing OTT behavior to remember that these packets have unusually low OTTs due to their
size. Hence our techniques need to be careful to not weigh their OTT values the same as those for
full-sized packets.

The second important point shown in the plot is the largevariation in OTTs, both for the
full-sized sender packets and the receiver packets. For example, note that the OTTs of both some
of the acks before the adjustment, and some the data packets after the adjustment, are larger than
many of the OTTs on the other side of the adjustment. This variation is the first suggestion that we
will require robust algorithms in order to not be fooled by noise when analyzing OTT data. The eye
quite readily picks out the twin level shifts in this plot, but doing so algorithmically requires care to
screen out noise such as these large OTT values.

OTTs often exhibit considerable network-induced noise in terms of deviation of a given
OTT from the value expected if the network were unloaded. The noise, however, has one crucial
property that often makes it tractable: barring a significant change in the network path (such as a
route change), the noise always takes the form of an additive, positive increase. This means that,
given a set of OTT measurements, we can often hope to find those with very little network-induced
noise by looking at the smallest values in the set.

We used this property of OTT noise inx 12.5.1 above when we picked� eTps and� eTpr as
the measured raw offsets to use when attempting to estimate the relative clock offset. We will use
it again when developing methods to detect clock adjustments and skew. For these latter, what is
interesting aretrendsin how the OTT values (with noise removed) change over the course of the
connection. Thus, we cannot simply de-noise the OTT values by selecting the global minimum,
or we will obliterate the trend. Instead we divide the series of OTT values up into intervals and
de-noise each interval by selecting the minimum value observed during the interval. The question
then becomes which intervals to use.

One natural way of devising intervals is to allocate them so that each has the same number
of packets. Another is to choose them so that they each span the same amount of time. For assessing
trends in OTT values over time, the latter seems to be the natural choice. But using fixed-time
intervals has a fundamental problem. Sometimes a connection's activity primarily occurs during
only a small portion of the connection's total duration, with the rest of the time mostly inactive due
to lengthy retransmission timeout lulls.

To address this difficulty, we combine the two approaches by choosing both a packet-
count interval,Ip, and a duration interval,It. We then advance through the OTT timings and group
timings into a single interval whenever we have either encounteredIp packets, or we have reached a
point It from the beginning of the interval. At this point, if we have any packets at all, we take their
minimum as the de-noised OTT value for the interval, and we begin a new interval by resetting the
packet count and setting the start of the interval to coincide with the next OTT measurement.
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One detail we must attend to is the final partial interval at the end of the connection. It in
general will not spanIt nor have a fullIp's worth of packets in it. We adopted the rule that, if the
interval had more thanIp=2 packets, we included it, otherwise we skipped it.

The final issue is how to pickIp andIt. For a set ofn OTT measurements spanning an
interval�T , we used:

Ip = bpnc;
It = �T=

p
n:

Using these choices means that the number of de-noised OTT values scales as the square-root of
the total number of values. This struck us as a good compromise between preserving sufficient
detail without using too fine a resolution (which could mean we do not effectively remove noise).
Furthermore, we anticipate subsequently applying a number of robust algorithms to the de-noised
values, some of which have running times ofO(n2) or higher. For these, if we present them with
only O(

p
n) values, then the total running time will remainO(n) or only slightly higher, which is

important for performing fast automatic analysis.
We will refer to a measured series of OTT values asxt. Here,xt can reflect either a series

of data packet OTTs, or ack OTTs. To detect adjustments ultimately requires comparing properties
of the data packet OTTs with those of the ack OTTs, but prior to developing the tests on these
properties, our discussion will apply to any generic series of OTT values.

We denote the de-noised series derived fromxt as�xt. Note that for each�xt, the indext
corresponds to the same index as where in the interval we found the (first) minimal value ofxt. This
is an important point—if we instead adjusted the index to reflect, say, the middle of the interval, then
we might introduce inaccuracies in the trends. The key idea is that the “best” (least noisy) value of
xt during the interval occurred at a particulart, and we want to take that point and discard all the
others in the interval.

Figure 12.13 shows the results of applying this de-noising method to the measurements
plotted in Figure 12.12.

12.6.3 An algorithm for detecting adjustments

We now turn to attempting to detect adjustments algorithmically, since it is infeasible to
manually inspect all 20,000 of our trace pairs to look for adjustments (x 9.1.4). The central notion
we will use is that of thesignatureof the OTTs in the two directions showing equal but opposite
level shifts.

Identifying pivots

The foundation of our approach lies in identifyingpivots: points in time before which
the OTTs all lie predominantly above or below all the OTTs after the given point in time. In Fig-
ure 12.12, the pivot we aim to identify occurs aroundT = 0:7 sec.

In this subsection we develop a heuristic for identifying pivots in the series of OTTs for
packets sent in a single direction (froms to r or vice versa). In the next subsection we then analyze
the pivots identified in both directions to test for a clock adjustment.
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Figure 12.13: Same measurements after de-noising pair-plot

Let �xt be a series of de-noised OTT values occurring at timest, ordered by the time
index t. Let �xti be the same series numbered fromi = 1 : : : n, whereti is the ith measurement
time.

We define apivot partitionof �xt as a partition of�xt into two disjoint sets,�x0t and�x00t , for
which the maximum of one set is less than the minimum of the other. Without loss of generality, let
�x0t be the “larger” of the two sets, i.e., its minimum is larger than the maximum of�x00t .

We further require that the time intervals spanned by�x0t and�x00t are disjoint, namely either
the largesti in �x0ti is less than the smallestj in �x0tj , or vice versa.

We term the pivot partitionpositiveif the measurements�x0t occurredafter those in�x00t , and
negativeotherwise.

Geometrically, this definition corresponds to being able to draw horizontal and vertical
lines on a plot like that in Figure 12.13 such that either all of the points lie in the first and third
quadrants formed by the lines (if positive), or they all lie in the second and fourth quadrants (nega-
tive).

It is important to note that a given series�xt may have more than one pivot partition. For
example, if�xt is strictly decreasing, then every value oft gives rise to a pivot partition. In addition,
any time the largest or smallest value of�xt occurs at the lowest value oft, i.e., �xt1 , then there is a
pivot partition that isolates that one value versus placing all the other values in the other partition
set. Generally, this is not a pivot partition of interest.

We proceed as follows. First, we determine whether to search for a positive or negative
pivot by inspecting whether�xt1 is less than or greater than�xtn . From here on, we assume without
loss of generality that we wish to detect a positive pivot, such as the one exhibited by the receiver
packets (hollow squares) in Figure 12.12. We indicate in brackets, like [this], the changes we make
to the algorithm when testing instead for a negative pivot.

We search through the measurements to find the pointk where
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min(�xtk+1 ; �xtk+2)�max(�xtk�1 ; �xtk) [respectively, for detecting a negative pivot,
min(�xtk�1 ; �xtk)�max(�xtk+1 ; �xtk+2)] is largest. Conceptually, we are looking for the inter-
vals that have the greatest difference between them in the same direction as the pivot; we spread
the differencing over the additional intervals on either side to combat the problem of the intervals
right at the pivot misleading us due to noise. Note that this spreading operation also means that we
cannot detect a pivot that occurs right at the beginning or end of a connection (x 12.6.5).

k is now the candidate pivot (actually, the potential pivot occurs at a point in time between
measurementk and measurementk + 1). We then inspect the points� k to find �k, the largest
[respectively, the smallest] point before the candidate pivot, and likewise those> k to find �k+1,
the smallest [largest] after the candidate. If�k is less [greater] than�k+1, then we conclude that
[k; k + 1] does indeed straddle a pivot; otherwise, we conclude they do not.

If we find a pivot partition, then we define its magnitudeM as the absolute value of the
difference between the median of the points after the pivot with the median of those before. We also
associate a pivot width,W = tk+1 � tk.

Identifying adjustment signatures

We now turn to identifying the signature of a clock adjustment for the clocks of two hosts,
s andr. The method we developed is not entirely satisfying, as it uses some heuristics in order to
accommodate residual noise in the OTT measurements, while attempting to not mistake genuine
networking effects for a clock adjustment. However, the method appears to work well in practice.
We note, though, that the method assumes that clock adjustments are relatively rare events: rare
enough that our traces are likely to exhibit at most one adjustment, and that the likelihood ofboth
of the clocks we are comparing exhibiting an adjustment during the trace is negligible.5

Suppose we have two sets of de-noised OTT measurements,�st and�rt, corresponding to
full-sized packets from the data sender to the receiver, and acks in the other direction, respectively.
If either of �st or �rt doesnot exhibit a pivot, or if the pivots are both positive or negative, then we
conclude there was not any clock adjustment.

LetMs, Ws, Mr, andWr be the magnitudes and widths of the corresponding pivots. We
next check whether the pivotsoverlap. Lets1 ands2 denote the packets bracketing�st's pivot region,
and likewise forr1 andr2. Let ss1 denote the time at whichs1 was sent froms (according tos's
clock), andsr1 the time at which it arrived atr (according tor's clock). With analogous definitions
for the other packets, we then conclude that the pivots overlap if either of the following holds:

sr1 < rr2 + �t and

sr2 + �t > rr1;

or

rs1 < ss2 + �t and

rs2 + �t > ss1;

5This assumption might be violated if NTP updates among widely separated clocks sometimes happen in synchroniza-
tion. To our knowledge, the possibility of this occurring for NTP has not been studied. Given the findings of synchronized
routing messages reported in [FJ94], it does not seem completely implausible.
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where�t is the allowed measurement “slop”, which we set to:

�t =
max(Ws;Wr)

2
:

The idea behind the slop is to allow for other-than-instantaneous adjustments (illustrated below).
If the pivots do not overlap, then we conclude there was no adjustment. If they do, we

then next look at the magnitudes of the pivots. If either magnitude is less than the larger of twice
the joint clock resolutionRs;r (x 12.3), or 2 msec (an arbitrary value to weed out fairly insignificant
adjustments), then we declare the pivot “insignificant” and ignore it.

Finally, we look to see whetherMs andMr are within a factor of two of each other. If
not, then we term the pivot a “disparity pivot,” meaning that it may be due to unusual networking
dynamics (x 12.6.5). If the two agree within a factor of two (which experience has shown is a good
cut-off point), then we conclude that the trace pair exhibits a clock adjustment with a magnitude of
aboutMs+Mr

2
.

12.6.4 Results of checking for adjustments

tcpanaly uses the method given inx 12.6.3 to check each trace pair it analyzes for clock
adjustments. Doing so, we found 36 trace pairs inN1 out of 2,335 (1.5%) that exhibited clock
adjustments, and 128 out of 15,492 inN2 (0.8%). While these proportions are fairly low (and not
representative, since the behavior of the individual hosts in our study is not necessarily representa-
tive), they are high enough to argue that a large-scale measurement study for which accurate times-
tamps are important needs to take into account the possibility of clock adjustments. Furthermore,
the adjustments are only detectable due to the use of a pair of clocks. If a study uses timestamps
from only one measurement endpoint, then checking the timestamps for clock adjustments becomes
much more difficult. The median adjustments were on the order of 10–20 msec, the mean around
100 msec, and the maxima close to 1 sec. These magnitudes are unfortunately small enough to
sometimes not be glaringly obvious, but large enough to be comparable to wide-area packet transit
times, so they can introduce quite large analysis errors if undetected.

While clock adjustments are usually abrupt, this is not always the case. The adjustment-
detection method found some clock adjustments that occurred due to a short period of altered clock
frequency (i.e., temporary skew). Figure 12.14 shows a striking example.6 Here, around time
T = 40 sec the sender's clock began running more quickly than the receiver's, leading to lower
sender OTTs and higher receiver OTTs. Less than 20 seconds later, the frequencies were again
equal, but the relative offsets between the clocks shifted by nearly 1 sec in the process.

12.6.5 Problems with detection method

The method given inx 12.6.3 works well in practice, but it does sometimes fail to detect
clock adjustments. In this section we look at some cases where we identified this happening.



208

Time (sec)

On
e-w

ay 
De

lay
 (m

sec
)

0 10 20 30 40 50 60

-50
0

0
500

100
0

150
0

200
0

Figure 12.14: Clock adjustment via temporary skew
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Figure 12.16: Clock adjustment masked by excessive network delays

Failure to detect adjustment via skew

In Figure 12.14 we illustrated how sometimes a clock adjustment can occur due to tem-
porary skew. Figure 12.15, however, shows such a case that the method fails to detect. The problem
here is that, due to noise in the forward direction, the two pivots located by the method do not
overlap, so the possibility of an adjustment is rejected. The lefthand vertical line marks the pivot
the method found for the data packets (solid), and the righthand vertical line marks the pivot for
the acks (hollow). In general, this sort of failure will only occur with adjustments using tempo-
rary skew; abrupt adjustments have sharply defined pivots. This exampledoes, however, exhibit a
negative estimate for min-RTTsr (x 12.5.1), sotcpanaly still flags it as having a clock problem.

Excessive network-induced delay

Figure 12.16 shows a case where the reverse path exhibits a clear level shift around
T = 70 sec, with a magnitude of about 250 msec, but the corresponding shift on the forward path
is less clear because it is accompanied by an increase in networking delays, too. In that direction,
tcpanaly assesses the magnitude of the shift as about 730 msec. Since this is more than twice the
magnitude in the other direction,tcpanaly rejects the possibility of a clock adjustment.

tcpanaly flags a trace pair like this as having a “disparity pivot,” namely common pivots
that have too great a difference in their magnitudes to be considered a clock adjustment. Disparity
pivots are quite rare (only 61 inN2). We inspected each one and found that only the one shown
above was a likely clock adjustment. The rest appear simply due to unfortuitous patterns of noise,
often in truncated traces (x 10.3.4) with few OTT timings.

6Note that the OTTs in the plot have not been “de-noised” (discussed inx 12.6.2). Likewise, subsequent OTT plots
do not show de-noised OTTs unless so stated.



210

Time (sec)

On
e-w

ay 
De

lay
 (m

sec
)

0 2 4 6 8 10

-20
0

0
200

400
600

Figure 12.17: Clock adjustment missed because too close to end of connection

Adjustment too close to connection edge

Since our method for identifying pivots (x 12.6.3) will not accept a pivot right at the
beginning or at the end of a connection,tcpanaly naturally will miss this sort of adjustment
should it occur. Figure 12.17 shows an example. This one, like the one above, is still detected by
tcpanaly due to a negative estimate for min-RTTsr.

Multiple adjustments

The development of the clock adjustment detection algorithm presumes that there is a sin-
gle clock adjustment to be detected. Sometimes a trace pair suffers from more than one adjustment,
and the algorithm either only detects one of them (which suffices, if the policy is to discard trace
pairs with any adjustments in them), or fails to detect any of them. The latter is particularly likely if
there are two adjustments in opposite directions. Figure 12.18 shows a striking example of a trace
pair with two adjustments, both effected using temporary skew. The algorithm fails to detect these
adjustments, buttcpanaly flags the trace pair due to a negative estimate for min-RTTsr, as well as
due to strong negative correlation between the two directions (x 12.6.6 below).

Clock “hiccups”

Related to the multiple adjustments discussed in the previous subsection are clock “hic-
cups,” in which one of the clocks in a trace pair momentarily either ceases to advance or advances
very quickly. Figure 12.19 shows an example, occurring at timeT = 6 sec. It is possible that this
example is actually due to surprising network dynamics, as the 4 acks with lowered OTTs come
right after the only packet reordering event in the trace. While a clock glitch can change the value of
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Figure 12.18: Double clock adjustment (both using temporary skew)
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Figure 12.19: Clock adjustment “hiccup”
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OTTs, it cannotreorder packets on the wire! But it is difficult to see what networking mechanism
could lead to the data packets in the opposite direction simultaneously experiencing increased delay.

This hiccup is undetected bytcpanaly .

12.6.6 Detecting adjustments via correlation

When we examine a smoothed OTT pair plot such as that in Figure 12.13, a different
approach for detecting adjustments suggests itself: look for strong negative correlation between the
forward OTTs and the reverse OTTs. In general, this approach suffers from two problems.

First, it is highly susceptible to error due to large noise elements. Periods of inflated OTT
values (such as due to an increase in queueing) tend to dominate the computation of the coefficient of
correlation. We attempted to address this difficulty by devising a “robust coefficient of correlation”
based on the direction of deviations from the median, but this proved no better: we were unable to
eliminate the dominant effects of noise.

The second problem is that strong negative correlation is also a signature for relative
clock skew, as discussed in the next section. So, by itself, it does not suffice for detecting clock
adjustments.

There is still a role for correlation testing, though. In particular, if we only consider cor-
relation significant when it is extremely strong, then the noise effects of momentary congestion
periods diminish, and the approach holds promise for detecting cases of large adjustments and rela-
tive skews. In particular,very strong correlations can detect multiple adjustments and adjustments
via skew, and this property motivated us to pursue it further.

The method we devised is based on examining the intervals produced when looking for
pivots. For each intervali, we compute the median of the OTT of the packets sent by the sender
(either full-sized data, or acks, depending on the direction). Call thissmi

. Similarly, for the packets
receivedby the sender from the receiver during the interval, we compute their OTT median,rmi

.
(We require that at least three packets were sent and another three received, otherwise we skip the
interval in our analysis.) We then compute�s;r, the coefficient of correlation between thesmi

's
and their correspondingrmi

's. Similarly, we compute�r;s in the opposite direction. That is, we
construct similar intervals based on packet departures and arrivals atr instead of ats.

If tcpanaly finds that both�s;r < �0:9 and�r;s < �0:9, then it flags the trace pair as
exhibiting strong negative correlation. We then inspect the trace pair by hand (i.e., using an OTT
pair plot) to determine the source of the correlations.

We found that connections only very rarely have the property of strong negative correla-
tion. (If, however, we lower the threshold from�0:9 to �0:8, quite a few more connections are
flagged, but upon inspection they do not appear to exhibit any clock anomalies.) InN1, only two
trace pairs were flagged. One of these was the double-adjustment shown in Figure 12.18. InN2, six
connections were flagged. Five of these, however, involvedoce , which we show below (x 12.7.8)
to have highly unusual behavior in general. The sixth is an “edge” clock adjustment similar to that
shown in Figure 12.17.

The secondN1 trace pair with strong negative correlation is quite interesting, however.
Figure 12.20 shows the corresponding OTT pair plot. It is clear that the correlation stems from the
tendency for the reverse-path OTTs to climb sharply, by 100–200 msec, followed shortly by the
forward-path OTTs falling by roughly the same amount. Another striking feature of the plot is the
sustained elevated level for the forward OTTs after about timeT = 3 sec.
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Figure 12.20: An OTT pair plot showing strong negative correlation

These two features are fundamentally related. The link connecting the sender of this
connection to the rest of the Internet had a capacity of 56 Kbit/sec, or under 7 Kbyte/sec after link-
level overhead is deducted. Thus, it was not difficult for the sender to open its window sufficiently
to build up a queue at this link's router. The size of the OTT increase reflects the size of this queue.
Occasionally, the acknowledgements sent by the receiver are beingcompressed; that is, several of
them all arrive at a queue, and there they have their spacing compressed because they are placed
in the queue closely together. (Seex 16.3.1 for a more detailed discussion.) The signature of “ack
compression” on an OTT plot is a quick build-up in OTT (reflecting having to wait in the queue)
followed by a likewise-quick decrease in OTT (as the back-to-back acks all leave the queue closely
spaced together).

By inspecting sequence plots corresponding to this connection, we see that what is hap-
pening is that the ack compression leads to a delay at the sender as it waits for the lead ack of the
compressed group to arrive. During this delay, the queue at the 56 Kbit/s link connecting the sender
to the Internetdrains, so once the acks finally arrive and the sender sends out a bunch of packets, the
first packet encounters very little queueing delay at the Internet link. This low delay is reflected in
the plot by the dip in the sender OTTs. It then immediately climbs back up as the remaining packets
in the bunch queue behind the lead sender packet.

This effect occurs quite often in connections for which there is a low-speed bottleneck
link. The example shown above, though, was the only one in which the effect was so strong as to
be detected by the negative correlation test.

12.7 Assessing relative clock skew

Many of the clock errors discussed inx 12.5.3—often skews on the order of perhaps a
second a day—might seem trivial and perhaps not worth the effort of characterizing. For purposes
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Figure 12.21: An OTT pair plot showing relative clock skew

of keeping fairly good absolute time, this is true, but, for purposes of assessing network dynamics,
it is not.

To illustrate why skew is a crucial concern, consider evaluating OTTs between two hosts
s andr, for which r's clock runs 0.01% faster thans's. That is, over the course of a day,r's clock
will gain about 9 seconds relative tos's clock, not a particularly large error for many purposes. If,
however, we are computing OTTs betweens andr, then over the course of only 10 minutesr's clock
will gain 60 msec overs's clock.If we assume that variations in OTT reflect queueing delays in the
network, then this minor clock drift could lead to a large false interpretation of growing congestion.
For example, ifs sends 512 byte packets tor and the bandwidth of the path between them is T1
(x 14.7.1), then a true 60 msec increase in delay reflects the equivalent of an additional 23 packets'
worth of queueing. Thus, quite “minor” skew differences between the two endpoint clocks can lead
to quite large, erroneous assessments of queueing delay.

Because we are very interested in accurately characterizing queueing time scales (x 16.4),
it is vital that we determine whether a given pair of clocks suffer from skew. The first issue is
then to identify a skew “signature” similar to that for clock adjustments shown in Figure 12.12.
Figure 12.21 shows an OTT pair plot that exhibits a clear skew signature: the OTTs in one direction
show a steady overall increase, while those in the opposite direction show a steady decrease. Both
changes have a magnitude of about 120 msec over the 2 minute course of the connection, consistent
with the receiver's clock advancing about 0.1% faster than the sender's clock. It is difficult to see
what sort of network dynamics could introduce such a true combined inflation and deflation of OTTs
over a two-minute period, so we conclude that the OTT pair plot shows strong evidence of relative
clock skew.

Two other clock skew signatures we investigated were differences in round-trip times
(RTTs) reported by the endpoints in a connection, and strong negative correlations between the
forward and reverse OTTs. The difficulty with evaluating RTT differences lies in limited clock
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resolution7 and noise making the RTTs in the two directions slightly different even in the absence
of clock skew. The difficulty with looking for strong negative correlations is the same as discussed
in x 12.6.6 above, namely that except in instances of very strong clock skew, there is too much noise
to obtain a reliable decision based on the strength of the correlations.

In the remainder of this section we develop robust algorithms for detecting and removing
relative clock skew.

12.7.1 Defining canonical sender/receiver skew

Before we proceed with developing a method for identifying relative clock skew, we need
to define exactly what quantity it is that we wish to estimate. First, we assume that the skew trends
we identify will be linear. While we might possibly encounter non-linear skew, we did not find
any clear examples of such inN1 or N2, except those shown inx 12.6.5. For linear skew, we can
summarize the skew using a single value that reflects the excess rate at which one clock advances
compared to the other.

To avoid ambiguity (in terms of which clock we are comparing to which), we will always
quantify howCr, the receiver's clock, advances with respect toCs. SupposeCr runs a factor�
faster thanCs, by which we mean that, ifCs reports that an interval�T has elapsed, thenCr will
have reported the same interval as having length��T . Likewise, we can say thatCs runs a factor
1=� faster thanCr (or, a factor of� slower).

The algorithms we develop for estimating relative skew all work in terms of linear trends
in OTT measurements. These trends are estimated based on how OTT measurements expand or
shrink with respect to time. It is important to recognize that the phrase “with respect to time” does
not mean “with respect to true time,” since we have no way of measuring true time. Instead, it
means “with respect to the packet originator's clock,” that is, the clock associated with tracing the
TCP endpoint that sent the packet.

When discussing a linear trend in the measured OTTs of the packets sent by hosts, we
will quantify the trend in terms ofGs, the growth in the OTTs of the packets sent bys. Suppose
packetp1 is sent at timeT 1

s , according toCs, and arrives at timeT 1
r , according toCr. Likewise,

suppose packetp2 is sent atT 2
s and arrives atT 2

r . Suppose further that the transit times of the packets
are identical (no network-induced noise), so the only variation in their OTTs are due to clock skew.

The measured OTTs for the two packets are:

O1 = T 1
r � T 1

s

O2 = T 2
r � T 2

s :

AsGs quantifies the linear growth in measured OTTs over time, we have:

O2 = O1 +Gs(T
2
s � T 1

s ):

In the absence of relative skew betweenCr andCs, Gs = Gr = 0:0. If Cr runs faster thanCs, then
the packets sent bys will exhibit increasingOTTs and those sent byr will exhibit decreasingOTTs,
so we will haveGs > 0 andGr < 0. Naturally, the reverse holds ifCr runs slower thanCs.

7For example, if the RTT is on the order of 100 msec, and the clock resolution is 1 msec, then only relative skews
larger than 1% can be detected; these are very large.
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We now relateGr andGs to �, the factor by whichCr runs faster thanCs. Continuing
the example above, we have:

Gs =
O2 �O1

T 2
s � T 1

s

=
(T 2

r � T 2
s )� (T 1

r � T 1
s )

T 2
s � T 1

s

=
(T 2

r � T 1
r )� (T 2

s � T 1
s )

T 2
s � T 1

s

=
(T 2

r � T 1
r )

T 2
s � T 1

s

� 1

= � � 1: (12.8)

It can similarly be shown that:

Gr =
1

�
� 1 (12.9)

=
1

Gs + 1
� 1: (12.10)

For� = 1 + �, wherej�j � 1, we have:

Gs = �;

Gr � ��:

Because clock skews are often only a few parts per thousand or ten thousand, we are usually in this
regime (but seex 12.7.7 below). Consequently, an easy inaccuracy to introduce is to assume that:

Gs = �Gr;

(i.e., the slopes are equal but opposite), since this often appears to be the case when inspecting OTT
pair plots. To ensure full accuracy, we instead take care to always use Eqns 12.8 and 12.9 to express
relative clock skew in terms of�, or Eqn 12.10 to translateGr toGs. We will refer to values ofGs

andGr that are consistent with respect to Eqn 12.10 as “equivalent but opposite” slopes.

12.7.2 Difficulties with noise

One particular problem with testing for clock skew is that one of the paths can have
such highly variable OTTs due to queueing fluctuations that these completely mask the smaller-
scale trend of OTT increase or decrease due to skew, even after de-noising. Figure 12.22 shows
an example, in which congestion on the forward path completely obscures the relative clock skew,
which is apparent from the enlargement of the return path shown in Figure 12.23. Such noise most
often obscures the forward path (presumably due to extra queueing induced by the data packets), but
it can also obscure the reverse path. Thus, we cannot always rely on the signature ofdualequivalent-
but-opposite OTT trends; sometimes we must settle instead for simply a compelling trend in one
direction.
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Figure 12.22: Clock skew obscured by network delays
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Figure 12.23: Enlargement of reverse path
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12.7.3 Failure of line-fitting approaches

Our first attempt to detect relative skew was based on the idea of fitting lines to the OTT
plots. We hoped that fits with equivalent and opposite slopes would indicate clock skew, and those
without would indicate a lack of skew. One difficulty with this approach is cases of unidirectional
noise, as illustrated in the previous section. For these, we can still try to find a very clean fit in one
direction, and, if present, to then use it to deduce the presence of skew.

From Figure 12.21 it is clear that the raw OTT measurements are too noisy to hope for
clean fitting, as was also the case when testing for clock adjustments. So, we again base our analysis
on the de-noised OTT measurements,�st and�rt (x 12.6.2).

Even using de-noised measurements, least-squares fitting fails to provide solid skew de-
tection, because residual noise in�st and �rt makes it too difficult to reliably distinguish between
a skewing trend and coincidental opposite queueing trends. All it takes is one period of elevated
queueing at either end of the connection to throw off the fit.

We expected as much, but had high hopes for the robust linear fitting technique discussed
in x 9.1.4 as a way of coping with the residual noise. Alas, even this approach fails to reliably
detect clock skew. The difficulty lies in both false positives and false negatives generated due to
queueing fluctuations. These fluctuations are sufficient to introduce frequent non-zero slopes for
the robust fits, and sometimes these slopes happen to have equivalent magnitudes with opposite
sign. Furthermore, the fluctuations are often significant enough to alter the slopes so they no longer
have equivalent magnitude in the different directions, even though skew is present. Finally, the
robust techniques do not offer much help in distinguishing between a genuine skew trend in one
direction and noise in the other (x 12.7.2), versus noise in both directions but no skew.

12.7.4 A test based on cumulative minima

Eventually we recognized that the most salient feature of relative clock skew is not simply
the overall trend (slope) of the OTT measurements, but the fact that the smallest such measurements
continually increase or decrease. This observation suggests the following statistical test, the strength
of which is that it is relatively immune to transient increases in OTT measurements due to queueing
buildups.

Suppose we haven observationsXti , 1 � i � n, whereti is the time of the observation
andXti is the value of the observation. We assume that theti's are monotone increasing, and that
theXti are distinct. Further, we assume without loss of generality that we wish to test for a negative
trend inXti . We discuss applying the same test for a positive trend inx 12.7.5 below.

Consider the indicator:

Itj =

�
1; if Xtj < mini<j Xti , or if j = 1, and
0 otherwise.

That is,Itj is 1 if Xtj represents a new “cumulative minimum” if we inspectXti from 1 up toj (but
not all the way up ton), and 0 if there is an earlierXti that is less thanXtj .

If theXti are independent, then:

P [Itj = 1] = 1=j;

because the probability that any particularXti out of j observations is the minimum of the group is
simply 1=j.
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Consider now the function:

Mj =

jX
i=1

Iti ;

which is the number of cumulative minima seen as we inspectXti from the first value up to thejth
value. The key observation we make is that, in the absence of a negative trend, the distribution of
Mj will tend to be close to that for independentXti ; that is, we will find a few cumulative minima
but not a great number; while, in the presence of a negative trend, we should find many cumulative
minima, since theXti tend to get smaller and smaller.

Suppose we findMn = k, that is, theXti exhibit k cumulative minima. We wish to
compute the probability that we would have observed this many or more minima, given the inde-
pendence assumption. If we find the probability sufficiently low, we will reject the null hypothesis
that theXti are independent. In its place we will accept the tentative hypothesis (which we will
further test inx 12.7.6) that theXti exhibit a negative trend.

Let:
R(n; k) = P [Mn � k]:

Given0 � k � n, we can computeR(n; k) recursively, as follows:

R(n; k) =

8<
:
1; if k = 0,
1=n!; if k = n, and
R(n� 1; k � 1)(1=n) +R(n� 1; k)(1 � 1=n) if k < n.

(12.11)

The first case is the degenerate one that grounds the recursive definition: the probability that there
are at least 0 cumulative minima is always 1.

The second case corresponds to every singleXti being a cumulative minimum. This only
occurs if theXti 's are sorted in descending order, which, if they are independent, has probability
1=n!, since there aren! permutations of theXti , only one of which is sorted (because theXti are
distinct).

The last case corresponds to conditioning on whetherXtn is a cumulative minimum or
not. For independentXti , it will be a cumulative minimum with probability1=n. In this case, for
then points to exhibit at leastk cumulative minima, then� 1 points prior toXtn must themselves
exhibit at leastk�1 cumulative minima, which occurs with probabilityR(n�1; k�1). If, however,
Xtn is not a cumulative minimum, which occurs with probability1�1=n, then then�1 prior points
must exhibit at leastk cumulative minima, which occurs with probabilityR(n� 1; k).

We can computeR(n; k) in O(n2) time using straight-forward dynamic programming.
Furthermore, if the dynamic programming is done using a “memo” function that remembers its
previously-computed results in a table, then additional computations ofR(n; k) will benefit from
earlier computations, and the evaluation becomes extremely cheap.

Figure 12.24 shows the distribution ofR(n; k) for n = 15. The key feature of the distri-
bution that makes it a powerful test for a negative trend is the rapid fall-off in probability above a
certain point, in this case aroundk = 8. Because if theXti 's do indeed have a negative trend we
should findk quite close ton, this means we can readily distinguish between the case of a negative
trend and that of no trend, without requiring thatall of theXti be increasingly negative. Thus, we
can accommodate considerable noise.

Finally, we take as for the size of the trend the slope computed by a robust linear fit
(x 9.1.4) toXti 's minima. This corresponds to the valueGs orGr discussed inx 12.7.1 above.
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Figure 12.24: Distribution ofR(n; k) for n = 15

12.7.5 Applying the test to a positive trend

The test developed inx 12.7.4 for detecting a negative trend can also be applied to de-
tecting a positive trend, with one subtlety. At first blush one might think that, to do so, one simply
uses maxima in lieu of minima. This works in principle, but fails when applied to OTT sequences,
because of the positive additive nature of OTT noise (x 12.6.2). That is, the maxima will be often
dominated by the noisiest OTT values, rather than by OTT values that slowly rise due to skew, so
the noise will obscure any positive trend due to clock skew. This remains a problem even after
de-noising, since all it takes is a single period of elevated OTT values, long enough to span an entire
de-noising interval, to pollute the de-noised values with what will in some cases by a global max-
imum. When searching for a negative trend, such an interval will, on the other hand, simply not
include a minimum; but it will not prevent the test from finding other minima due to clock skew.

There is a simple fix for this problem, though. The key observation is that the smallest
OTT values are in general those with the least noise. So we apply the cumulative minima test to
Ytj = Xtn�j+1

, which is simplyXti viewed in reverse. The reversal converts a positive trend inXti

to a negative trend inYtj , which the cumulative minima algorithm then readily detects.
Finally, for a given seriesXti we need to decide whether to test it for a positive or negative

trend. We do this by first performing a robust linear fit to the observations. If the slope of the fit is
positive, we look for a positive trend; if negative, a negative trend; and if exactly zero, we decree
there is no trend.

12.7.6 Identifying skew trends

With the cumulative minima test we finally have a robust algorithm for detecting trends.
These trends, however, might not be due to clock skew but to networking effects, so we need to
develop furtherheuristicchecks to correctly detect linear skew.
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Suppose we have two sequences of de-noised OTT measurements,�st and�rt, correspond-
ing as usual to the full-sized data packets sent from the connection sender to the receiver, and the
acks sent back from the receiver to the data sender. For each sequence, we first determine whether
it is askew candidateas follows.

Let ut denote the given sequence. LetRu(n; k) be the probability that the sequenceut
matches the null hypothesis of no trend (independence) given by Eqn 12.11. We considerut a skew
candidate if either:

1. Ru(n; k) < 10�6 andut is either�rt, or ut is �st and its trend is negative. This latter test
is because queueing buildup due to the data packets sent along the forward path can often
produce a strong positive trend; or

2. Ru(n; k) < 10�3 andut is tightly clusteredaround the trend line. The goal here is to allow
for a skew candidate if theut points fit quite closely to a (linear) trend, even though their
cumulative minima probability is not so small. This can happen, for example, if we do not
have a large number of points inut. For example, if we have only 7 points inut, then the
smallest possible value ofRu(n; k) is

Ru(n; n) = Ru(7; 7) =
1

7!
� 2 � 10�4;

which will fail theRu(n; k) < 10�6 test in the previous item.

Note that the limit of10�3 precludes assuming a skew candidate if there are fewer than7

points, since1=6! � 1:4 � 10�3 (but see below).

It remains to define “tightly clustered.” To do so, we compute the inter-quartile range (75th
percentile minus 25th percentile, perx 9.1.4). If it is less than or equal to the larger of the
joint clock resolution,Rs;r, or 1 msec, then a large number of the de-noised OTTs lie very
closely to a pure linear trend.

We then proceed to determine whether either�st or �rt is compelling enough by itself to
accept as evidence of a skew trend; or if the pair form ajoint skew candidateto be investigated
further; or if there is insufficient evidence for a skew trend. To do so, we first consider which of
them is individually a skew candidate, as follows:

1. If neither is a candidate, then we check to see whethermax(Rs(n; k); Rr(n; k)) � 10�2. If
so, then the joint probability that both have no trend (or, more precisely, are fully independent)
is� 10�4, which we consider sufficiently low to consider them as joint skew candidates and
proceed as discussed below. If either probability exceeds10�2, then we reject the trace pair
as a candidate for exhibiting a skew trend.

2. If �rt is a skew candidate but�st is not, then we accept�rt as reflecting clock skew quantified
using the correspondingGr. We do so because sometimes we have no hope of detecting a
skew trend in�st due to queueing buildup, as illustrated in Figure 12.22 and Figure 12.23.

3. If �st is a skew candidate but�rt is not, then we check the direction of�st's trend. If it is negative,
then this goes against the networking tendency for a positive trend induced by the queueing of
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the data packets along the forward path, and we accept�st as reflecting clock skew quantified
usingGs.

If the trend is positive, we must proceed carefully to screen out a false skew trend due to
queueing. First, we require

�2�st � �2�rt ;

that is, the variance of the de-noised OTT values along the forward path is less than that in the
reverse path. If this is not the case, then we reject the trace pair as a candidate for exhibiting
a skew trend.

Next we split�st into two halves,�st1 and �st2 , with the division coming atbn
2
c if st hasn

values. IfR(n; k) for either half exceeds10�2, or if the trends for the two halves do not agree
in direction, then we also reject the possibility of a skew trend.

If �st passes these tests, then we consider�st1 and�st2 as comprising a joint skew candidate. We
reverse�st2 so it now has the opposite trend of�st1 , and proceed as discussed below.

4. If both �st and�rt are skew candidates, then we consider them together a joint skew candidate.

If the above procedure yields a joint skew candidate, we then evaluate the candidate as
follows:

1. If both candidates have the same trend direction, then we reject the possibility of a skew trend.

2. If not, then we translate the first candidate's skew quantification into terms of the second
candidate using Eqn 12.10. LetG1 andG2 be the corresponding skew quantifications (one of
which has been translated, so they can be directly compared). If

jG1 �G2j >
G1 +G2

2
;

that is, the difference between the two exceeds their average, then we reject the pair as having
too much variation in their slopes for them to be trustworthy indicators of skew. Otherwise,
we accept the pair as indicative of a skew quantified asG = G1+G2

2
.

12.7.7 Results of checking for skew

tcpanaly uses the method given inx 12.7.6 to check each trace pair it analyzes for clock
skew. We found that 295 trace pairs inN1 out of 2,335 (13%) exhibited clock skews, and 487 out
of 15,492 did so inN2 (3%). These proportions are high enough to argue for considerable caution
when comparing timestamps from two different packet filters.

In bothN1 andN2, about three-quarters of the skews were detected on the basis of�rt
alone, not particularly surprising since often a skew trend in�st will be lost in the OTT variations
due to queueing induced by the data packets. The largest skew inN1 was a whopping� = 5:5,
meaning that one clock ranmore than five times faster than the other! Figure 12.25 shows how
skew like this appears in an OTT pair plot. Note that the reverse path starts a timeT = �4 sec
becausetcpanaly could not figure out any sort of useful relative clock offset. In the forward
direction, the connection's elapsed time was only 2 sec, but in the reverse direction it took 10 sec!
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Figure 12.25: Example of extreme clock skew

This example is more than just an amusing curiosity. It occurred not once but 43 times in
N1. Each time, the slower clock belonged toaustr , and that was indeed the erroneous clock. We
know it was the broken clock of the pairs exhibiting the problem not just because it was always one
member of each problematic pair (which would be convincing by itself), but also because RTTs in
those connections computed using its timestamps are physically impossible (too small) for the long
distances traversed by the packets it sent and received. We likewise see the onset of this problem
above in Figure 12.3. Note, however, thataustr 's clock was one of the ones identified inx 12.5.3
as beinghighly synchronized with a number of the other sites, indicating care was being taken to
keep accurate time with it (presumably using NTP). Thus, this clock's behavior is an compelling
argument thatjust because a clock is believed to be well-synchronized does not render it immune
from extreme error!

Aside fromaustr 's clock, the next largest skew we observed inN1 was� = 0:991, a
frequency difference of about 0.9%. This led to an OTT change of about 70 msec during an 8 sec
connection. All in all, after removing connections involvingaustr , in N1 the median skew had a
magnitude of about 0.023%, and the mean 0.035%. These are small, but not negligible, as discussed
at the beginning ofx 12.7.

In N2, the prevalence of trace pairs exhibiting skew was significantly lower (3% versus
14%), perhaps due to the use among the participating sites of newer hardware with more reliable
clocks. Apart fromoce 's clock, which we discuss inx 12.7.8 below, the largest skews we observed
were on the order of 6%. One of these was the example of clock adjustment using skew in Fig-
ure 12.15 above. Figure 12.26 shows another example. The pattern is quite striking, and clearly
could lead to grossly inaccurate conclusions about network dynamics if undetected. Note that both
sites involved in this connection,nrao andustutt , were among those identified as closely syn-
chronized inN2 (x 12.5.3), again emphasizing that clocks that arein generalwell-synchronized can
still exhibit very large errors.
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Figure 12.26: Strong relative clock skew of 6%

If we removeoce 's connections and those with skews larger than 1%, then the median
skew magnitude of the remainder inN2 is about 0.011%, and the mean around 0.016%. These are
a factor of two smaller than those inN1, but still not completely negligible for assessing queueing
in longer-lived connections.

12.7.8 oce 's puzzling dynamics

When testing theN2 trace pairs for clock skew, we repeatedly encountered puzzling dy-
namics (or clock behavior) for some of the connections originated byoce , and, to a lesser degree,
some of those in whichoce was the receiver of the TCP transfer. (This did not occur foroce con-
nections inN1.) Figures 12.27 and 12.28 show the general pattern of behavior. The connections
have exceptionally high RTTs, more than 2 sec. These times far exceed the intrinsic propagation
delay from the remote sites tooce . Furthermore,traceroutes from oce to other sites often show
a first hop RTT on the order of 2 sec; thus, almost all of the delay is occurring right atoce 's border
to the Internet.

Another part of the puzzle is the shift in OTTs from almost all of the total delay being in-
curred by the acks incoming tooce , to almost all of it being incurred by the data packets outbound
from oce , back to the incoming acks again. The pattern is sometimes a bit different. Figure 12.29
shows a trace for which during most of the trace's 7.5 minute lifetime, the ack OTTs were virtu-
ally constant, while those for the data packets fluctuated enormously (1000's of msec). Then, at
T = 235 sec, the ack OTTs suddenly begin to increase by a whopping 8 seconds, only to return to
1 sec again after a 75 second outage.

One possible explanation is that the network path betweenoce and the rest of the Internet
exhibits what we termhalf-duplex self-interference. That is, somewhere on the path, probably at the
first hop, there is a half-duplex link that does not fairly arbitrate between traffic in the two directions.



225

Time (sec)

On
e-w

ay 
De

lay
 (m

sec
)

0 5 10 15 20 25 30

0
100

0
200

0
300

0

Figure 12.27: Example of puzzlingoce behavior
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Figure 12.28: Another example of puzzlingoce behavior



226

Time (sec)

On
e-w

ay 
De

lay
 (m

sec
)

0 100 200 300 400

200
0

400
0

600
0

800
0

Figure 12.29: One more example of puzzlingoce behavior

Initially, the data packets get first use of the link, and the acks must wait for their turn. Eventually,
the phasing between which end of the link has preference shifts, so the acks gain preference and the
data packets must wait, and with time it then shifts back.

One can imagine half-duplex self-interference occurring on any heavily-loaded half du-
plex link that does not explicitly guarantee fairness between the hosts using the link. For example,
Ethernet networks can exhibit a “capture effect” in which the host using the network is unfairly able
to continue using it longer than intended [RY94]. Another half-duplex networking technology that
can exhibit unfairness on small time scales is FDDI, in which a single host can continue to use the
ring for up to the “token holding time” [Jai90]. We have observed “ack compression” (x 16.3.1)
on high-speed network paths in which it appears that the compression is not due to network-layer
queueing, but instead to link-layer delays, in which a TCP connection's acks wind up waiting for an
FDDI token that is being hoarded by the same connection's data packets traveling in the opposite
direction.

While half-duplex self-interference would explain the interplay between theoce forward
and reverse OTT variations, it does not by itself explain the very large first-hop delay associated
with the behavior. It may be that reversing the direction in which the link is being used is a very
expensive operation (perhaps because of low-layer errors and retries; it seems unlikely such an
expensive mechanism would be designed into a data link). Theoce staff was unable to obtain
an explanation for the phenomenon from their networking provider.oce does have a firewall in
place through which the NPD traffic must transit, but it would be extremely poor performance for a
firewall to add 2 seconds of latency to every packet it forwarded.

The final part of the puzzle concernsoce 's clock. As discussed inx 12.5.3, its clock
was the least-well synchronized in bothN1 andN2. Even for thoseN2 oce connections that did
not exhibit this sort of behavior (and many did not), the clock often exhibited skew. It is possible
thatoce 's puzzling network dynamics makes synchronizing the clock difficult. But it is also quite
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possible that at least some of the puzzling dynamics are due to the clock itself (i.e., measurement
artifacts), since the variations resemble quite closely the signature of a clock that is varying its rate
over short time scales. The only problem with this explanation is the fact that the connections much
more often start with elevated OTTs for the return path that then decrease as the forward path OTTs
increase (Figure 12.27 and Figure 12.28) than the other way around (Figure 12.29). If the behavior
were due to a variable-rate clock, then we would instead expect the clock to be equally likely to
start the connection running at an elevated rate as at a depressed rate. For the OTT patterns to be
due entirely to a misbehaving clock requires that somehow fluctuations in the clock's variable rate
are tied with the host computer's network traffic. It is difficult to see what sort of mechanism could
create this linkage, however.

Because the magnitude of the effect is sometimes so large, and because we could not rule
out clock behavior as a source for the behavior or part of the behavior, we decided to eliminate all
of theN2 oce connections from any analysis that involved timestamps produced by its clock. (But,
for example, we still analyze its connections for statistics like proportion of packets lost, since these
do not rely on timestamps.)

12.7.9 Removing relative skew

As discussed in the previous section, a non-negligible proportion of the trace pairs in our
study suffer from relative clock skew. We would like to remove this skew so we can then reliably
include those traces in our analysis of network dynamics. Fortunately, the skew almost always
appears well-described as linear, which means it is straight-forward to remove it.

To remove skew of magnitude�, we simply modify all the timestampstri generated by
Cr using:

tri
0 = tri +Gr(t

r
i � tr0); (12.12)

whereGr is given by Eqn 12.9 andtr0 is the first timestamp generated byCr. To understand this
transformation, recall fromx 12.7.1 thatGr gives the trend in how OTTs for packets sent byr

change with time. IfGr > 0, then the OTTs increase with time, indicating thatCr runs more slowly
thanCs, and to adjust it we need to increase the timestamps it generates. IfGr < 0, then the OTTs
decrease with time, and we need to decreaseCr 's timestamps to effectively it slow down.

A key point is that applying Eqn 12.12 doesnotnecessarily rectifyCr 's skew with respect
to true time. It only rectifies it with respect toCs. It could be that the correct action to take in terms
of true skew removal is to apply an analogous transformation toCs's timestampsinstead. We have
no way of knowing which clock is in error, but by Eqn 12.12 we can at least make the two sets of
timestamps consistent.

Indeed, both clocks could be skewed with respect to true time, in which case neither
action will correct them in an absolute sense. Butfor purposes of comparing the clocks' timestamps
to compute OTTs and infer queueing delays from them, the most important consideration is that
the two clocks have no relative skew.Provided the absolute skew is small (say< 1%), then its
only effect is that the magnitude of the computed OTTs (and RTTs) will be off by an equally small
amount. By correcting the relative skew, we remove potentially quite large, artificial OTTtrends,
and there lies our primary goal.

tcpanaly uses Eqn 12.12 to take out relative clock skew if its magnitude is less than
1%. If it is larger, then it flags the trace pair as having large relative skew and will not do any
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timing-based analysis.
Finally, aftertcpanaly removes relative skew, it re-analyzes the clock. If it still detects

relative skew, then either its initial assessment that the trace pair had relative skew was wrong, or
the skew was not linear. It flags this case separately, and also then refrains from any further timing
analysis. Thus, re-analysis provides a self-consistency test for the soundness of our skew detection.
Only 1 of the 295N1 trace pairs flagged as having relative skew failed this additional test, and only
10 of the 487N2 trace pairs failed. Of these 13, three involved the puzzlingoce behavior discussed
in x 12.7.8, seven appear to have been false skew assessments due to network noise, and one had
definite skew but enough noise along the reverse path to lead to misassessment of the magnitude of
the skew.

12.8 Additional clock consistency checks

Along with testing the timestamps in trace pairs for clock adjustments and relative skew
using the methods developed above, we apply two final self-consistency checks to the timestamps
in an attempt to calibrate their accuracy.

12.8.1 Non-positive min-RTTsr

We stated inx 12.5.1 that min-RTTsr, as given by Eqn 12.7, should always be positive.
tcpanaly flags any trace pair for which it is non-positive. It also checks for whether a non-positive
min-RTTsr was theonly indication of a clock problem, as this means that our main heuristics failed
to detect a measurement problem. This happened four times inN1 and twelve times inN2, rarely
enough to give us considerable confidence in our heuristics.

Most of the missed clock problems were due to one of the following: failing to detect skew
in the presence of considerable noise; failing to detect adjustments due to noise or their occurrence
at the edge of a connection (x 12.6.5); or dealing with connections for which the RTT is on the order
of the clock accuracy (some betweensintef1 andsintef2 ).

Of the three remaining problems flagged only by the min-RTTsr check, one was due
to tcpanaly failing to detect unreliable packet filter timestamps (x 10.3.6), and the other two
were due to a bizarre packet filter timing problem in which the filter appears to have waited many
seconds before starting to timestamp packets at the beginning of a connection. Thus, for example,
a connection betweensdsc in San Diego andkorea , on the other side of the Pacific, had packet
filter timestamps from thekorea tracing machine showing that the initial SYN handshake took
only 4 msec to complete, while the San Diego packet filter reported it took 510 msec! Physically
the first value is impossible, as the propagation time across the Pacific is much larger than 4 msec.
Further inspection shows that packet timings on thekorea end varied wildly at the beginning of the
connection, yielding a swing of more than 10 seconds in the OTTs, after which they settled down
and remained quite even. Figure 12.30 shows the corresponding OTT pair plot. Had this occurred
in only one trace then we would have concluded the measurement had the bad luck to encounter a
clock adjustment right at the connection's beginning, but it happened similarly in a secondkorea

trace, indicating instead a packet filter timing problem associated with the beginning of a connection
trace.
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Figure 12.30: Initial packet filter timing glitch

12.8.2 Gap analysis

The final self-consistency check is based on the following observation. Suppose hosts

sends a packet at times1, measured byCs, and it arrives atr at timer1, according toCr. Later,r
sends a packet atr2, arriving ats2. It should always be the case that:

s2 � s1 > r2 � r1; (12.13)

becauser1 reflects an event that occurredafter s1, andr2 reflects an event that occurredbefores2.
Put another way, if all of the timestamps were accurate, then we would have:

s1 < r1 < r2 < s2;

and, even ifCs andCr have a relative offset�Cr;s between them, as long as the offset is fixed,
then the inequality in Eqn 12.13 follows, since the subtractions remove the effects of the offset.
Eqn 12.13 mightnot hold, however, ifCs is running slower thanCr, or if Cs is adjusted backward
(orCr forward) in betweens1 ands2 (in betweenr1 andr2).

We term checking whether Eqn 12.13 holds as “gap analysis.” Exhaustively testing all of
the packet arrivals and departures for consistency with Eqn 12.13 requiresO(n2) time forn packets,
since each departure of a sender packet can be paired with the departures of any of the receiver's
packets sent after it. To avoid this cost,tcpanaly instead employs a strategy of “burning the candle
at both ends,” namely it checks Eqn 12.13 for the first packet and the last ack; then for the next packet
and the penultimate ack; and so on, until it works its way to the middle of the connection. Doing
so reducesO(n2) time toO(n), at the cost of perhaps missing some instances in which Eqn 12.13
fails to hold, though the strategy still spans a wide range of gap intervals.tcpanaly also does
gap analysis from the receiver's perspectives (wheres is the host generating acks andr the host
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Dataset Relative offset Likelihood of adjustment

N1 < 1 sec 1.4 %
N1 � 1 sec 1.6 %
N2 < 1 sec 0.75 %
N2 � 1 sec 0.95 %

Table XVI: Relationship between relative clock accuracy and clock adjustments

generating subsequent data packets). It needs to check both perspectives in order to detect relative
skew and adjustments in whicheitherof the two clocks runs faster than the other.

Gap analysis finds some but by no means all of the clock adjustment and skew prob-
lems uncovered by the more robust techniques developed earlier. However, it also serves as a
self-consistency check: we would like to know that the robust techniques findall of the clock prob-
lems, so we would hope that gap analysis never uncovers a problem missed by the others. It did so
only once, the problem being a clock “hiccup” (x 12.6.5) in which a connection with OTTs of about
3 msec (fromlbl to sandia ) had a single packet with an OTT of 430�sec!

12.9 Clock synchronization vs. stability

We finish our study of clock calibration with an investigation into the question of whether
highly-synchronized clocks tend to be free of problems such as adjustments and skew. We will term
clocks free of such problems as “stable.”

We might hope that highly-synchronized clocks would also be stable, because freedom
from such problems would tend to greatly aid a clock in maintaining synchronization. On the other
hand, if good synchronization is maintained by frequently adjusting an errant clock to match an
external notion of accurate time, then such clocks might bemore likely to exhibit adjustments or
skew (x 12.2), and hence be less stable than other clocks.

The issue is an important one because it is quite cheap to determine whether a remote
clock's offset is close to that of a local clock (x 12.5.1). If relative accuracy is a good indicator
that the remote clock is stable, then we can quickly determine that we can rely on the soundness
of the timestamps generated by the remote clock, without having to go through all the effort of the
methods developed in this chapter for detecting adjustments and skew. Such a quick determination
could prove invaluable for a transport protocol that needs to decide whether it can trust the timing
feedback information being returned from a remote peer. The hope is that the protocol can do so by
looking at just a few initial timestamps.

Table XVI shows the relationship between relative clock accuracy and the likelihood of
observing a clock adjustment. We see that closely synchronized clocks, i.e., those with a relative
offset under 1 sec, are only slightly less likely to exhibit a clock adjustment than less closely syn-
chronized clocks. Thus, relative clock accuracy is not a good predictor of the absence of clock
adjustments.

Table XVII shows the relationship between relative clock accuracy and the likelihood of
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Dataset Relative offset Likelihood of skew

N1 < 0:01 sec 0.95%
N1 < 0:1 sec 5.6%
N1 < 1 sec 13 %
N1 � 1 sec 12 %
N2 < 0:001 sec 1.3 %
N2 < 0:01 sec 0.88 %
N2 < 0:1 sec 1.3 %
N2 < 1 sec 1.8 %
N2 � 1 sec 5.3 %

Table XVII: Relationship between relative clock accuracy and clock skew

observing relative clock skew.8 ForN1, clock synchronization only provides an advantage if the
clocks are highly synchronized, with a relative offset under 100 msec and preferably under 10 msec.
ForN2, however, synchronization of under 1 sec provides a definite advantage in predicting a lower
likelihood of skew, though much better synchronization provides little additional predictive power.
For bothN1 andN2, not even very close synchronization reduces the likelihood of encountering
clock skew to a negligible level (i.e., appreciably lower than 1%).

In summary, we conclude that relative clock accuracy provides no benefit in assuring that
clock adjustments will be unlikely, and some benefit in assuring that clock skew is less likely, but
not to such a degree that we can ignore the possibility of clock skew when analyzing more than a
handful of measurements.

In addition, we conjecture that the closely-synchronized hosts in our study are most likely
synchronized using NTP. If so, then the use of NTP doesnot reduce the likelihood of clock adjust-
ments introducing systematic errors when measuring packet transit times, and reduces but does not
eliminate the likelihood of clock skew introducing systematic errors. This finding doesnot mean
that NTP fails to keep good time. Rather, the timescales on which it does so significantly exceed
those of our connections. NTP keeps good time on large time scales precisely by altering clock
behavior on small time scales.

Thus, prudent large-scale measurement and analysis of packet timings should include
algorithms such as those developed in this chapter as self-consistency checks to detect possible
systematic errors, even in the presence of NTP-synchronization. We further argue that even pairs
of clocks using a more direct external synchronization source such as GPS should be subjected to
such checks, as a means of assuring that no timing errors have crept in between the original, highly
accurate time source, and the timestamps ultimately produced by the packet filters.

8The percentages given in the table include the outlier sites ofaustr in N1 andoce in N2. However, these sites
only affect the� 1 sec row, since their relative offsets were large; and, it seems legitimate to leave them in the summaries
since they are indeed instances of large relative offsets indicating an increased likelihood of clock skew.


