
NSIS T. Tsenov
Internet-Draft H.Tschofenig
Intended status: Informational Nokia Siemens Networks
Expires: January 27 X. Fu (Ed)

Univ. Goettingen
C. Aoun

E. Davies
Folly Consulting

July 27, 2009

GIST State Machine
draft-ietf-nsis-ntlp-statemachine-07.txt

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Note that other groups may also distribute working documents as Internet- Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or
to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 27, 2010.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Leg al Provisions Relating to IETF Documents in
effect on the date of publication of this document (http://trustee.ietf.org/license-info). Please review these
documents carefully, as they describe your rights and restrictions with respect to this document.

Abstract

This document describes the state machines for the General Internet Signaling Transport (GIST). The states
of GIST nodes for a given flow and their transitions are presented in order to illustrate how GIST may be
implemented.

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 1]

Internet-Draft GISTState Machine July 2009

Table of Contents

1. Introduction.. 3
2. Terminology ...3
3. Notational conventions used in state diagrams ... 3
4. StateMachine Symbols .. 4
5. CommonRules ...5
5.1 CommonProcedures ...6
5.2 CommonVariables ..8

6. Statemachines ..9
6.1 Diagramnotations ...9
6.2 Statemachine for GIST querying node ... 11
6.3 Statemachine for GIST responding node ... 13

7. SecurityConsiderations ..14
8. IANA Considerations ...14
9. Contributors ..14
10. Acknowledgments ...14
11. References... 14
11.1 Normative References ..14
11.2 Informative References ...15

Appendix A. ASCII versions of the state diagrams .. 16
A.1 Statemachine for GIST querying node (Figure 2) ... 16
A.2 StateMachine for GIST responding node (Figure 3) ... 19

Authors’ Addresses ... 22

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 2]

Internet-Draft GISTState Machine July 2009

1. Introduction

The state machines described in this document are illustrative of how the GIST protocol defined in [1] may
be implemented for the GIST nodes in different locations of a flow path. Wherethere are differences - [1] is
authoritative. The state machines are informative only. Implementations may achieve the same results using
different methods.

There are two types of possible entities for GIST signaling:

- GIST querying node - GIST node that initiates the discovery of the next peer;

- GIST responding node - GIST node that is the discovered next peer;

We describe a set of state machines for these entities to illustrate how GIST may be implemented.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted
as described in [2].

3. Notational conventions used in state diagrams

The following text is reused from [3] and the state diagrams are based on the conventions specified in [4],
Section 8.2.1. Additional state machine details are taken from [5].

The complete text is reproduced here:

State diagrams are used to represent the operation of the protocol by a number of cooperating state machines
each comprising a group of connected, mutually exclusive states. Onlyone state of each machine can be
active at any giv en time.

All permissible transitions between states are represented by arrows, the arrowhead denoting the direction of
the possible transition. Labels attached to arrows denote the condition(s) that must be met in order for the
transition to take place. All conditions are expressions that evaluate to TRUE or FALSE; if a condition
evaluates to TRUE, then the condition is met. The label UCT denotes an unconditional transition (i.e., UCT
always evaluates to TRUE). A transition that is global in nature (i.e., a transition that occurs from any of the
possible states if the condition attached to the arrow is met) is denoted by an open arrow; i.e., no specific
state is identified as the origin of the transition. When the condition associated with a global transition is
met, it supersedes all other exit conditions including UCT. The special global condition BEGIN supersedes
all other global conditions, and once asserted remains asserted until all state blocks have executed to the
point that variable assignments and other consequences of their execution remain unchanged.

On entry to a state, the procedures defined for the state (if any) are executed exactly once, in the order that
they appear on the page. Each action is deemed to be atomic; i.e., execution of a procedure completes before
the next sequential procedure starts to execute. Noprocedures execute outside of a state block. The
procedures in only one state block execute at a time, even if the conditions for execution of state blocks in
different state machines are satisfied, and all procedures in an executing state block complete execution

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 3]

Internet-Draft GISTState Machine July 2009

before the transition to and execution of any other state block occurs, i.e., the execution of any state block
appears to be atomic with respect to the execution of any other state block and the transition condition to that
state from the previous state is TRUE when execution commences. The order of execution of state blocks in
different state machines is undefined except as constrained by their transition conditions.A variable that is
set to a particular value in a state block retains this value until a subsequent state block executes a procedure
that modifies the value.

On completion of all of the procedures within a state, all exit conditions for the state (including all conditions
associated with global transitions) are evaluated continuously until one of the conditions is met. The label
ELSE denotes a transition that occurs if none of the other conditions for transitions from the state are met
(i.e., ELSE evaluates to TRUE if all other possible exit conditions from the state evaluate to FALSE). Where
two or more exit conditions with the same level of precedence become TRUE simultaneously, the choice as
to which exit condition causes the state transition to take place is arbitrary.

In addition to the above notation, there are a couple of clarifications specific to this document. First, all
boolean variables are initialized to FALSE before the state machine execution begins. Second,the following
notational shorthand is specific to this document:

<variable> = <expression1> | <expression2> | ...

Execution of a statement of this form will result in <variable> having a value of exactly one of the
expressions. Thelogic for which of those expressions gets executed is outside of the state machine
and could be environmental, configurable, or based on another state machine such as that of the
method.

4. State Machine Symbols

()
Used to force the precedence of operators in Boolean expressions and to delimit the argument(s) of
actions within state boxes.

;
Used as a terminating delimiter for actions within state boxes. Wherea state box contains multiple
actions, the order of execution follows the normal English language conventions for reading text.

=
Assignment action. The value of the expression to the right of the operator is assigned to the variable
to the left of the operator. Where this operator is used to define multiple assignments, e.g., a = b = X
the action causes the value of the expression following the right-most assignment operator to be
assigned to all of the variables that appear to the left of the right-most assignment operator.

!
Logical NOT operator.

&&
Logical AND operator.

||

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 4]

Internet-Draft GISTState Machine July 2009

Logical OR operator.

if...then...
Conditional action. If the Boolean expression following the if evaluates to TRUE, then the action
following the then is executed.

{ statement 1, ... statement N }
Compound statement. Braces are used to group statements that are executed together as if they were
a single statement.

!=
Inequality. Evaluates to TRUE if the expression to the left of the operator is not equal in value to the
expression to the right.

==
Equality. Evaluates to TRUE if the expression to the left of the operator is equal in value to the
expression to the right.

>
Greater than. Evaluates to TRUE if the value of the expression to the left of the operator is greater
than the value of the expression to the right.

<=
Less than or equal to. Evaluates to TRUE if the value of the expression to the left of the operator is
either less than or equal to the value of the expression to the right.

++
Increment the preceding integer operator by 1.

+
Arithmetic addition operator.

&
Bitwise AND operator.

5. Common Rules

Throughout the document we use terms defined in the [1], such as Query, Response, Confirm.

State machine represents handling of GIST messages that match a Message Routing State’s MRI, NSLPID
and SID and with no protocol errors. Separate parallel instances of the state machines should handle
messages for different Message Routing States.

The state machine states represent the upstream/downstream peers states of the Message Routing State.

For simplification not all objects included in a message are shown. Onlythose that are significant for the
case are shown. Statemachines do not present handling of messages that are not significant for management
of the states.

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 5]

Internet-Draft GISTState Machine July 2009

Presented in this document state machines do not cover all functions of a GIST node. Functionality of
message forwarding, transmission of NSLP data without MRS establishment and providing of the received
messages to the appropriate MRS, we refer as "Lower level pre-processing" step. Pre-processing provides to
the appropriate MRS FSM only the messages which are matched against waiting Query/Response cookies, or
established MRS MRI+NSLPID+SID primary key. This is presented by "rx_*" events in the state machines.

Management of a MA is considered in the document (e.g., tg_Establish_MA, tg_MA_established events),
but its FSM is not explicitly presented.

5.1 Common Procedures

Tg_SendMsg:
NSLP/GIST API message that request transmission of a NSLP message.

Tg_SetStateLifetime(time_period):
NSLP/GIST API message providing info for the Lifetime of an RS, required by the application.
"Time_period = 0" represents the cancellation of established RSs/MAs (invoked by NSLP
application).

Tg_MessageStatus:
NSLP/GIST API message informing NSLP application of unsuccessful delivery of a message

Tg_RecvMsg:
NSLP/GIST API message that provides received message to the NSLP

Tg_NetworkNotification:
NSLP/GIST API message that informs NSLP for change in MRS

Tx_Query:
Transmit of Query message

Tx_Response:
Transmit of Response message

Tx_Confirm:
Transmit of Confirm message

Rx_Query:
Receive of Query message

Rx_Response:
Receive of Response message

Rx_Confirm:
Receive of Confirm message

Tx_Error:
Transmit of Error message

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 6]

Internet-Draft GISTState Machine July 2009

Rx_Error:
Receive of Error message

Queue NSLP info:
Save NLSP messages in a queue until a required MA association is established

Tx_Data:
Transmit of Data message

Rx_Data:
Receive of Data message

T_Inactive_QNode:
Message Routing State lifetime timer in Querying Node

T_Expired_RNode:
Message Routing State lifetime timer in Responding Node

T_Refresh_QNode:
Message Routing State refresh timer in Querying Node

T_No_Response:
Timer for the waiting period for Response message in Querying Node

T_No_Confirm:
Timer for the waiting period for Confirm message in Responding Node

Install downstream/upstream MRS:
Install new Message Routing State and save the corespoding peer state info (IP address and UDP port
or pointer to the used MA) for the current Message Routing State or update the coresponding peer
state info.

DELETE MRS:
Delete installed downstream/upstream peer’s info for the current Message Routing State and delete
the Message Routing State if required.

Established MA:
A Message Association (MA) is established between the current node and its upstream peer. The
initiator for the establishment is the upstream peer.

Re-use existing MA:
An existing MA between the current node and its peer is re-used.

DELETE MA:
Delete/disconnect used MA.

Stop using shared MA:
Stop using shared MA. If the shared MA is no more used by any other MRSs, it depends on the local

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 7]

Internet-Draft GISTState Machine July 2009

policy whether it is deleted or kept.

REFRESH MRS:
Refreshes installed MRS.

Tg_MA_Error:
Error event with used MA.

Tg_InvalidRoutingState:
Notification from NSLP application for path change

Tg_Establish_MA:
Trigers establishment of MA.

Tg_MA_Established:
MA has been successfully established.

Tg_ERROR:
General Error event / system level error.

No_MRS_Installed:
Error response, send by the Responding node indicating lost Confirm message.

5.2 Common Variables

It is assumed that the type of mode and destination info (which need to be taken from the application
parameters and local GIST policy)is provided. Thisis represented by the common variables Dmode, Cmode,
MAinfo, MApresent and Refresh.

Cmode:
The message MUST be transmitted in Cmode. This is specified by "Message transfer attributes" set
to any of the following values:

"Reliability" is set to TRUE.

"Security" is set to values that request secure handling of a message.

"Local processing" is set to values that require services offered by Cmode (e.g., congestion control).
[1]

Dmode:
The message MUST be transmitted in Dmode. This is specified by local policy rules and in case that
the "Message transfer attributes" are not set to any of the following values:

"Reliability" is set to TRUE.

"Security" is set to values that request special security handling of a message.

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 8]

Internet-Draft GISTState Machine July 2009

"Local processing" is set to values that require services offered by Cmode [1]

MAinfo:
GIST message parameters describing the required MA or proposed MA e.g. "Stack-proposal" and
"Stack-Configuration-Data".

NSLPdata:
NSLP application data.

RespCookie:
Responder Cookie that is being sent by the Responding node with the Response message in case that
its local policy requires a confirmation from the querying node.

ConfirmRequired:
Confirm message is required by the local policy rule for installation of the new MRS.

NewPeer:
Response message is received from new responding peer.

MAexist:
Existing MA will be reused.

CheckPeerInfo:
The sender of the received data message is matched against the installed peer info in the MRS.

UpstreamPeerInstalled:
Upstream peer info is installed in the MRS.

6. State machines

The following section presents the state machine diagrams of GIST peers.

6.1 Diagram notations

Figure 1: Diagram notations

6.2 State machine for GIST querying node

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 9]

Internet-Draft GISTState Machine July 2009

The following is a diagram of the GIST querying node state machine. Also included is clarification of
notation.

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 10]

Internet-Draft GISTState Machine July 2009

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 11]

Internet-Draft GISTState Machine July 2009

Figure 1: GIST Querying Node State Machine

*) Response and Comfirm messages might be send either in Dmode or Cmode, before or after MA
establishment depending on node s local 3-way handshake policy and the availability of MAs to be
reused. Seedraft for details.

**) Depending on the local policy NSLPdata might be send as payload of Query and Confirm messages.
(piggybacking)

1) Initial request from NSLP is received, which triggers Query messages requesting either D_mode or
C_mode. Depending on node s local policy NSLP data might be piggybacked in the Query requesting
D_mode. Query may carry Mainfo if C_mode transport is needed.

2) Response message is received. If C_mode connection must be established and there is no available MA to
be reused, MA establishment is initiated and waited to be completed.

3) Response message is received. If D_mode connection is requested or available MA can be reused for
requested C_mode, the MRS is established.

4) No_Response timer expires. Query is resent.
5) No_Response timer expires and maximum number of retries has been reached. NSLP application is

notified for the GIST peer discovery failure.
6) NSLP data is queued, because downstream peer is not discovered or required MA is still not established.
7) Data message is received. It is checked if its sender matches the installed downstream peer info in the

MRS and then processed. In WaitResponse state, this event might happen in the process of MA
upgrade, when the downstream peer is still not aware of establishment of the new MA.

8) Provided NSLP data is sent via Data message towards downstream GIST peer.
9) Refresh_QNode timer expires. Query message is sent.
10) Response message from the downstream GIST peer is received. The peer is not changed. MRS is

refreshed (Refresh_QNode timer is restarted).
11) Path change detected. Response message from a new downstream GIST peer is received. D_mode is

requested or existing MA can be reused for requested C_mode.
12) Path change detected. Response message from a new downstream GIST peer is received. A new MA

must be established for requested C_mode.
13) Requested by NSLP application transport parameters requires upgrade of established MRS from

D_mode/C_mode to C_mode. NSLP application notifies GIST for path change. Downstream GIST
peer discovery is initiated.

14) Sent Confirm message has not been received by downstream GIST peer. Confirm message is resent.
15) MRS lifetime expires. Notification by NSLP application that MRS is no longer needed.
16) MA is established.
17) MA establishment failure.

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 12]

Internet-Draft GISTState Machine July 2009

6.3 State machine for GIST responding node

The following is a diagram of the GIST responding node state machine. Also included is clarification of
notation.

Figure 3: GIST Responding Node State Machine

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 13]

Internet-Draft GISTState Machine July 2009

1) A Query message is received. Explicit Confirm message is required for MRS installation, based on the
local policy. Query message might carry piggybacked NSLP data which is provided to the NSLP
application.

2) A Query message is received. MRS is installed immediately, based on the local policy. Query message
might carry piggybacked NSLP data which is provided to the NSLP application.

3) Confirm message is received which causes installation of the complete MRS or just installation of the used
MA as a upstream peer info.

4) Sent Response message has not been received by upstream GIST peer. Response message is resent.
5) In case of lost Confirm message, data messages might be received from the upstream GIST node (it is

unaware of the lost Confirm message). Response indicating the loss of the Confirm is sent back to the
upstream GIST node.

6) No_Confirm timer expires. Note that all cases of lost handshake GIST messages are handled only by
GIST querying node via resend of Query message.

7) NSLP data is sent if discovery process is successfully accomplished or is queued if Confirm message is
still expected to confirm establishment of MA.

8) Data messages are accepted only if complete MRS is installed, e.g., there is installed upstream peer info.
If not, then Confirm message is expected and data message won t be accepted. Response indicating
the loss of the Confirm is sent back to the upstream GIST node.

9) Change of the upstream GIST node (e.g., path change). Local policy does not need explicit Confirm
message for MRS installation. MRS data is updated.

10) Change of the upstream GIST node or request for change of the used connection mode (from
D_mode/C_mode to better C_mode). Local policy requires explicit Confirm message for MRS
installation.

11) Request for change of the used connection mode (from D_mode/C_mode to better C_mode). Local
policy does not need explicit Confirm message for MRS installation. MRS data is updated.

12) MRSlifetime expires. Notification by NSLP application that MRS is no longer needed.

7. Security Considerations

This document does not raise new security considerations. Any security concerns with GIST are likely
reflected in security related NSIS work already (such as [1] or [6]).

8. IANA Considerations

This document has no actions for IANA.

9. Contributors

Christian Dickmann contributed to refining of the state machine since 01 version.

10. Acknowledgments

The authors would like to thank Robert Hancock, Ingo Juchem, Andreas Westermaier, Alexander Zrim,
Julien Abeille Youssef Abidi and Bernd Schloer for their insightful comments.

11. References

11.1. Normative References

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 14]

Internet-Draft GISTState Machine July 2009

[1] Schulzrinne,H., "GIST: General Internet Signaling Transport", draft-ietf-nsis-ntlp-20 (work
in progress), June 2009.

[2] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997.

11.2. Informative References

[3] Vollbrecht, J., Eronen, P., Petroni, N., and Y. Ohba, "State Machines for Extensible
Authentication Protocol (EAP) Peer and Authenticator", RFC4137, August 2005.

[4] Instituteof Electrical and Electronics Engineers, "Standard for Local and Metropolitan
Area Networks: Port-Based
Network Access Control", IEEE 802-1X-2004, December 2004.

[5] Fajardo, V., Ohba, Y. and R. Lopez, "State Machines for Protocol for Carrying
Authentication for Network Access (PANA)",
draft-ietf-pana-statemachine-12 (work in progress), April 2009.

[6] Tschofenig,H. and D. Kroeselberg, "Security Threats for NSIS", RFC 4081, June 2005.

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 15]

Internet-Draft GISTState Machine July 2009

Appendix A. ASCII versions of state diagrams

This appendix contains the state diagrams in ASCII format. Please use the PDF version whenever possible:
it is much easier to understand.

For each state there is a separate table that lists in each row:
- an event that triggers a transition,
- actions taken as a result of the incoming event,
- and the new state at which the transitions ends.

A.1. State machine for GIST querying node (Figure 2)

State: IDLE

Condition Action State Note
------------------------+-------------------------+-----------+---
tg_SendMsg |tx_Query |Wait |1)

|start T_No_Response |Response |**
|Queue NSLP data | |
| | |

Tg_ERROR |Delete MRS |IDLE |
IF (MA is used)			
((Delete MA)			
(Stop using shared MA))			
Tg_NetworkNotification			

------------------------+-------------------------+-----------+---

State: WaitResponse

Condition Action State Note
------------------------+-------------------------+-----------+---
rx_Response(MAinfo)&& |tg_Establish_MA |Wait MA |*
(!MAexist) |(tx_Confirm) |Establish. |2)

| | |
| | |

rx_Response)|| |Install MRS |Established|3)
(rx_Response(MAinfo)&& |IF (RespCookie) |Downstream |
(MAexist)) | tx_Confirm(RespCookie)|MRS |

|tx_Data(Queued NSLP data)| |
| | |

(timeout T_No_Response) |Tx_Query |Wait |4)

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 16]

Internet-Draft GISTState Machine July 2009

&&(!MaxRetry) |restart T_No_Response |Response |
| | |

(timeout T_No_Response) |tg_MessageStatus |IDLE |5)
&&(MaxRetry) | | |

| | |
tg_SendMsg |Queue NSLP data |Wait |6)

| |Response |
| | |

rx_Data |IF(CheckPeerInfo) |Wait |7)
| tg_RecvMsg to Appl.|Response |
| | |

Tg_ERROR |(Delete MRS) |IDLE |
IF (MA is used)			
((Delete MA)			
(Stop using shared MA))			
Tg_NetworkNotification			

------------------------+-------------------------+-----------+---

State: Established Downstream MRS

Condition Action State Note
------------------------+-------------------------+-----------+---
tg_SendMsg |tx_Data |Established|8)

restart T_Inactive_QNode	Downstream
	MRS

timeout T_Refresh_QNode |tx_Query |Established|9)
	Downstream
	MRS

(rx_Response)&& |Refresh MRS |Established|10)
(!NewPeer) |restart T_Inactive_QNode |Downstream |

| |MRS |
| | |

(rx_Response)|| |IF (MA is used) |Established|11)
(rx_Response(Mainfo)&& | (Delete MA)|| |Downstream |
(MAexist)))&&(NewPeer) | (Stop using shared MA)|MRS |

Install MRS	
restart T_Inactive_QNode	
IF (RespCookie)	
tx_Confirm(RespCookie)	

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 17]

Internet-Draft GISTState Machine July 2009

| | |
(rx_Response(MAinfo)&& |((Delete MA)|| |Wait MA |12)
(NewPeer)&&(!MA_exist)) |(Stop using shared MA)) |Establish. |*

tg_Establish_MA	
(tx_Confirm)	

((tg_SendMsg)&&(Cmode)&&|tx_Query |Wait |13)
(!MAexist))|| |Queue NSLP data |Response |
(tg_MA_error)|| | | |
(tg_InvalidRoutingState)| | |

| | |
rx_Response(No_MRS_ |tx_Confirm(RespCookie) |Established|14)

installed)|tx_Data(Queued NSLP data)|Downstream |
| |MRS |
| | |

(timeout T_Inactive_ |Delete MRS |IDLE |15)
QNode)|||IF (MA is used) | |

(tg_SetStateLifetime(0))| (Delete MA)|| | |
(Stop using shared MA)	
Tg_NetworkNotification	

rx_Data |IF(CheckPeerInfo) |Established|7)
tg_RecvMsg to Appl.	Downstream
	MRS

Tg_ERROR |(Delete MRS) |IDLE |
IF (MA is used)			
((Delete MA)			
(Stop using shared MA))			
Tg_NetworkNotification			

------------------------+-------------------------+-----------+---

State: Wait MA Establishment

Condition Action State Note
------------------------+-------------------------+-----------+---
tg_MA_Established |Install MRS |Established|16)

|(tx_Confirm) |Downstream |*
|tx_Data(Queued NSLP data)|MRS |
| | |

tg_MA_error |Delete MRS |IDLE |17)
|tg_MessageStatus | |
| | |

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 18]

Internet-Draft GISTState Machine July 2009

tg_SendMsg |Queue NSLP data |Wait MA |6)
| |Establish. |
| | |

Tg_ERROR |Delete MRS |IDLE |
IF (MA is used)			
((Delete MA)			
(Stop using shared MA))			
Tg_NetworkNotification			

------------------------+-------------------------+-----------+---

Figure 4

A.2. State Machine for GIST responding node (Figure 3)

State: IDLE

Condition Action State Note
------------------------+-------------------------+-----------+---
rx_Query&& |tx_Response |Wait |1)
(ConfirmRequired) |start T_No_Confirm |Confirm |

IF(NSLPdata)	
tg_RecvMsg(NSLPdata)	
to Appl.	

rx_Query&& |tx_Response |Established|2)
(!ConfirmRequired) |Install MRS |Upstream |

IF(NSLPdata)	MRS
tg_RecvMsg(NSLPdata)	
to Appl.	

------------------------+-------------------------+-----------+---

State: WAIT CONFIRM

Condition Action State Note
------------------------+-------------------------+-----------+---
rx_Confirm |Install Upstream MRS |Established|3)

	Upstream
	MRS

rx_Query&& |tx_Response |Wait |4)

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 19]

Internet-Draft GISTState Machine July 2009

(ConfirmRequired) |start T_No_Confirm |Confirm |
IF(NSLPdata)	
tg_RecvMsg(NSLPdata)	
to Appl.	

rx_Data |tx_Error(No_MRS_ |Wait |5)
| installed)|Confirm |
| | |

timeout T_No_Confirm | |IDLE |6)
| | |

------------------------+-------------------------+-----------+---

State: Established Upstream MRS

Condition Action State Note
------------------------+-------------------------+-----------+---
tg_SendMsg |IF(!UpstreamPeerInfo) |Established|7)

Queue NSLP data	Upstream
ELSE tx_Data	MRS

rx_Data |IF(UpstreamPeerInfo) |Established|8)
(tg_RecvMsg to Appl.)	Upstream
&&(restart_T_Expire_	MRS
RNode)	
ELSE	
tx_Error(No_MRS_	
installed)	

rx_Query |IF (NewPeer) |Established|9)
Update UpstreamPeerInfo	Upstream
tx_Response	MRS
restart T_Expire_RNode	

(rx_Query)&& |Delete MRS |Wait |
(ConfirmRequired) |tx_Response |Confirm |

start T_No_Confirm			
IF(MA is used)			
(Delete MA)			
(Stop using shared MA)			
IF(NSLPdata)			
tg_RecvMsg(NSLPdata)			
to Appl.			

rx_Query(MAinfo)&& |Delete UpstreamPeerInfo |Established|11)

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 20]

Internet-Draft GISTState Machine July 2009

(!ConfirmRequired) |restart T_Expire_RNode |Upstream |
|tx_Response(MAinfo) |MRS |
| | |

(timeout T_Expire_RNode)|Delete MRS |IDLE |12)
|| |tg_NetworkNotification | |
(tg_SetStateLifetime(0))|IF(MA is used) | |

(Delete MA)			
(Stop using shared MA)			

rx_Confirm |Install UpstreamPeerInfo |Established|3)
tx_Data(queued_NSLP_data)	Upstream
	MRS

Tg_ERROR |(Delete MRS) |IDLE |
IF (MA is used)			
((Delete MA)			
(Stop using shared MA))			
Tg_NetworkNotification			

------------------------+-------------------------+-----------+---

Figure 5

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 21]

Internet-Draft GISTState Machine July 2009

Authors’ Addresses

Tseno Tsenov
Sofia, Bulgaria

Email: tseno.tsenov@mytum.de

Hannes Tschofenig
Nokia Siemens Networks
Linnoitustie 6
Espoo 02600
Finland

Email: Hannes.Tschofenig@nsn.com

Xiaoming Fu (Editor)
University of Goettingen
Computer Networks Group
Goldschmidtstr. 7
Goettingen 37077
Germany

Email: fu@cs.uni-goettingen.de

Cedric Aoun
Paris, France

Email: cedric@caoun.net

Elwyn B. Davies
Folly Consulting
Soham, Cambs, UK

Phone: +44 7889 488 335
Email: elwynd@dial.pipex.com

Tsenov, et al. ExpiresJanuary 27, 2010 [Page 22]

