



Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

Advanced Color Imaging
Reference

This document was created with FrameMaker 4.0.4



Apple Computer, Inc.



 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple

Computer, Inc., registered in the
United States and other countries.
Acrobat, Adobe Illustrator and
PostScript are trademarks of Adobe
Systems Incorporated, which may
be registered in certain jurisdictions.
America Online is a registered
service mark of America Online, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
MacPaint is a registered trademark
of Claris Corporation.
NuBus is a trademark of Texas
Instruments.
Motorola is a registered trademark
of Motorola Corporation.
Optrotech is a trademark of
Orbotech Corporation.

PowerPC



 and the PowerPC
logo



 are trademarks of
International Business Machines
Corporation, used under license
therefrom.

QuickView



 is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state..

ISBN 0-201-nnnnn-n
1 2 3 4 5 6 7 8 9-MA-9998979695
First Printing, Month 1995

7

The paper used in this book meets
the EPA standards for recycled fiber.

Library of Congress Cataloging-in-Publication Data

Book_title / [Apple Computer, Inc.].
p. cm.

Includes index.
ISBN 0-201-nnnnn-n
1. Macintosh (Computer)—Programming. 2.

I. Apple Computer, Inc.
nnnn.n.nnnnnnn 1995
nnn.nnn—nnnn 95-nnnnn

CIP

This document was created with FrameMaker 4.0.4

iii

Figures, Tables, and Listings ix

Preface

About This Book

xi

Format of This Book and Its Companion Volume xii
Conventions Used in This Book xiv

Special Fonts xv
Types of Notes xv

Development Environment xv
For More Information xvi

Chapter 1

Palette Manager Reference

1-1

Constants and Data Types 1-3
Palette Manager Functions 1-6

Initializing the Palette Manager 1-7
Initializing and Allocating Palettes 1-8
Interacting With the Window Manager 1-11
Drawing With Color Palettes 1-16
Animating Palettes 1-20
Manipulating Palettes and Color Tables 1-23
Manipulating Palette Entries 1-27

The Palette Resource 1-30

Chapter 2

Color Picker Manager Reference

2-11

Constants and Data Structures 2-5
Gestalt Selector for the Color Picker 2-5
Picker Actions 2-5
Color Types 2-7
Edit Menu Operations 2-7
Item Hit Modifiers 2-7
Dialog Placement Specifiers 2-8
Picker Flags 2-8
Picker Attributes 2-10
Event Forecasters 2-11
Request Codes 2-12

This document was created with FrameMaker 4.0.4

iv

Picker Color Structure 2-15
Picker Structure 2-17
Picker Icon Structure 2-17
Picker Initialization Structure 2-18
Event Filter Function 2-18
Color-Changed Function 2-19
Edit Menu Items Structure 2-19
Edit Menu State Structure 2-20
Color Picker Parameter Block 2-20
System-Owned Dialog Box Structure 2-24
Picker-Owned Dialog Box Structure 2-25
Application-Owned Dialog Box Structure 2-26
Event Data Structure 2-27
Editing Data Structure 2-29
Item Hit Structure 2-31
Help Item Structure 2-33
SmallFract Type 2-33
HSV Color Structure 2-34
HSL Color Structure 2-34
CMY Color Structure 2-35

Color Picker Manager Functions 2-36
Using the Standard Color Picker Dialog Box 2-36
Creating a Custom Color Picker Dialog Box 2-38
Handling Events in a Custom Color Picker Dialog Box 2-45
Getting Colors From and Setting Colors for a Custom Color Picker Dialog

Box 2-47
Getting the Menu State and the Help Balloons for a Color Picker 2-50
Setting and Getting Color-Matching Profiles for a Color Picker 2-52
Converting Colors Among Color Models 2-54
Converting Between SmallFract and Fixed Values 2-57

Application-Defined Functions 2-58
Handling Application-Directed Events in a Color Picker 2-58
Changing Colors in a Document 2-59

Color Picker–Defined Functions 2-60
Setting Up a Color Picker 2-61
Responding to Requests to Return and Set Color Picker

Information 2-66
Responding to Events in a Color Picker 2-76

v

Result Codes 2-80

Chapter 3

ColorSync Manager Reference for Applications and Device

Drivers

3-1

The ColorSync Manager Constants and Data Structures 3-5
Constants for Profile Location Type 3-5
Constants for ColorSync Manager Gestalt Selectors and Responses 3-7
Profile Classes 3-8
Signature of the Apple-Supplied Color Management Module 3-9
Commands for Calling the Caller-Supplied ColorSync Data Transfer

Functions 3-9
Picture Comment IDs for Profiles and Color Matching 3-10
Picture Comment Selectors for the cmComment ID 3-11
Color Space Signatures 3-13
Color Packing for Color Spaces 3-14
Color Spaces 3-15
Rendering Intent Values for Version 2.0 Profiles 3-19
Function Selectors for Color-Conversion-Component Functions 3-20
Operation Codes Used With PrGeneral Function 3-22
Color Conversion Component Version 3-22
The ColorSync Manager Element Tags and Their Signatures for Version 1.0

Profiles 3-22
Profile Location Union 3-23
Profile Location Structure 3-24
File Specification for a File-Based Profile 3-24
Handle Specification for a Memory-Based Profile 3-25
Pointer Specification for a Memory-Based Profile 3-25
Apple Profile Header 3-26
Profile 2.0 Header Structure for the ColorSync Manager 3-26
Concatenated Profile Set Structure 3-30
Color World Information Record 3-31
Color Management Module (CMM) Information Record Structure 3-32
Profile Search Record 3-33
XYZ Color Component Values 3-35
XYZ Color Value 3-35
Fixed XYZ Color Value 3-35

vi

L*a*b* Color Value 3-36
L*u*v* Color Value 3-36
Yxy Color Value 3-37
RGB Color Value 3-37
HLS Color Value 3-37
HSV Color Value 3-38
CMYK Color Value 3-38
CMY Color Value 3-39
HiFi Color Values 3-39
Gray Color Value 3-39
The Color Union 3-40
The ColorSync Manager Bitmap 3-42
Profile Reference 3-43
Profile Search Result Reference 3-44
High-Level Color-Matching-Session Reference 3-44
Color World Reference 3-44
TEnableColorMatchingBlk 3-45
Profile Header for ColorSync 1.0 3-45
PostScript Color Rendering Dictionary (CRD) Virtual Memory Size Tag

Structure 3-48
The ColorSync Manager Functions 3-49

Accessing Profile Files 3-50
Accessing Profile Elements 3-60
Matching Colors Using the High-Level Functions 3-75
Using Embedded Profiles With QuickDraw 3-78
Matching Colors Using the Low-Level Functions Without

QuickDraw 3-80
Assigning and Accessing the System Profile File 3-99
Searching External Profiles 3-101
Converting Between Color Spaces 3-106
PostScript Color-Matching Support Functions 3-125
Locating the ColorSync Profiles Folder 3-130
Application-Defined Functions for the ColorSync Manager 3-131
Result Codes 3-138

vii

Chapter 4

ColorSync Manager Reference for Color Management

Modules

4-1

Constants 4-3
Color Management Module Component Interface 4-3
Required Request Codes 4-4
Optional Request Codes 4-5

Required Functions 4-9
Optional Functions 4-14

Chapter 5

Color Manager Reference

5-1

Constants and Data Types 5-3
Color Manager Functions 5-5

Managing Colors 5-5
Managing Color Tables 5-10
Operations on Search and Complement Functions 5-15
Application-Defined Functions 5-17

Glossary

GL-1

Index

IN-1

viii

ix

Figures, Tables, and Listings

Preface

About This Book

xi

Figure P-1

Road map to

Advanced Color Imaging

xiv

Figure 1-1

Format of a palette resource 1-31

This document was created with FrameMaker 4.0.4

x

xi

P R E F A C E

About This Book

The

Advanced Color Imaging Reference

, and its companion,

Advanced Color
Imaging on the Mac OS

, describe the following collections of system software
routines:

■

the Palette Manager

■

the Color Picker Manager, version 2.0

■

the ColorSync Manager, version 2.0

■

the Color Manager

The chapters in this book provide a reference to use these managers, which you
can use to enhance your application’s color capabilities. To implement core
graphics capabilities, your application should use QuickDraw or QuickDraw
GX. The book

Inside Macintosh: Imaging With QuickDraw

 describes how your
application can use QuickDraw to create and display Macintosh graphics, and
how to use the Printing Manager to print the images created with QuickDraw.
The

Inside Macintosh: QuickDraw GX

 suite of books describes the QuickDraw
GX object-based graphics programming environment for creating, displaying,
and printing graphics.

To provide more sophisticated color support on indexed graphics devices in
QuickDraw environments, your application can use the Palette Manager. The
Palette Manager allows your application to specify sets of colors that it needs
on a window-by-window basis. An indexed device supporting a byte for each
pixel allows 256 colors to be displayed. On a video device that uses a variable
color lookup table, your application can use the Palette Manager to display
tens of thousands of palettes—that is, sets of colors—consisting of 256 colors
each, so that your application has up to 16 million colors at its disposal.

To solicit color choices from users, your application can use the Color Picker
Manager. Whether your application uses QuickDraw or QuickDraw GX, the
Color Picker Manager provides your application with a standard dialog box for
soliciting a color choice from users.

To match colors between screens and input and output devices such as
scanners and printers, Macintosh system software provides a set of routines
and algorithms called the ColorSync Manager

.

 Developers writing device

This document was created with FrameMaker 4.0.4

xii

P R E F A C E

drivers use the ColorSync Manager to support color matching between devices.
Application developers use the ColorSync Manager to communicate with
drivers and to present users with color-matching information—such as a
device’s color capabilities.

QuickDraw GX and the Color Picker Manager automatically use the ColorSync
Manager to perform color matching. Unless your application is using one of
these two graphics managers, it must explicitly call the functions of the
ColorSync Manager to use its color-matching capabilities.

The Color Manager assists Color QuickDraw in mapping your application’s
color requests to the actual colors available. Most applications never need to
call the Color Manager directly. However, for completeness, the functions and
data structures of the Color Manager are described in this book.

Format of This Book and Its Companion Volume 0

This book provides a reference chapter for the Palette Manager, the Color
Picker Manager, the Color Manager, and two chapters for the ColorSync
Manager (one chapter describing routines to develop ColorSync applications
and device drivers and the other describing routines and request codes that
allow color management modules to respond to ColorSync-supportive
applications). For example, the chapter “Color Picker Manager Reference”
provides a complete reference to the data structures, functions, and resources
that your application can use to create an interface for soliciting color choices
from users. Each function description also follows a standard format, which
presents the function definition followed by a description of every parameter
of the routine.

The book

Advanced Color Imaging on the Mac OS

 provides conceptual
information about enhancing your application’s color capabilities; it also
includes code samples with step-by-step instructions for doing so. For
example, in the chapter, “Color Picker Manager,” conceptual information is in
the section “About the Color Picker Manager,” which explains how you can
use the standard user interface for soliciting color choices from users.

In the same book, tutorial information is in the section “Using the Color Picker
Manager,” which contains code samples and step-by-step instructions
describing how to use the Color Picker Manager to create dialog boxes in
which users can make color choices. The chapter “Color Picker Manager” also

xiii

P R E F A C E

contains a summary section that provides the C interfaces for the constants,
data structures, routines, and result codes associated with the Color Picker
Manager.

The

Advanced Color Imaging Reference

 comes is in an electronic form only—there
is no printed version of it. It has two online formats that are identical in content:

■

Adobe Acrobat format.

 Acrobat features excellent navigation and the ability
to print the entire document or selected pages.

■

QuickView format.

 QuickView features extremely fast navigation and
limited printing capabilities. For better printing capabilities, it is suggested
that you use the Adobe Acrobat version.

For additional information on navigating in the

Advanced Color Imaging
Reference

 with Acrobat or QuickView, see the ReadMe file on the enclosed CD.

The book

Advanced Color Imaging on the Mac OS

 is in a printed form and an
electronic form. The content of these two versions is identical. The electronic
version is in Acrobat format.

Figure P-1 shows a road map to the printed and electronic forms of the

Advanced Color Imaging Reference

 and

Advanced Color Imaging on the Mac OS

.

xiv

P R E F A C E

Figure P-1

Road map to

Advanced Color Imaging

Conventions Used in This Book 0

This book uses various conventions to present information. Words that require
special treatment appear in specific fonts or font styles. Certain information,
such as parameter blocks, appears in special formats so that you can scan it
quickly.

Paper documentation Electronic documentation

Acrobat format QuickView format

Conceptual,

introductiory

and tutorial

information

Reference

Advanced Color Imaging

on the Mac OS

Advanced Color Imaging

on the Mac OS

Advanced Color Imaging

Reference

Advanced Color Imaging

Reference

Advanced Color

Imaging

on the Mac OS

Location

Content

PDF

PDF

xv

P R E F A C E

Special Fonts 0

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in LetterGothic (

this is
LetterGothic

).

Words that appear in

boldface

 are key terms or concepts and are defined in the
glossary at the end of this book. Note that numerical entries (for example,

32-bit clean

) are sorted before all alphabetical entries in the glossary and in the
index.

Types of Notes 0

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but
possibly not essential to an understanding of the main text.
(An example appears on page 1-8.)

◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on
page 1-13.)

▲

▲ W A R N I N G

Warnings like this indicate potential problems that you
should be aware of as you design your application. Failure
to heed these warnings could result in system crashes or
loss of data. (An example appears on page 5-8.)

▲

Development Environment 0

The system software functions described in this book are available using C or
assembly-language interfaces. How you access these functions depends on the
development environment you are using. This book shows system software
routines in their C interface using the Macintosh Programmer’s Workshop
(MPW).

xvi

P R E F A C E

All code listings in this book are shown in C (except for listings that describe
resources, which are shown in Rez-input format). They show methods of using
various routines and illustrate techniques for accomplishing particular tasks.
All code listings have been compiled and, in most cases, tested. However,
Apple Computer does not intend that you use these code samples in your
application. You can find the location of this book’s code listings in the list of
figures, tables, and listings.

To make the code listings in this book more readable, only limited error
handling is shown. You need to develop your own techniques for detecting and
handling errors.

For More Information 0

APDA is Apple Computer’s worldwide source for hundreds of development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the

APDA Tools Catalog

featuring all current versions of Apple development
tools and the most popular third-party development tools. APDA offers
convenient payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the

APDA Tools
Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

C H A P T E R 1

Contents

1-1

Contents

Figure 1-0
Listing 1-0
Table 1-0

1 Palette Manager Reference

Constants and Data Types 1-3

Usage Constants

1-3

Update Constants

1-4

The Palette Structure

1-5

The Color Information Structure

1-5
Palette Manager Functions 1-6

Initializing the Palette Manager 1-7

InitPalettes

1-7

PMgrVersion

1-7
Initializing and Allocating Palettes 1-8

GetNewPalette

1-8

NewPalette

1-9

DisposePalette

1-10
Interacting With the Window Manager 1-11

SetPalette

1-11

NSetPalette

1-12

ActivatePalette

1-13

GetPalette

1-14

SetPaletteUpdates

1-15

GetPaletteUpdates

1-15
Drawing With Color Palettes 1-16

PmForeColor

1-16

PmBackColor

1-17

SaveFore

1-17

RestoreFore

1-18

SaveBack

1-19

RestoreBack

1-20

This document was created with FrameMaker 4.0.4

C H A P T E R 1

1-2

Contents

Animating Palettes 1-20

AnimateEntry

1-21

AnimatePalette

1-22
Manipulating Palettes and Color Tables 1-23

CopyPalette

1-23

ResizePalette

1-24

RestoreDeviceClut

1-24

CTab2Palette

1-25

Palette2CTab

1-26
Manipulating Palette Entries 1-27

GetEntryColor

1-27

GetEntryUsage

1-27

SetEntryColor

1-28

SetEntryUsage

1-29

Entry2Index

1-30
The Palette Resource 1-30

C H A P T E R 1

1-3

Palette Manager Reference 1

This reference document describes the data types, constants, functions, and
resource that are specific to the Palette Manager.

The “Constants and Data Types” section shows the usage constants
enumeration and the

Palette

 and

ColorInfo

 data types.

The “Palette Manager Functions” section describes functions for initializing,
manipulating, and allocating palettes; drawing with palette colors; and
interacting with the Window Manager.

The “Resource” section contains a description of the palette resource, from
which palette structures can be made.

Constants and Data Types 1

This section describes the usage constants enumeration, which allows you to
assign usage categories to each color in a palette, and the update constants
enumeration, which allows you to specify the conditions under which a
window’s color environment is updated. It also describes the palette structure,
which contains the collection of colors you create for your application and
information about their use; and the color information structure, which is the
part of the palette structure that contains the information about a particular
color.

Usage Constants 1

The usage constants define how each color in a palette is to be used. (Note that
you can combine certain of these constants. See “Colors in a Palette” in the
chapter “Palette Manager” in the book

Advanced Color Imaging on the Mac OS

for information on how to use these constants to specify the usage for the
colors in a palette.)

The

ciUsage

 field of the color information structure (described on page 1-5)
contains one or more usage constants that define how a particular color in a
palette is to be used.

/* usage contsants */
enum {

pmCourteous = $0000; /* courteous color */

This document was created with FrameMaker 4.0.4

C H A P T E R 1

Palette Manager Reference

1-4

pmTolerant = $0002; /* tolerant color */
pmAnimated = $0004; /* animated color */
pmExplicit = $0008; /* explicit color */
pmWhite = $0010; /* use on 1-bit device */
pmBlack = $0020; /* use on 1-bit device */
pmInhibitG2 = $0100; /* inhibit on 2-bit grayscale

 device */
pmInhibitC2 = $0200; /* inhibit on 2-bit color

 device */
pmInhibitG4 = $0400; /* inhibit on 4-bit grayscale

 device */
pmInhibitC4 = $0800; /* inhibit on 4-bit color

 device */
pmInhibitG8 = $1000; /* inhibit on 8-bit grayscale

 device */
pmInhibitC8 = $2000; /* inhibit on 8-bit color device */

};

Update Constants 1

The update constants determine whether a window is updated based on
various changes to the color environment. You use the update constants with
the

nCUpdates

 parameter of the

NSetPalette

 function (described on page 1-12)
and the

updates

 parameter of the

SetPaletteUpdates

 function (described on
page 1-15).

/* update constants */
enum {
pmNoUpdates = $8000
pmBkUpdates = $A000
pmFgUpdates = $C000
pmAllUpdates = $E000

};

Constant descriptions

pmNoUpdates = $8000

Do not update the window when its color environment changes.

C H A P T E R 1

Palette Manager Reference

1-5

pmBkUpdates = $A000

Update the window only when it is

not

 the active window.

pmFgUpdates = $C000

Update the window only when it is the active window.

pmAllUpdates = $E000

Update the window whenever its color environment changes.

The Palette Structure 1

A palette structure contains a header and a collection of color information
structures, one for each color in the palette. The

Palette

 data type defines a
palette structure.

struct Palette {
short pmEntries; / *entries in pmTable */
short pmDataFields[7]; / *private fields */
ColorInfo pmInfo[1];

};
typedef struct Palette Palette;
typedef Palette *PalettePtr, **PaletteHandle;

Field descriptions

pmEntries

The number of

ColorInfo

 structures in the

pmInfo

 array.

pmDataFields

Private fields used by the Palette Manager.

pmInfo

An array of

ColorInfo

 structures, described next.

The Color Information Structure 1

Each color information structure in a palette comprises an RGB color value,
information describing how the color is to be used, a tolerance value for colors
that need only be approximated, and private fields. You should not create and
modify the public fields directly; instead, use Palette Manager functions such
as

SetEntryColor

 and

SetEntryUsage

.

The

ColorInfo

 data type defines a color information structure.

C H A P T E R 1

Palette Manager Reference

1-6

struct ColorInfo {
RGBColor ciRGB; / *true RGB values */
short ciUsage; / *color usage */
short ciTolerance; / *tolerance value */
short ciDataFields[3]; / *private fields */

};
typedef struct ColorInfo ColorInfo;

Field descriptions

ciRGB

An RGB color value, which is defined by the

RGBColor

structure (see the chapter “Color QuickDraw” in

Inside
Macintosh: Imaging With QuickDraw

). It contains three fields
that contain integer values for defining, respectively, the
red, green, and blue values of the color.

ciUsage

One or more of the usage constants, specifying how this
entry is to be used. The

ciUsage

 field can contain any of the
usage constants, which are listed in “Usage Constants” on
page 1-3.

ciTolerance

An integer expressing the range in RGB space within
which the red, green, and blue values must fall to satisfy
this entry. A tolerance value of $0000 means that only an
exact match is acceptable. Values of $0

xxx

 other than $0000
are reserved and should not be used in applications.

ciDataFields

Private fields.

Palette Manager Functions 1

This section describes Palette Manager functions for initializing the Palette
Manager, initializing and allocating palettes, interacting with the Window
Manager, drawing with color palettes, animating palettes, and manipulating
palettes, color tables, and palette entries.

The functions

SaveFore

,

RestoreFore

,

SaveBack

,

RestoreBack

,

ResizePalette

, and

RestoreDeviceClut

 are available only with system software versions 6.0.5 and
later and with the 32-Bit QuickDraw system extension.

C H A P T E R 1

Palette Manager Reference

1-7

Initializing the Palette Manager 1

This section describes functions that initialize the Palette Manager and
determine the version of the Palette Manager that is running.

InitPalettes 1

The

InitPalettes

 function initializes the Palette Manager.

pascal void InitPalettes(void);

DESCRIPTION

The

InitPalettes

 function searches for devices that support a device color table
and initializes an internal data structure for each one. Your application does not
have to call

InitPalettes

 because the Window Manager’s

InitWindows

 function
calls it automatically.

PMgrVersion 1

Use the

PMgrVersion

 function to determine which version of the Palette
Manager is executing; it returns an integer specifying the version number.

pascal short PMgrVersion(void);

DESCRIPTION

The values that the

PMgrVersion

 function may return and their meaning are as
follows:

Value Description

$0202 System software version 7.0

$0201 System software version 6.0.5

$0200 Original 32-Bit QuickDraw system extension

C H A P T E R 1

Palette Manager Reference

1-8

Initializing and Allocating Palettes 1

This section describes functions for creating and disposing of palettes. You can
create a new palette from a

'pltt'

 resource using the

GetNewPalette

 function or
create a palette from within your application using the

NewPalette

 function.
You can also let the Palette Manager and Window Manager together create a
palette by creating a

'pltt'

 resource with the same ID as the window you want
to assign it to.

Use the

DisposePalette

 function to dispose of an entire palette.

GetNewPalette 1

Use the

GetNewPalette

 function to create and initialize a palette from a

'pltt'

resource (described on page 1-30).

pascal PaletteHandle GetNewPalette(short PaletteID);

paletteID

The resource ID of the source palette.

DESCRIPTION

The

GetNewPalette

 function creates a palette from information supplied by the
palette resource specified in the

paletteID

 parameter; it also initializes the new
palette.

Note

The

GetNewPalette

 function detaches the resource when it
creates the new palette, so you do not need to call the

ReleaseResource

 function.

◆

If you open a new color window with

GetNewCWindow

, the Window Manager
calls

GetNewPalette

 automatically, with

paletteID equal to the window’s
resource ID. Therefore, if you have created a palette resource with the same ID
as a window, the Window Manager and Palette Manager automatically create
the palette for you and your application needn’t call GetNewPalette to create the
palette.

C H A P T E R 1

Palette Manager Reference

1-9

SEE ALSO

To attach a palette to a window after creating it, use the SetPalette function,
described on page 1-11.

To change the entries in a palette after creating it, use the SetEntryColor
(page 1-28) and the SetEntryUsage (page 1-29) functions.

NewPalette 1

Use the NewPalette function to allocate a new palette from colors in the color
table.

pascal PaletteHandle NewPalette (short entries,
 CTabHandle srcColors,
 short srcUsage,
 short srcTolerance);

entries The number of ColorInfo structures to be created in the new
palette.

srcColors The color table from which the colors are to be obtained.

srcUsage The usage value to be assigned each ColorInfo structure in the
palette.

srcTolerance
The tolerance value to be assigned each ColorInfo structure in
the palette.

DESCRIPTION

The NewPalette function fills the palette with as many RGB values from the
color table as it has or can fit. NewPalette sets the usage field of each color to the
value in the srcUsage parameter and the tolerance value of each color to the
value in the srcTolerance parameter. If no color table is provided (srcColors =
nil), then all colors in the palette are set to black (red, green, and blue equal to
$0000).

C H A P T E R 1

Palette Manager Reference

1-10

SEE ALSO

For an example of using the NewPalette function to create a palette, see
Listing 1-1 in the chapter “Palette Manager” in the book Advanced Color Imaging
on the Mac OS.

To attach a palette to a window after creating it, use the SetPalette function,
described on page 1-11.

To change the entries in a palette after creating it, use the SetEntryColor
(page 1-28) and the SetEntryUsage (page 1-29) functions.

DisposePalette 1

Use the DisposePalette function to dispose of a palette.

pascal void DisposePalette(PaletteHandle srcPalette);

srcPalette A handle to the palette to be disposed of.

DESCRIPTION

The DisposePalette function disposes of the palette you specify in the
srcPalette parameter. If the palette has any entries allocated for animation on
any screen device, then DisposePalette relinquishes these entries before the
palette’s memory is released.

If a palette is attached to a window automatically—because the palette resource
and the window have the same ID—you do not have to call the DisposePalette
function to dispose of the function. The Palette Manager and Window Manager
dispose of the palette automatically if the palette is replaced or if the window
goes away.

However, if you explicitly attach a palette to a window with the SetPalette or
NSetPalette function, your application owns the palette and is responsible for
disposing of it.

C H A P T E R 1

Palette Manager Reference

1-11

SPECIAL CONSIDERATIONS

It is possible to attach a single palette to multiple windows; therefore, even
when a window goes away and no longer needs a palette, other windows may
still need it.

Interacting With the Window Manager 1

This section describes functions that interact with the Window Manager. You
can use both the SetPalette and NSetPalette functions to attach a palette to a
window.

You use the ActivatePalette function to adjust the color environment
whenever your window’s status changes or after making changes to a palette.
You can use the GetPalette function to return a handle to the palette currently
associated with a specified window. Use the SetPaletteUpdates and
GetPaletteUpdates functions to explicitly set and get the update conditions for
a palette.

SetPalette 1

Use the SetPalette function to associate a palette with a window.

pascal void SetPalette(WindowPtr dstWindow,
 PaletteHandle srcPalette,
 Boolean cUpdates);

dstWindow A pointer to the window to which you want to assign a new
palette.

srcPalette A handle to the palette you want to assign.

cUpdates A Boolean value in which you specify whether the window is to
receive updates as a result of changes to the color environment.
If you want the window to be updated whenever its color
environment changes, set the cUpdates parameter to TRUE.

C H A P T E R 1

Palette Manager Reference

1-12

SPECIAL CONSIDERATIONS

The cUpdates parameter controls whether changes to the color environment
cause update events to be sent to the specified window only if the window is
not the frontmost window. When a window is the frontmost window, changes
to its palette cause it to get an update event regardless of how the cUpdates
parameter is set. You can use the NSetPalette function, which does the same
thing as SetPalette, when you need greater flexibility in setting criteria for
updates. The nCUpdates parameter for the NSetPalette function includes the
option of turning off updates when the window is the frontmost window. ◆

SEE ALSO

For an example of using the SetPalette function to attach a palette to a
window, see Listing 1-4 on page 1-27 of the book Advanced Color Imaging on the
Mac OS.

Use the NSetPalette function (described on page 1-12) to associate a palette
with a window but with additional options as to when an update event is
triggered by changes to the color environment.

Use the GetNewPalette function (described on page 1-8) or the NewPalette
function (described on page 1-9) to create a new palette.

To dispose of a palette, use the DisposePalette function, described on page 1-10.

NSetPalette 1

You can use the NSetPalette function to associate a new palette with a window;
it is identical to the SetPalette function (described on page 1-11) except that the
nCUpdates parameter is an integer rather than a Boolean value, so that a variety
of conditions can trigger an update event.

pascal void NSetPalette(WindowPtr dstWindow,
PaletteHandle srcPalette, short nCUpdates);

dstWindow A pointer to the window to which you want to assign a new
palette.

srcPalette A pointer to the palette you want to assign.

C H A P T E R 1

Palette Manager Reference

1-13

nCUpdates An integer value in which you specify whether the window is
to receive updates as a result of various changes to the color
environment. See “Update Constants” on page 1-4 for a
description of the update options.

DESCRIPTION

NSetPalette changes the palette associated with the window specified in the
dstWindow parameter to the palette specified by srcPalette. NSetPalette also
records whether the window is to receive updates as a result of changes to its
color environment. The update constants, which you pass to the nCUpdates
parameter, determine when the window is updated.

IMPORTANT

The NSetPalette function is available in system software
versions 6.0.2 and later. ▲

SEE ALSO

Use the SetPalette function (described on page 1-11) if you don’t need the
flexibility that NSetPalette provides for update events.

Use the GetNewPalette function (described on page 1-8) or the NewPalette
function (described on page 1-9) to create a new palette.

To dispose of a palette, use the DisposePalette function, described on page 1-10.

ActivatePalette 1

The ActivatePalette function compares the color environment with the color
requirements of your window; it then changes the device color tables and
generates window updates as needed.

pascal void ActivatePalette(WindowPtr srcWindow);

srcWindow A pointer to the window for which you want status changes
reported.

C H A P T E R 1

Palette Manager Reference

1-14

DESCRIPTION

The Window Manager calls ActivatePalette when your window’s status
changes—for example, when your window opens, closes, moves, or becomes
frontmost. You need to call the ActivatePalette function yourself if you change
a palette—for example, by changing a color with the SetEntryColor function—
and you want the changes to take place immediately, before the Window
Manager would do it.

If the window specified in the srcWindow parameter is frontmost,
ActivatePalette examines the information stored in the window’s palette and
attempts to provide the color environment described therein. It determines a
list of devices on which to render the palette by intersecting the port rectangle
of the window with each device. If the intersection is not empty and if the
device has a color table, then ActivatePalette checks to see if the color
environment is sufficient. If a change is required, ActivatePalette calls the
Color Manager to reserve or modify the device’s color entries as needed. The
ActivatePalette function then generates update events for all windows that
need color updates.

Calling ActivatePalette with an offscreen graphics world has no effect.

GetPalette 1

Use the GetPalette function to obtain a window’s palette.

pascal PaletteHandle GetPalette(WindowPtr srcWindow);

srcWindow A pointer to the window for which you want the associated
palette.

DESCRIPTION

The GetPalette function returns a handle to the palette associated with the
window specified in the srcWindow parameter. If the window has no associated
palette or if the window is not a color window, the GetPalette function returns
nil.

Normally, the GetPalette function does not allocate memory, with one
exception. When your application calls GetPalette to get a copy of the default
application palette, the Palette Manager looks at the AppPalette global variable.

C H A P T E R 1

Palette Manager Reference

1-15

If AppPalette is nil, GetPalette makes a copy of the default system palette and
returns this copy. In all other cases, GetPalette returns a handle to the
requested palette.

You request the default palette as follows:

myPaletteHndl = GetPalette ((WindowPtr) -1);

SEE ALSO

For more information about the default application palette, see “Designating a
Default Palette for Your Application” on page 1-28 of the book Advanced Color
Imaging on the Mac OS.

SetPaletteUpdates 1

Use the SetPaletteUpdates function to set the update attribute of a palette.

pascal void SetPaletteUpdates(PaletteHandle p, short updates);

p A handle to the palette.

updates One of the update attributes for the NSetPalette function. See
“Update Constants” on page 1-4 for a description of the update
attributes.

GetPaletteUpdates 1

Use the GetPaletteUpdates function to obtain the update attribute of a palette.

pascal short GetPaletteUpdates(PaletteHandle p);

p A handle to the palette.

C H A P T E R 1

Palette Manager Reference

1-16

DESCRIPTION

The GetPaletteUpdates function returns one of the update attributes described
in “Update Constants” on page 1-4.

Drawing With Color Palettes 1

This section describes the functions that you can use to draw with. You can use
the PmForeColor and PmBackColor functions to specify foreground and
background drawing colors with the assistance of the Palette Manager.

You can save and restore the current foreground and background colors by
using the SaveFore, RestoreFore, SaveBack, and RestoreBack functions.

PmForeColor 1

Use the PmForeColor function to set the foreground color field of the current
graphics port to a palette color.

pascal void PmForeColor(short dstEntry);

dstEntry The palette entry whose color is to be used as the foreground
color.

DESCRIPTION

The PmForeColor function sets the current color graphics port’s rgbFgColor field
to match the color in the entry specified by the dstEntry parameter of the
palette associated with the current window structure. For courteous and
tolerant entries, PmForeColor calls the RGBForeColor function using the RGB
color of the palette entry. For animated colors, PmForeColor selects the recorded
device index previously reserved for animation (if still present) and installs it in
the color graphics port. The RGB foreground color field is set to the value from
the palette entry. For explicit colors, PmForeColor places the value

dstEntry modulo (maxIndex +1)

into the color graphics port, where maxIndex is the largest index available in a
device’s color table. When multiple devices with different depths are present,
the value of maxIndex varies appropriately for each device.

C H A P T E R 1

Palette Manager Reference

1-17

SEE ALSO

The color graphics port is described in the chapter “Color QuickDraw” in Inside
Macintosh: Imaging With QuickDraw.

PmBackColor 1

Use the PmBackColor function to set the background color field of the current
graphics port to a palette color.

pascal void PmBackColor(short dstEntry);

dstEntry The palette entry whose color is to be used as the background
color.

DESCRIPTION

The PmBackColor function sets the current color graphics port’s rgbBkColor field
to match the color in the entry specified by the dstEntry parameter of the
palette associated with the current window structure. For courteous and
tolerant entries, PmBackColor calls the RGBBackColor function using the RGB
color of the palette entry. For animated colors, PmBackColor selects the recorded
device index previously reserved for animation (if still present) and installs it in
the color graphics port. The rgbBgColor field is set to the value from the palette
entry. For explicit colors, PmBackColor places the value

dstEntry modulo (maxIndex +1)

into the color graphics port, where maxIndex is the largest index available in a
device’s color table. When multiple devices with different depths are present,
maxIndex varies appropriately for each device.

SaveFore 1

Use the SaveFore function to save the current foreground color.

pascal void SaveFore(ColorSpec *c);

C H A P T E R 1

Palette Manager Reference

1-18

c A ColorSpec structure (described in the chapter “Color
QuickDraw” of Inside Macintosh: Imaging With QuickDraw) to
hold the current foreground color.

DESCRIPTION

The SaveFore function returns the current foreground color in the ColorSpec
structure specified in the c parameter. You can save either Color QuickDraw’s
foreground color from the CGrafPort structure or the Palette Manager’s
foreground color from the GrafVars structure. A value of 0 in the value field of
the ColorSpec structure specifies retrieving the RGB color from the rgbFgColor
field of the CGrafPort structure; a value of 1 in the value field specifies
retrieving the palette entry from the pmFgColor field of the GrafVars structure.

IMPORTANT

The SaveFore function is available only with system
software versions 6.0.5 and later and with the 32-Bit
QuickDraw system extension. ▲

RestoreFore 1

Use the RestoreFore function to set the current foreground color to the color
you supply.

pascal void RestoreFore(const ColorSpec *c);

c A ColorSpec structure (described in the chapter “Color
QuickDraw” of Inside Macintosh: Imaging With QuickDraw)
containing the RGB color to be set as the foreground color.

DESCRIPTION

The RestoreFore function stores the RGB color of the ColorSpec structure you
specify by the c parameter as the current foreground color. You can store the
color into either Color QuickDraw’s foreground color in the CGrafPort
structure or the Palette Manager’s foreground color in the GrafVars structure. If
you specify 0 in the value field of the ColorSpec structure, the RestoreFore
function stores the RGB value in the rgbFgColor field of the current CGrafPort

C H A P T E R 1

Palette Manager Reference

1-19

structure. If you specify 1 in the value field of the ColorSpec structure, the
RestoreFore function stores the RGB value in the pmFgColor field of the GrafVars
structure.

IMPORTANT

The RestoreFore function is available only with system
software versions 6.0.5 and later and with the 32-Bit
QuickDraw system extension. ▲

SaveBack 1

Use the SaveBack function to save the current background color.

pascal void SaveBack(ColorSpec *c);

c A ColorSpec structure (described in the chapter “Color
QuickDraw” of Inside Macintosh: Imaging With QuickDraw) to
hold the current background color.

DESCRIPTION

The SaveBack function returns the current background color in the c parameter.
You can save either Color QuickDraw’s background color from the CGrafPort
structure or the Palette Manager’s background color from the GrafVars
structure. A value of 0 in the value field of the ColorSpec structure specifies
retrieving the RGB color from the rgbBkColor field of the CGrafPort structure; a
value of 1 in the value field specifies retrieving the palette entry from the
pmBkColor field of the GrafVars structure.

IMPORTANT

The SaveBack function is available only with system
software versions 6.0.5 and later and with the 32-Bit
QuickDraw system extension. ▲

C H A P T E R 1

Palette Manager Reference

1-20

RestoreBack 1

Use the RestoreBack function to set the current background color to the color
you specify.

pascal void RestoreBack(const ColorSpec *c);

c A ColorSpec structure (described in the chapter “Color
QuickDraw” of Inside Macintosh: Imaging With QuickDraw)
containing the RGB color to be set as the background color.

DESCRIPTION

The RestoreBack function stores the RGB color of the ColorSpec structure
specified by the c parameter as the current background color. You can restore
either Color QuickDraw’s foreground color in the CGrafPort structure or the
Palette Manager’s background color in the GrafVars structure. If you specify 0
in the value field of the ColorSpec structure, the RestoreBack function stores the
RGB value in the rgbFgColor field of the current CGrafPort structure. If you
specify 1 in the value field of the ColorSpec structure, the RestoreBack function
stores the RGB value in the pmBkColor field of the GrafVars structure.

IMPORTANT

The RestoreBack function is available only with system
software versions 6.0.5 and later and with the 32-Bit
QuickDraw system extension. ▲

Animating Palettes 1

To use color-table animation, you can change the colors in a palette and on
corresponding devices with the AnimateEntry and AnimatePalette functions.

C H A P T E R 1

Palette Manager Reference

1-21

AnimateEntry 1

Use the AnimateEntry function to change the color of a window’s palette entry.

pascal void AnimateEntry(WindowPtr dstWindow, short dstEntry,
 const RGBColor *srcRGB);

dstWindow A pointer to the window whose palette color is to be changed.

dstEntry The palette entry to be changed.

srcRGB The new RGB value.

DESCRIPTION

The AnimateEntry function changes the RGB value of an animated entry for a
window’s palette. Each device for which that index has been reserved is
immediately modified to contain the new value. This is not considered to be a
change to the device’s color environment because no other windows should be
using the animated entry.

If the palette entry is not an animated color or if the associated indexes are no
longer reserved, no animation occurs.

If you have blocked color updates in a window by using SetPalette with
cUpdates set to FALSE, you may observe unintentional animation. This occurs
when ActivatePalette reserves for animation device indexes that are already
used in the window. Redrawing the window, which normally is the result of a
color update event, removes any animated colors that do not belong to the
window.

SEE ALSO

For an example of using the AnimateEntry function to achieve color animation
effects, see Listing 1-5 on page 1-31 of the book Advanced Color Imaging on the
Mac OS.

C H A P T E R 1

Palette Manager Reference

1-22

AnimatePalette 1

Use the AnimatePalette function to change the colors of a series of palette
entries; it is similar to the AnimateEntry function, but it acts upon a range of
entries.

pascal void AnimatePalette(WindowPtr dstWindow,
CTabHandle srcCTab,
short srcIndex,
short dstEntry,
short dstLength);

dstWindow A pointer to the window whose palette colors are to be changed.

srcCTab A handle to the color table containing the new colors. Color
tables are described in the chapter “Color QuickDraw” of Inside
Macintosh: Imaging With QuickDraw.

srcIndex The source color table entry at which copying starts.

dstEntry The palette entry at which copying starts.

dstLength The number of palette entries to be changed.

DESCRIPTION

The AnimatePalette function changes the colors of a series of palette entries.
Beginning at the index specified by the srcIndex parameter (which has a
minimum value of 0), the number of entries specified in dstLength are copied
from the source color table to the destination window’s palette, beginning at
the entry specified in the dstEntry parameter. If the source color table specified
in srcCTab is not sufficiently large to accommodate the request, AnimatePalette
modifies as many entries as possible and leaves the remaining entries
unchanged.

SEE ALSO

For an example of using the AnimatePalette function to achieve color
animation effects, see Listing 1-5 on page 1-31 of the book Advanced Color
Imaging on the Mac OS.

C H A P T E R 1

Palette Manager Reference

1-23

Manipulating Palettes and Color Tables 1

You can use the CopyPalette function to copy palettes from other palettes and
from color tables, and you can use the ResizePalette function to resize palettes.
The RestoreDeviceClut function restores the color table of a device to its default
set of colors. CTab2Palette copies the specified color table into a palette, and its
opposite, Palette2CTab, copies a palette into a color table. Each function resizes
the target object as needed.

CopyPalette 1

Use the CopyPalette function to copy entries from one palette to another.

pascal void CopyPalette(PaletteHandle srcPalette,
PaletteHandle dstPalette,
short srcEntry,
short dstEntry,
short dstLength);

srcPalette A handle to the palette from which colors are copied.

dstPalette A handle to the palette to which colors are copied.

srcEntry The source palette entry at which copying starts.

dstEntry The destination palette entry at which copying starts.

dstLength The number of destination palette entries to change.

DESCRIPTION

The CopyPalette function copies entries from the source palette into the
destination palette. The copy operation begins at the values specified by the
srcEntry and dstEntry parameters, copying into as many entries as are
specified by the dstLength parameter. CopyPalette resizes the destination
palette when the number of entries after the copy operation is greater than it
was before the copy operation.

CopyPalette does not call ActivatePalette, so your application is free to change
the palette a number of times without causing a series of intermediate changes

C H A P T E R 1

Palette Manager Reference

1-24

to the color environment. Your application should call ActivatePalette after
completing all palette changes.

If either of the palette handles is nil, CopyPalette does nothing.

ResizePalette 1

Use the ResizePalette function to change the size of a palette.

pascal void ResizePalette(PaletteHandle srcPalette, short size);

srcPalette A handle to the palette to be resized.

size The number of resulting entries in the palette.

DESCRIPTION

The ResizePalette function sets the palette specified in srcPalette to the
number of entries indicated in the size parameter. If ResizePalette adds
entries at the end of the palette, it sets them to pmCourteous, with the RGB
values set to (0,0,0)—that is, black. If ResizePalette deletes entries from the end
of the palette, it safely disposes of them.

RestoreDeviceClut 1

Use the RestoreDeviceClut function to set the color table of a graphics device to
its default state.

pascal void RestoreDeviceClut(GDHandle gdh);

gdh A handle to the GDevice structure (described in the chapter
“Graphics Devices” of Inside Macintosh: Imaging With
QuickDraw) to be restored.

C H A P T E R 1

Palette Manager Reference

1-25

DESCRIPTION

The RestoreDeviceClut function changes the color table of the device specified
by the gdh parameter to its default state. If this process changes any entries, the
Palette Manager posts color updates to windows intersecting the device. Pass
nil in the gdh parameter to restore all screens.

You don’t need to use this function to restore the Finder’s desktop colors,
because its colors are automatically restored upon switching from applications
that use the Palette Manager. Likewise, you needn’t worry when switching to
another application that uses the Palette Manager. Although colors are not
automatically restored in this case, if that application needs a certain set of
colors, the Palette Manager provides them the moment that application comes
to the front.

The reason to use RestoreDeviceClut is that you may be switching to an
application that does not use the Palette Manager, in which case that
application inherits your palette unless you restore the default color lookup
tables for all the available display devices.

CTab2Palette 1

Use the CTab2Palette function to copy the colors of a color table into a palette.

pascal void CTab2Palette(CTabHandle srcCTab,
 PaletteHandle dstPalette,
 short srcUsage,
 short srcTolerance);

srcCTab A handle to the color table whose colors are to be copied. Color
tables are described in the chapter “Color QuickDraw” of Inside
Macintosh: Imaging With QuickDraw.

dstPalette The palette to receive the colors.

srcUsage A usage constant to be assigned the palette entries. Usage
constants are described in “Usage Constants” on page 1-3.

srcTolerance A tolerance value to be assigned the palette entries.

C H A P T E R 1

Palette Manager Reference

1-26

DESCRIPTION

The CTab2Palette function copies the fields from an existing color-table
structure into an existing palette structure. If the structures are not the same
size, then CTab2Palette resizes the palette structure to match the number of
entries in the color-table structure. If the palette in dstPalette has any entries
allocated for animation on any screen device, they are relinquished before the
new colors are copied. The srcUsage and srcTolerance parameters are the value
that you assign to the new colors.

If you want to use color-table animation, you can use AnimateEntry (described
on page 1-21) and AnimatePalette (described on page 1-22) to change the colors
in a palette and on corresponding devices. Changes made to a palette by
CTab2Palette don’t take effect until the next ActivatePalette function is
performed. If either the color-table handle or the palette handle is nil,
CTab2Palette does nothing.

Palette2CTab 1

Use the Palette2CTab function to copy the colors of a palette into a color table.

pascal void Palette2CTab(PaletteHandle srcPalette,
 CTabHandle dstCTab);

srcPalette A handle to the palette whose colors are to be used.

dstCTab A handle to the color table to receive the colors. Color tables are
described in the chapter “Color QuickDraw” of Inside
Macintosh: Imaging With QuickDraw.

DESCRIPTION

The Palette2CTab function copies all of the colors from an existing palette
structure into an existing color-table structure. If the structures are not the same
size, then Palette2CTab resizes the color-table structure to match the number of
entries in the palette structure. If either the palette handle or the color-table
handle is nil, Palette2CTab does nothing.

C H A P T E R 1

Palette Manager Reference

1-27

Manipulating Palette Entries 1

The GetEntryColor, GetEntryUsage, SetEntryColor, and SetEntryUsage functions
allow your application to retrieve and modify the fields of a palette. The
Entry2Index function returns an index for a palette entry.

GetEntryColor 1

Use the GetEntryColor function to obtain the color of a palette entry.

pascal void GetEntryColor(PaletteHandle srcPalette,
 short srcEntry, RGBColor *dstRGB);

srcPalette A handle to the palette to be accessed.

srcEntry The palette entry whose color is desired.

dstRGB An RGB color structure to receive the palette color. RGB color
structures are described in the chapter “Color QuickDraw” of
Inside Macintosh: Imaging With QuickDraw.

DESCRIPTION

The GetEntryColor function takes the RGB color of the entry specified by the
srcEntry parameter and stores it in the destination RGB color structure. You
can modify the entry’s color using the SetEntryColor function.

GetEntryUsage 1

Use the GetEntryUsage function to obtain the usage and tolerance fields of a
palette entry.

pascal void GetEntryUsage(PaletteHandle srcPalette,
 short srcEntry,
 short *dstUsage,
 short *dstTolerance);

C H A P T E R 1

Palette Manager Reference

1-28

srcPalette A handle to the palette to be accessed.

srcEntry The palette entry whose usage and tolerance are desired.

dstUsage The usage value of the palette entry.

dstTolerance
The tolerance value of the palette entry.

DESCRIPTION

The GetEntryUsage function takes the usage and tolerance values of the entry
specified by the srcEntry parameter and stores them in the dstUsage and
dstTolerance parameters. You can modify the entry’s usage and tolerance
values by using the SetEntryUsage function.

SetEntryColor 1

Use the SetEntryColor function to change the color of a palette entry.

pascal void SetEntryColor(PaletteHandle dstPalette,
 short dstEntry, const RGBColor *srcRGB);

dstPalette The palette whose entry color is to be changed.

dstEntry The palette entry to be changed.

srcRGB The new RGB color value.

DESCRIPTION

The SetEntryColor function stores the RGB color of the srcRGB parameter in the
palette entry specified by the dstEntry parameter. SetEntryColor marks the
entry as having changed, but it does not change the color environment. The
change occurs upon the next call to ActivatePalette. SetEntryColor marks
modified entries such that the palette is updated, even though no update is
required by a change in the color environment.

C H A P T E R 1

Palette Manager Reference

1-29

SEE ALSO

For an example of using the SetEntryColor function to change the colors in a
palette, see Listing 1-1 on page 1-21 of the book Advanced Color Imaging on the
Mac OS.

SetEntryUsage 1

Use the SetEntryUsage function to modify the usage category and tolerance
values of a palette entry.

pascal void SetEntryUsage(PaletteHandle dstPalette,
 short dstEntry,
 short srcUsage,
 short srcTolerance);

dstPalette A handle to the palette to be modified.

dstEntry The palette entry.

srcUsage The new usage value; one or more usage constants.

srcTolerance
The new tolerance value.

DESCRIPTION

The SetEntryUsage function stores the usage and tolerance values specified by
the srcUsage and srcTolerance parameters into the palette entry specified by
the dstEntry parameter. SetEntryUsage marks the entry as having changed, but
it does not change the color environment. The change occurs upon the next call
to ActivatePalette. Modified entries are marked such that the palette is
updated even though no update is required by a change in the color
environment. If either srcUsage or srcTolerance is set to $FFFF (–1), the entries
are not changed.

This function allows you to easily modify a palette created with NewPalette or
modified by CTab2Palette. For such palettes the ciUsage and ciTolerance fields
of the ColorInfo structure are the same because you can designate only one
value for each. You typically call SetEntryUsage after NewPalette or
CTab2Palette to adjust and customize your palette.

C H A P T E R 1

Palette Manager Reference

1-30

SEE ALSO

For an example of using the SetEntryUsage function to change the usage and
tolerance of a color in a palette, see Listing 1-3 on page 1-24 of the book
Advanced Color Imaging on the Mac OS.

Entry2Index 1

Use the Entry2Index function to obtain the index for a specified entry in the
current graphics port’s palette on the current device.

pascal long Entry2Index(short entry);

entry The palette entry whose equivalent device index is to be
returned.

The Palette Resource 1

The palette resource contains the color values and the usage and tolerance
constants; in effect, it is a series of ColorInfo structures without the private
fields. The Palette Manager adds its private fields both to the header and to
each ColorInfo structure when it creates a palette structure from the 'pltt'
resource. The format of a palette resource is shown in Figure 1-1.

C H A P T E R 1

Palette Manager Reference

1-31

Figure 1-1 Format of a palette resource

Bytes'pltt' resource table

6

2

2

6

2

2

6

2

2

RGB color of last entry

RGB color of first entry

Usage category of first entry

Tolerance value of first entry

Tolerance value of second entry

Usage category of last entry

Tolerance value of last entry

RGB color of second entry

Usage category of second entry

C H A P T E R 1

Palette Manager Reference

1-32

C H A P T E R 2

Contents

2-1

Contents

Figure 2-0
Listing 2-0
Table 2-0

2 Color Picker Manager Reference

Constants and Data Structures 2-5
Gestalt Selector for the Color Picker 2-5
Picker Actions 2-5
Color Types 2-7
Edit Menu Operations 2-7
Item Hit Modifiers 2-7
Dialog Placement Specifiers 2-8
Picker Flags 2-8
Picker Attributes 2-10
Event Forecasters 2-11
Request Codes 2-12
Picker Color Structure 2-15
Picker Structure 2-17
Picker Icon Structure 2-17
Picker Initialization Structure 2-18
Event Filter Function 2-18
Color-Changed Function 2-19
Edit Menu Items Structure 2-19
Edit Menu State Structure 2-20
Color Picker Parameter Block 2-20
System-Owned Dialog Box Structure 2-24
Picker-Owned Dialog Box Structure 2-25
Application-Owned Dialog Box Structure 2-26
Event Data Structure 2-27
Editing Data Structure 2-29
Item Hit Structure 2-31
Help Item Structure 2-33

This document was created with FrameMaker 4.0.4

C H A P T E R 2

2-2

Contents

SmallFract Type 2-33
HSV Color Structure 2-34
HSL Color Structure 2-34
CMY Color Structure 2-35

Color Picker Manager Functions 2-36
Using the Standard Color Picker Dialog Box 2-36

PickColor

2-36

GetColor

2-37
Creating a Custom Color Picker Dialog Box 2-38

CreateColorDialog

2-38

CreatePickerDialog

2-39

AddPickerToDialog

2-40

SetPickerVisibility

2-41

GetPickerVisibility

2-42

SetPickerPrompt

2-42

GetPickerOrigin

2-43

SetPickerOrigin

2-44

DisposeColorPicker

2-44
Handling Events in a Custom Color Picker Dialog Box 2-45

DoPickerEvent

2-45

DoPickerEdit

2-46

DoPickerDraw

2-47
Getting Colors From and Setting Colors for a Custom Color Picker Dialog
Box 2-47

SetPickerColor

2-48

GetPickerColor

2-49
Getting the Menu State and the Help Balloons for a Color Picker 2-50

GetPickerEditMenuState

2-50

ExtractPickerHelpItem

2-51
Setting and Getting Color-Matching Profiles for a Color Picker 2-52

SetPickerProfile

2-52

GetPickerProfile

2-53
Converting Colors Among Color Models 2-54

CMY2RGB

2-54

RGB2CMY

2-55

HSL2RGB

2-55

RGB2HSL

2-56

HSV2RGB

2-56

C H A P T E R 2

Contents

2-3

RGB2HSV

2-57
Converting Between SmallFract and Fixed Values 2-57

Fix2SmallFract

2-57

SmallFract2Fix

2-58
Application-Defined Functions 2-58

Handling Application-Directed Events in a Color Picker 2-58

MyPickerFilterFunction

2-59
Changing Colors in a Document 2-59

MyColorChangedFunction

2-60
Color Picker–Defined Functions 2-60

Setting Up a Color Picker 2-61

MyTestGraphicsWorld

2-62

MyInitPicker

2-62

MyGetDialog

2-64

MyGetItemList

2-64

MySetVisibility

2-65
Responding to Requests to Return and Set Color Picker
Information 2-66

MyGetColor

2-66

MySetColor

2-67

MySetBaseItem

2-68

MyGetIconData

2-68

MyGetPrompt

2-69

MySetPrompt

2-70

MySetOrigin

2-71

MyGetProfile

2-72

MySetProfile

2-73

MyGetEditMenuState

2-74

MyExtractHelpItem

2-75
Responding to Events in a Color Picker 2-76

MyDrawPicker

2-76

MyDoEvent

2-77

MyItemHit

2-78

MyDoEdit

2-79
Result Codes 2-80

C H A P T E R 2

2-4

Contents

C H A P T E R 2

2-5

Color Picker Manager Reference 2

The section describes the constants, data structures, and functions defined for
your application’s use by the Color Picker Manager. This section also describes
the functions your application or color picker may define for the Color Picker
Manager to call.

Constants and Data Structures 2

The section describes the constants and data structures defined for your
application’s use by the Color Picker Manager.

Gestalt Selector for the Color Picker 2

To test for the availability and version of the Color Picker Manager, use the

Gestalt

 function with the selector defined by the following enumerator:

enum {
gestaltColorPickerVersion = 'cpkr' /* returns version of Color

Picker Manager */
};

If the

Gestalt

 function returns a value of 00000200, version 2.0 of the Color
Picker Manager is available. If the

Gestalt

 function returns a value of 00000100,
version 1.0 (that is, the original Color Picker Package) is available.

Picker Actions 2

When your application uses the

DoPickerEvent

 function (described on
page 2-44) to pass an event to a color picker for handling, your application
passes the event in an

EventData

 structure (described on page 2-27). The color
picker handling the event in turn uses the

action

 field of the

EventData

structure to report the nature of the event. When your application uses the

DoPickerEdit

 function (described on page 2-46), it passes information about the
editing operation in an

EditData

 structure (described on page 2-29). The color
picker handling the event uses the

action

 field of the

EditData

 structure to
report on the nature of the event.

The actions reported in this field are defined by the

PickerAction

 enumeration.

This document was created with FrameMaker 4.0.4

C H A P T E R 2

Color Picker Manager Reference

2-6

enum PickerAction {
kDidNothing, /* no action worth reporting */
kColorChanged, /* user chose a different color */
kOkHit, /* user clicked OK */
kCancelHit, /* user clicked Cancel */
kNewPickerChosen, /* user chose a new color picker */
kApplItemHit /* Dialog Manager returned an item in an

application-owned dialog box */
};
typedef short PickerAction;

Enumerator descriptions

kDidNothing

The user performed no action worth reporting.

kColorChanged

The user chose a different color. Your application may need
to call the

GetPickerColor

 function to obtain the chosen
color; how your application handles this action for its own
application-owned dialog boxes depends on your
application. For dialog boxes owned by the system or the
color picker, your application should probably wait until
the user clicks the OK button before treating the color as
final.

kOkHit

The user clicked the OK button in a dialog box owned by
the system or the color picker. Your application should
save the newly chosen color.

kCancelHit

The user clicked the Cancel button in a dialog box owned
by the system or the color picker. Your application should
restore the previously selected color and use the

DisposeColorPicker

 function (described on page 2-44) to
dispose of the color picker.

kNewPickerChosen

The user chose a new color picker from the More Choices
list in a system-owned dialog box. Because this constant is
returned only for system-owned dialog boxes, your
application generally does not to respond to this action.

kApplItemHit

The Dialog Manager returned an item number for an item
in an application-owned dialog box. Your application must
handle the event.

C H A P T E R 2

Color Picker Manager Reference

2-7

Color Types 2

A color picker maintains an original and a new color. When your application
uses the

GetPickerColor

 function (described on page 2-49), your application
uses the

ColorTypes

 enumeration to specify whether the color picker returns the
original or the new color. When your application uses the

SetPickerColor

function (described on page 2-48), your application uses the

ColorTypes

enumeration to specify whether the color picker sets the original or the new
color.

enum ColorTypes {
kOriginalColor, /* the original color */
kNewColor /* the new color chosen by the user */

};
typedef short ColorType;

Edit Menu Operations 2

If the user chooses an Edit command (or its keyboard equivalent) that applies
to a color picker, your application can use the

DoPickerEdit

 function (described
on page 2-46) to request the color picker to perform the operation. In the

EditData

 structure passed to

DoPickerEdit

, your application uses the

EditOperations

 enumeration to specify the operation to perform.

enum EditOperations {
kCut, /* perform the Cut command */
kCopy, /* perform the Copy command */
kPaste, /* perform the Paste command */
kClear, /* perform the Clear command */
kUndo /* perform the Undo command */

};
typedef short EditOperation;

Item Hit Modifiers 2

A color picker must respond to user events directed at any of its items. As
described for the color picker–defined function

MyItemHit

 (described on
page 2-78), a color picker should respond to the event represented by the

ItemHitModifiers

 enumeration.

C H A P T E R 2

Color Picker Manager Reference

2-8

enum ItemHitModifiers {
kMouseDown, /* mouse down on item */
kKeyDown, /* key down in current edit item */
kFieldEntered, /* tab into an edit field */
kFieldLeft, /* tab out of an edit field */
kCutOp, /* cut in current edit field */
kCopyOp, /* copy in current edit field */
kPasteOp, /* paste in current edit field */
kClearOp, /* clear in current edit field */
kUndoOp /* undo in current edit field */

};

Dialog Placement Specifiers 2

In the

placeWhere

 field of the color picker parameter block, your application
specifies where to place the color picker dialog box. (The color picker
parameter block is described on page 2-20.) Your application uses the

DialogPlacementSpecifiers

 enumeration to specify the position of the color
picker dialog box:

enum DialogPlacementSpecifiers {
kAtSpecifiedOrigin, /* place the top-left corner of the

dialog box at the point specified in
the dialogOrigin field of the
color picker parameter block */

kDeepestColorScreen, /* center the dialog box on the screen
with the greatest color depth */

kCenterOnMainScreen /* center dialog box on the main screen */
};
typedef short DialogPlacementSpec;

Picker Flags 2

In the

flags

 field of the color picker parameter block, the

SystemDialogInfo

structure, the

PickerDialogInfo

 structure, or the

ApplicationDialogInfo

structure, your application specifies characteristics for the color picker dialog
box. (These structures are described on page 2-20, page 2-24, page 2-25, and
page 2-26, respectively.)

C H A P T E R 2

Color Picker Manager Reference

2-9

#define DialogIsMoveable 1
#define DialogIsModal 2
#define CanModifyPalette 4
#define CanAnimatePalette 8
#define AppIsColorSyncAware 16

Constant descriptions

DialogIsMoveable

If your application sets the bit represented by this constant
when creating a custom dialog box, then the color picker
dialog box is moveable by the user.

DialogIsModal

If your application sets the bit represented by this constant
when creating a custom dialog box, then the color picker
dialog box is a modal dialog box.

CanModifyPalette

Your application should set the bit represented by this
constant if your application can install a palette of its own
that may modify (but not animate) the current color table.
If you don’t want the colors in the document to change as
the user makes choices in the color picker dialog box, don’t
set this flag. See the chapter “Palette Manager” for more
information about using color palettes.

CanAnimatePalette

If your application sets the bit represented by this constant,
then the color picker may modify or animate the palette.

AppIsColorSyncAware

Your application should set the bit represented by this
constant if your application uses ColorSync color
matching. If your application sets this bit, a color may be
returned to your application in a different color space than
the one initially passed to the

PickColor

 function. For
example, your application could pass an RGB color with
no color-matching profile in the field

theColor

 in the color
picker parameter block, and the Color Picker Manager
could return a CMYK color with its associated profile. If
your application does not set this flag, the Color Picker
Manager automatically converts any color it receives back
from the color picker to an RGB color.

C H A P T E R 2

Color Picker Manager Reference

2-10

Important

This version of the Color Picker Manager uses ColorSync
1.0 profiles only. The ColorSync 1.0 profile is a
handle-based profile. The profile format is defined by
Apple Computer. You cannot use version 2.0 profiles,
which are identified by profile references, with this version
of the Color Picker Manager. ColorSync 1.0 profiles
typically reside in the ColorSync

TM

 Profiles folder (within
the Preferences folder of the System Folder). They may
also be embedded with the images to which they pertain in
graphics files. The appendix “ColorSync Manager
Backward Compatibility” in

Advanced Color Imaging on the
Mac OS

 provides information about the relationship
between the ColorSync Manager version 2.0 and
ColorSync 1.0 profiles, which you may find useful. Because
ColorSync 1.0 is supported for backward compatibility
only, the ColorSync 1.0 profile format is not described in
this book.

▲

The color picker may set any of the following flags and override your
application settings:

#define InSystemDialog 32 /* the color picker is in a
system-owned dialog box */

#define InApplicationDialog 64 /* the color picker is in an
application-owned
dialog box */

#define InPickerDialog 128 /* the color picker is in its
own dialog box */

#define DetachedFromChoices 256 /* the color picker has been
detached from the
choices list */

Picker Attributes 2

In a resource of type

'thng'

 that defines a color picker component, bits 23 to 0
in the

componentFlags

 field specify attributes for the color picker. These bits can
be represented by the following constants:

C H A P T E R 2

Color Picker Manager Reference

2-11

#define CanDoColor 1 /* the color picker supports Color
QuickDraw */

#define CanDoBlackWhite 2 /* the color picker supports basic
QuickDraw */

#define AlwaysModifiesPalette
4 /* the color picker will modify

palette entries on indexed devices */
#define MayModifyPalette

8 /* the color picker will modify
palette if told it can */

#define PickerIsColorSyncAware
16 /* the color picker is ColorSync aware

and can accept non-RGB colors */
#define CanDoSystemDialog

32 /* the color picker supports a
system-owned dialog box */

#define CanDoApplDialog 64 /* the color picker supports an
application-owned dialog box */

#define HasOwnDialog 128 /* the color picker has its own
dialog box */

#define CanDetach 256 /* the color picker can be detached
from a system-owned dialog box */

Event Forecasters 2

Your application can send event forecasters to warn the color picker about
potential user actions. To send event forecasters to the color picker, you use the
same function as for regular events—

DoPickerEvent

—except that in the

EventData

 structure that your application passes to

DoPickerEvent

, your
application sets the

event

 field to

nil

 and the

forecast

 field to an appropriate
constant from the following list:

enum EventForcasters {
kNoForcast, /* no forcast (e.g., an update event) */
kMenuChoice, /* this event causes a menu to be chosen */
kDialogAccept, /* the dialog box will be accepted */
kDialogCancel, /* the dialog box will be canceled */
kLeaveFocus, /* the focus will leave the color picker */
kPickerSwitch, /* new color picker chosen in More Choices

list */
kNormalKeyDown, /* a normal key down to an edit field */

C H A P T E R 2

Color Picker Manager Reference

2-12

kNormalMouseDown /* a normal click in the color picker's
focus */

};
typedef short EventForcaster;

For more information, see “Sending Event Forecasters to the Color Picker” in
the chapter “Color Picker Manager” in

Advanced Color Imaging on the Mac OS

.
The

EventData

 structure is described on page 2-27, and the

DoPickerEvent

function is described on page 2-45.

Request Codes 2

When a color picker receives a request code from the Component Manager, the
color picker determines the nature of the request, performs the appropriate
processing, sets an error code if necessary, and returns an appropriate function
result to the Component Manager. These request codes are defined by the
PickerMessages enumeration.

typedef enum { /* request codes handled by a color picker */
kInitPicker, /* initialize any private data */
kTestGraphicsWorld,

/* test operability on current system */
kGetDialog, /* if using own dialog box, return a pointer

to the dialog box; if using the default
dialog box, return nil */

kGetItemList, /* return a list of items for dialog box */
kGetColor, /* return original or last chosen color */
kSetColor, /* change original or last chosen color */
kEvent, /* perform any special processing necessary

for an event */
kEdit, /* perform an editing command */
kSetVisibility, /* make color picker visible or invisible */
kDrawPicker, /* redraw color picker */
kItemHit, /* respond to event in a dialog box item */
kSetBaseItem, /* set base item for dialog box items */
kGetProfile, /* return a handle to the destination color-

matching profile */
kSetProfile, /* change the destination color-matching

profile */
kGetPrompt, /* return prompt string */
kSetPrompt, /* set a new prompt */

C H A P T E R 2

Color Picker Manager Reference

2-13

kGetIconData, /* return script code and resource ID of
icon family */

kGetEditMenuState,
/* return information about Edit menu */

kSetOrigin, /* update any information about local
coordinate system of dialog box */

kExtractHelpItem /* return information about help balloons */
} PickerMessages;

Enumerator descriptions

kInitPicker After receiving this request code, a color picker initializes
any private data that it needs. See MyInitPicker (page 2-62)
for more information about how a color picker should
respond to this request code.

kTestGraphicsWorld
After receiving this request code, a color picker determines
whether it can operate on the user’s system. See
MyTestGraphicsWorld (page 2-62) for more information
about how a color picker should respond to this request
code.

kGetDialog After receiving this request code, a color picker returns nil
if it uses the default dialog box, or it returns a pointer to its
own dialog box. See MyGetDialog (page 2-64) for more
information about how a color picker should respond to
this request code.

kGetItemList After receiving this request code, a color picker returns a
list of items for display in a color picker dialog box. See
MyGetItemList (page 2-64) for more information about how
a color picker should respond to this request code.

kGetColor After receiving this request code, a color picker returns a
color—either the original color for the color picker or the
new color selected by the user. See MyGetColor (page 2-66)
for more information about how a color picker should
respond to this request code.

kSetColor After receiving this request code, a color picker sets either
the original color or the new color. See MySetColor
(page 2-67) for more information about how a color picker
should respond to this request code.

C H A P T E R 2

Color Picker Manager Reference

2-14

kEvent After receiving this request code, a color picker performs
any special processing for an event. See MyDoEvent
(page 2-77) for more information about how a color picker
should respond to this request code.

kEdit After receiving this request code, a color picker performs
an editing command or lets the Dialog Manager handle the
command. See MyDoEdit (page 2-79) for more information
about how a color picker should respond to this request
code.

kSetVisibility After receiving this request code, a color picker changes its
visibility. See MySetVisibility (page 2-65) for more
information about how a color picker should respond to
this request code.

kDrawPicker After receiving this request code, a color picker redraws
itself. See MyDrawPicker (page 2-76) for more information
about how a color picker should respond to this request
code.

kItemHit After receiving this request code, a color picker responds
to an event in a dialog box item. See MyItemHit (page 2-78)
for more information about how a color picker should
respond to this request code.

kSetBaseItem After receiving this request code, a color picker sets the
base item for dialog box items. See MySetBaseItem
(page 2-68) for more information about how a color picker
should respond to this request code.

kGetProfile After receiving this request code, a color picker returns a
handle to its destination color-matching profile. See
MyGetProfile (page 2-72) for more information about how
a color picker should respond to this request code.

kSetProfile After receiving this request code, a color picker changes its
destination color-matching profile. See MySetProfile
(page 2-73) for more information about how a color picker
should respond to this request code.

kGetPrompt After receiving this request code, a color picker returns its
prompt string. See MyGetPrompt (page 2-69) for more
information about how a color picker should respond to
this request code.

kSetPrompt After receiving this request code, a color picker sets its
prompt string. See MySetPrompt (page 2-70) for more

C H A P T E R 2

Color Picker Manager Reference

2-15

information about how a color picker should respond to
this request code.

kGetIconData After receiving this request code, a color picker returns its
script code and the resource ID of its icon family. See
MyGetIconData (page 2-68) for more information about how
a color picker should respond to this request code.

kGetEditMenuState
After receiving this request code, a color picker returns
information about its edit menu. See MyGetEditMenuState
(page 2-74) for more information about how a color picker
should respond to this request code.

kSetOrigin After receiving this request code, a color picker updates
any information it maintains about the local coordinate
system of its dialog box. See MySetOrigin (page 2-71) for
more information about how a color picker should
respond to this request code.

kExtractHelpItem
After receiving this request code, a color picker returns
information about its help balloons. See MyExtractHelpItem
(page 2-75) for more information about how a color picker
should respond to this request code.

Picker Color Structure 2

For defining colors, version 2.0 of the Color Picker Manager uses a picker color
structure. For example, when your application creates a color picker parameter
block to pass to the PickColor function (described on page 2-36), your
application supplies a picker color structure. The color that your application
supplies in this field is passed to the color picker for editing. After the user
clicks either the OK or Cancel button to close the dialog box, this field contains
the color last chosen by the user.

The picker color structure includes a ColorSync 1.0 profile, a structure that
matches colors among hardware devices such as displays, printers, and
scanners. This color-matching profile (a data structure of type CMProfile)
defines the color space of the color (which includes the type of color—RGB,
CMYK, HSL, and so on). Using the dstProfile field of the color picker
parameter block (described on page 2-20) or the SetPickerProfile function
(described on page 2-52), your application can specify a destination
color-matching profile, which describes the color space of the device for which

C H A P T E R 2

Color Picker Manager Reference

2-16

the color is being chosen. Given information about the destination profile, color
pickers that are ColorSync aware can help the user choose a color that’s within
the destination device’s gamut.

IMPORTANT

This version of the Color Picker Manager uses ColorSync
1.0 profiles only. The ColorSync 1.0 profile is a
handle-based profile. The profile format is defined by
Apple Computer. You cannot use version 2.0 profiles,
which are identified by profile references, with this version
of the Color Picker Manager. ColorSync 1.0 profiles
typically reside in the ColorSyncTM Profiles folder (within
the Preferences folder of the System Folder). They may
also be embedded with the images to which they pertain in
graphics files. The appendix “ColorSync Manager
Backward Compatibility” in Advanced Color Imaging on the
Mac OS provides information about the relationship
between the ColorSync Manager version 2.0 and
ColorSync 1.0 profiles, which you may find useful. Because
ColorSync 1.0 is supported for backward compatibility
only, the ColorSync 1.0 profile format is not described in
this book. ▲

The picker color structure is defined as follows:

typedef struct PMColor {
CMProfileHandle profile;
CMColor color;

} PMColor,*PMColorPtr;

Field descriptions
profile A handle to a color-matching profile (CMProfile structure).

If your application sets this field to nil, then the Color
Picker Manager uses the default system profile.

color A color, as specified in a color-matching (CMColor)
structure, shown here.

typedef union {
 RGBColor rgb; /* an RGB color */
 XYZColor xyz; /* an XYZ color */
 CMYKColor cmyk; /* a CMYK color */

C H A P T E R 2

Color Picker Manager Reference

2-17

 unsigned short
reserved[4]; /* reserved */

} CMColor, *CMColorList;

Picker Structure 2

When your application uses one of the Color Picker Manager’s low-level calls,
your application must specify the color picker by using the picker structure,
which is defined as shown here.

typedef struct PrivatePickerRecord **picker;

Picker Icon Structure 2

A color picker responds to the kGetIconData request code by returning its script
code and the resource ID of its icon family. The Color Picker Manager needs
this information to display the color picker in the More Choices list. The color
picker returns this information in a picker icon data (PickerIconData) structure.

typedef struct PickerIconData {
short scriptCode; /* script code */
short iconSuiteID; /* resource ID for icon family */
ResType helpResType; /* resource type for help balloon */
short helpResID; /* resource ID for help balloon */

} PickerIconData;

Field descriptions
scriptCode The script code for the text used for the color picker’s

name. See Inside Macintosh: Text for more information
about script codes.

iconSuiteID The resource ID for the color picker’s icon family. See the
chapter “Finder Interface” in Inside Macintosh: Macintosh
Toolbox Essentials for information about icon families.

helpResType The resource type for the help balloon used for the color
picker’s icon. See the chapter “Help Manager” for
information about help balloons.

helpResID The resource ID for the help balloon used for the color
picker’s icon.

C H A P T E R 2

Color Picker Manager Reference

2-18

See page 2-68 for more information about how a color picker should respond to
the kGetIconData request code.

Picker Initialization Structure 2

A color picker responds to the kInitPicker request code by initializing any
private data it needs.

typedef struct PickerInitData {
DialogPtr pickerDialog; /* pointer to dialog box */
DialogPtr choicesDialog; /* pointer to More Choices dialog box */
long flags; /* color picker flags */
picker yourself; /* the color picker */

} PickerInitData;

Field descriptions
pickerDialog A pointer to the dialog box in which the color picker

appears.

choicesDialog A pointer to the More Choices dialog box.
flags An integer in which any of the following flags may be set;

see “Picker Flags” (page 2-8) for more information about
these flags.

#define DialogIsMoveable 1
#define DialogIsModal 2
#define CanModifyPalette 4
#define CanAnimatePalette 8
#define AppIsColorSyncAware 16
#define InSystemDialog 32
#define InApplicationDialog 64
#define InPickerDialog 128
#define DetachedFromChoices 256

yourself Your color picker.

Event Filter Function 2

When using the PickColor function, your application should set the eventProc
field of the color picker parameter block to point to an event filter function that

C H A P T E R 2

Color Picker Manager Reference

2-19

handles events meant for your application. This function is defined by the
Color Picker Manager as follows:

typedef pascal Boolean (*UserEventProc)(EventRecord *event);

See page 2-36 for information about the PickColor function. See page 2-20 for
more information about the color picker parameter block. See page 2-59 for
information about defining your own event filter function.

Color-Changed Function 2

When using the PickColor function, your application can set the colorProc field
of the color picker parameter block to point to a function, described in detail on
page 2-60, that updates colors in a document as the user selects them. This
function is defined by the Color Picker Manager as follows:

typedef pascal void (*ColorChangedProc)(long userData,
PMColorPtr newColor);

Edit Menu Items Structure 2

The MenuItemInfo structure is contained in the PickerDialogInfo,
SystemDialogInfo, and ApplicationDialogInfo structures; it allows your
application to specify your Edit menu for use when a color picker dialog box is
displayed.

typedef struct MenuItemInfo {
short editMenuID; /* resource ID of the edit menu */
short cutItem; /* item number of Cut command */
short copyItem; /* item number of Copy command */
short pasteItem; /* item number of Paste command */
short clearItem; /* item number of Clear command */
short undoItem; /* item number of Undo command */

} MenuItemInfo;

Descriptions for the SystemDialogInfo, PickerDialogInfo, and
ApplicationDialogInfo structures begin on page 2-24.

C H A P T E R 2

Color Picker Manager Reference

2-20

Edit Menu State Structure 2

If your application is handling its own menus, and the color picker dialog box
is the active window, your application needs to determine the color picker’s
specifications for the Edit menu. The GetPickerEditMenuState function
(described on page 2-50) returns these specifications in a MenuState structure.

typedef struct MenuState {
Boolean cutEnabled; /* whether Cut menu item is enabled */
Boolean copyEnabled; /* whether Copy menu item is enabled */
Boolean pasteEnabled; /* whether Paste menu item's enabled */
Boolean clearEnabled; /* whether Clear menu item's enabled */
Boolean undoEnabled; /* whether Undo menu item is enabled */
Str255 undoString; /* text for Undo menu item */

} MenuState;

Field descriptions
cutEnabled If the value returned in this field is true, then the Cut

menu item is enabled; if the value is false, then the item is
disabled.

copyEnabled If the value returned in this field is true, then the Copy
menu item is enabled; if the value is false, then the item is
disabled.

pasteEnabled If the value returned in this field is true, then the Paste
menu item is enabled; if the value is false, then the item is
disabled.

clearEnabled If the value returned in this field is true, then the Clear
menu item is enabled; if the value is false, then the item is
disabled.

undoEnabled If the value returned in this field is true, then the Undo
menu item is enabled; if the value is false, then the item is
disabled.

undoString The text for the Undo menu item.

Color Picker Parameter Block 2

When your application calls the PickColor function (described on page 2-36) to
display a standard color picker dialog box, your application uses a color picker
parameter block to specify information to and obtain information from the

C H A P T E R 2

Color Picker Manager Reference

2-21

Color Picker Manager. The color picker parameter block is defined by the
ColorPickerInfo data type.

typedef struct ColorPickerInfo { /* color picker parameter block */
PMColor theColor; /* a picker color */
CMProfileHandle dstProfile; /* destination profile */
long flags; /* color picker flags */
DialogPlacementSpec placeWhere; /* dialog box placement

specifier */
Point dialogOrigin; /* upper-left corner of

dialog box */
long pickerType; /* color picker type */
UserEventProc eventProc; /* event filter function */
ColorChangedProc colorProc; /* color-changed function */
long colorProcData; /* data for color-changed

function */
Str255 prompt; /* color picker prompt */
MenuItemInfo mInfo; /* application's edit menu

items */
Boolean newColorChosen; /* whether user changed color */

} ColorPickerInfo;

Field descriptions
theColor A picker color (PMColor) structure, described on page 2-15.

The color that your application supplies in this field is
passed to the color picker for editing. This becomes the
original color for the color picker. After the user clicks either
the OK or Cancel button to close the dialog box, this field
contains the new color, that is, the color last chosen by the
user. Although the new colors selected by the user may
vary widely, the original color remains fixed for
comparison. Figure 2-1 in the chapter “Color Picker
Manager” in Advanced Color Imaging on the Mac OS shows
how the standard dialog box displays both the original
and the new colors.

dstProfile A handle to a ColorSync 1.0 profile for the final output
device. To use the default system profile, set this field to
nil.

C H A P T E R 2

Color Picker Manager Reference

2-22

Important
This version of the Color Picker Manager uses ColorSync
1.0 profiles only. The ColorSync 1.0 profile is a
handle-based profile. The profile format is defined by
Apple Computer. You cannot use version 2.0 profiles,
which are identified by profile references, with this version
of the Color Picker Manager. ColorSync 1.0 profiles
typically reside in the ColorSyncTM Profiles folder (within
the Preferences folder of the System Folder). They may
also be embedded with the images to which they pertain in
graphics files. The appendix “ColorSync Manager
Backward Compatibility” in Advanced Color Imaging on the
Mac OS provides information about the relationship
between the ColorSync Manager version 2.0 and
ColorSync 1.0 profiles, which you may find useful. Because
ColorSync 1.0 is supported for backward compatibility
only, the ColorSync 1.0 profile format is not described in
this book. ▲

flags Bits representing the color picker flags, which are
described in detail in “Picker Flags” (page 2-8). Your
application can set any of the following flags:

#define CanModifyPalette 4
#define CanAnimatePalette 8
#define AppIsColorSyncAware 16

The color picker may set any of the following flags and
override your application settings:

#define InSystemDialog 32
#define InApplicationDialog 64
#define InPickerDialog 128
#define DetachedFromChoices 256

placeWhere A specification for where to position the dialog box. Your
application uses one of the following constants (described
in detail on page 2-8) to specify the position for the color
picker dialog box:

C H A P T E R 2

Color Picker Manager Reference

2-23

enum DialogPlacementSpecifiers {
kAtSpecifiedOrigin,
kDeepestColorScreen,
kCenterOnMainScreen

};
typedef short DialogPlacementSpec;

dialogOrigin The point, in global coordinates, at which to locate the
upper-left corner of the dialog box. This origin point is
used only if your application supplies the
kAtSpecifiedOrigin specifier in the placeWhere field.

pickerType The component subtype of the initial color picker. If your
application sets this field to 0, the default color picker is
used (that is, the last color picker chosen by the user).
When PickColor returns, this field contains the component
subtype of the color picker that was chosen when the user
closed the color picker dialog box.

eventProc A pointer to an application-defined event filter function for
handling user events meant for your application. If your
filter function returns true, the Color Picker Manager
won’t process the event any further. If your filter function
returns false, the Color Picker Manager handles the event
as if it were meant for the color picker. The event filter
function you can supply here is described in detail on
page 2-59.

colorProc A pointer to an application-defined function to handle
color changes. This function, described in detail on
page 2-60, should support the updating of colors in a
document as the user selects them.

colorProcData A long integer that the Color Picker Manager passes to the
application-defined function supplied in the colorProc
field. Your application-defined function can use this value
for any purpose it needs.

prompt A text string prompting the user to choose a color for a
particular use (for example, “Choose a highlight color:”).

mInfo A menuItemInfo structure, which is described on
page 2-19.This structure allows your application to specify
your Edit menu for use when a color picker dialog box is
displayed

C H A P T E R 2

Color Picker Manager Reference

2-24

newColorChosen Upon completion, the PickColor functions the value true if
the user chose a color and clicked the OK button, and
false if the user clicked Cancel.

System-Owned Dialog Box Structure 2

The SystemDialogInfo structure contains the data required to create a
system-owned dialog box for color pickers.

typedef struct SystemDialogInfo {
long flags; /* color picker flags */
long pickerType; /* color picker type */
DialogPlacementSpec

placeWhere; /* dialog box placement specifier */
Point dialogOrigin; /* upper-left corner of dialog box */
MenuItemInfo mInfo; /* application's Edit menu items */

} SystemDialogInfo;

Field descriptions
flags Bits representing the color picker flags, which are

described in “Picker Flags” (page 2-8). Your application
can set any of the following flags:

#define CanModifyPalette 4
#define CanAnimatePalette 8
#define AppIsColorSyncAware 16

The color picker may set any of the following flags and
override your application settings:

#define InSystemDialog 32
#define InApplicationDialog 64
#define InPickerDialog 128
#define DetachedFromChoices 256

pickerType The component subtype of the color picker. If this field is
set to 0, the default color picker is used (that is, the last
color picker chosen by the user).

placeWhere A dialog placement constant, one of three values with
which your application can specify whether the dialog box

C H A P T E R 2

Color Picker Manager Reference

2-25

should be centered on the deepest color screen, centered
on the main screen, or placed at a specified location.

kAtSpecifiedOrigin = 0;
kDeepestColorScreen = 1;
kCenterOnMainSCreen = 2;

dialogOrigin A point specifying placement of the upper-left corner of
the dialog box, used if the placeWhere field contains the
value represented by the kAtSpecifiedOrigin constant.

mInfo Information, stored in a MenuItemInfo structure, about the
state of your application’s Edit menu. The MenuItemInfo
structure is described on page 2-19.

Picker-Owned Dialog Box Structure 2

The PickerDialogInfo structure contains the data required to create a color
picker–owned color picker dialog box.

typedef struct PickerDialogInfo {
long flags; /* color picker flags */
long pickerType; /* color picker type */
Point *dialogOrigin; /* upper-left corner of dialog box */
MenuItemInfo mInfo; /* application's Edit menu items */

} PickerDialogInfo;

Field descriptions
flags Bits representing the color picker flags, which are

described in “Picker Flags” (page 2-8). Your application
can set any of the following flags:

#define CanModifyPalette 4
#define CanAnimatePalette 8
#define AppIsColorSyncAware 16

The color picker may set any of the following flags and
override your application settings:

C H A P T E R 2

Color Picker Manager Reference

2-26

#define InSystemDialog 32
#define InApplicationDialog 64
#define InPickerDialog 128
#define DetachedFromChoices 256

pickerType The component subtype of the color picker. If this field is
set to 0, the default color picker is used (that is, the last
color picker chosen by the user).

dialogOrigin A pointer to the coordinates of the upper-left corner of the
dialog box.

mInfo Information, stored in a MenuItemInfo structure, about the
state of your application’s Edit menu. The MenuItemInfo
structure is described on page 2-19.

Application-Owned Dialog Box Structure 2

The AddPickerToDialog function, described on page 2-40, places a color picker
into a dialog box. An application using the AddPickerToDialog function specifies
a dialog box in a ApplicationDialogInfo structure.

typedef struct ApplicationDialogInfo {
long flags; /* color picker flags */
long pickerType; /* color picker type */
DialogPtr theDialog; /* pointer to dialog box */
Point pickerOrigin; /* upper-left corner of dialog box */
MenuItemInfo mInfo; /* application's Edit menu items */

} ApplicationDialogInfo;

Field descriptions
flags Bits representing the color picker flags, which are

described in detail on page 2-8. Your application can set
any of the following flags:

#define CanModifyPalette 4
#define CanAnimatePalette 8
#define AppIsColorSyncAware 16

The color picker may set any of the following flags and
override your application settings:

C H A P T E R 2

Color Picker Manager Reference

2-27

#define InSystemDialog 32
#define InApplicationDialog 64
#define InPickerDialog 128
#define DetachedFromChoices 256

pickerType The component subtype of the color picker. If this field is
set to 0, the default color picker is used (that is, the last
color picker chosen by the user).

theDialog A pointer to the dialog box to which to add the color
picker specified to the AddPickerToDialog function.

pickerOrigin The coordinates of the upper-left corner of the color picker.
mInfo Information, stored in a MenuItemInfo structure, about the

state of your application’s Edit menu. The MenuItemInfo
structure is described on page 2-19.

Event Data Structure 2

When your application uses the DoPickerEvent function to pass an event to a
color picker for handling, your application uses an EventData structure to
supply the color picker with information about the event, and to receive
information about how the color picker handled the event. (The DoPickerEvent
function is described on page 2-44.)

typedef struct EventData {
EventRecord *event; /* an event record */
PickerAction action; /* the action performed by

the color picker */
short itemHit; /* the item number for the item

associated with the event */
Boolean handled; /* true if the color picker

handled the event */
ColorChangedProc

colorProc; /* application-defined function for
changing colors in a document */

long colorProcData; /* data used by application for
function in ColorChangedProc
field */

EventForcaster forcast; /* event forecaster */
} EventData;

C H A P T E R 2

Color Picker Manager Reference

2-28

Field descriptions
event An event record. Your application supplies this field with

an event to pass to the color picker. The event record is
described in the chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials.

action The nature of the event. In this field, the Color Picker
Manager returns a value, defined in the PickerAction
enumeration, describing the event. See the description of
the PickerAction enumeration on page 2-5 for a discussion
about how your application should respond to these
actions.

enum PickerAction {
 kDidNothing, /* no action worth reporting */
 kColorChanged, /* user chose different color */
 kOkHit, /* user clicked OK */
 kCancelHit, /* user clicked Cancel */
 kNewPickerChosen,

/* user chose new color picker */
 kApplItemHit /* Dialog Manager returned an

item in an application-owned
dialog box */

};
typedef short PickerAction;

itemHit For the item associated with the event, the number
corresponding to the item’s position with the item list
resource of the color picker’s dialog box. See the chapter
“Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for information about items, item list resources,
and dialog boxes.

handled A Boolean value indicating whether the color picker or the
Color Picker Manager handled the event. If the Color
Picker Manager returns the value true in this field, then
the event was handled; otherwise, your application should
process the event.
If your application sends an event forecaster to the color
picker, the color picker informs your application about
whether the color picker is ready for the action to occur by
setting this field to true if it’s not ready and false if it is.

C H A P T E R 2

Color Picker Manager Reference

2-29

colorProc A pointer to an application-defined function to handle
color changes. This function, described in detail on
page 2-60, should support the updating of colors in a
document as the user selects them.

colorProcData A long integer that the Color Picker Manager passes to the
application-defined function supplied in the colorProc
field. Your application-defined function can use this value
for any purpose it needs.

forcast An event forecaster (that is, a warning) for the color picker.
To send an event forecaster to the color picker, set the
event field to nil and set the forcast field to a value from
the following enumeration. (See “Sending Event
Forecasters to the Color Picker” in the chapter “Color
Picker Manager” in Advanced Color Imaging on the Mac OS
for more information.)

enum EventForcasters {
 kNoForcast, /* no forecast (e.g., an update

event) */
 kMenuChoice, /* this event causes a menu to

be chosen */
 kDialogAccept, /* the dialog box will be

accepted */
 kDialogCancel, /* the dialog box will be

canceled */
 kLeaveFocus, /* the focus will leave the

color picker */
 kPickerSwitch, /* new color picker chosen in

More Choices list */
 kNormalKeyDown, /* a normal key-down event in an

edit field */
 kNormalMouseDown /* a normal click in the

color picker's focus */
};
typedef short EventForcaster;

Editing Data Structure 2

If the user chooses an Edit menu command for the color picker, your
application needs to set the state of the Edit menu items according to the color

C H A P T E R 2

Color Picker Manager Reference

2-30

picker specifications and send the appropriate message to the color picker. Use
the GetPickerEditMenuState function (described on page 2-50) to determine the
state of the Edit menu items. Then use the DoPickerEdit function (described on
page 2-46) to request the color picker to perform an editing operation. When
your application uses the DoPickerEdit function, it passes information about
the editing operation in an EditData structure; the color picker then uses this
structure to describe whether and how it performed this operation.

typedef struct EditData {
EditOperation theEdit; /* the editing operation */
PickerAction action; /* action performed by picker */
Boolean handled; /* whether action was handled */

} EditData;

Field descriptions
theEdit The editing operation to perform. Your application uses

the EditOperations enumeration to specify the operation.

enum EditOperations {
kCut, /* perform the Cut command */
kCopy, /* perform the Copy command */
kPaste, /* perform the Paste command */
kClear, /* perform the Clear command */
kUndo /* perform the Undo command */

};
typedef short EditOperation;

action The nature of the event. In this field, the Color Picker
Manager returns a value, defined in the PickerAction
enumeration, describing the event. See the description of
the PickerAction enumeration on page 2-5 for a discussion
about how your application should respond to these
actions.

enum PickerAction {
 kDidNothing, /* no action worth reporting */
 kColorChanged, /* user chose different color */
 kOkHit, /* user clicked OK */
 kCancelHit, /* user clicked Cancel */
 kNewPickerChosen,

/* user chose new color picker */

C H A P T E R 2

Color Picker Manager Reference

2-31

 kApplItemHit /* Dialog Manager returned an
item in an application-owned
dialog box */

};
typedef short PickerAction;

handled A Boolean value indicating whether the color picker or the
Color Picker Manager handled the event. If the Color
Picker Manager returns the value true in this field, then
the event was handled; otherwise, your application should
process the event.

Item Hit Structure 2

A color picker responds to the kItemHit request code by handling the event
described in an ItemHitData structure. Your color picker also uses this structure
to return information about any event handling it performs.

typedef struct ItemHitData {
short itemHit; /* item receiving event */
ItemModifier iMod; /* type of event */
PickerAction action; /* color picker's action */
ColorChangedProc colorProc; /* color-changed function */
long colorProcData; /* data for color-changed

function */
Point where; /* mouse location */

} ItemHitData;

Field descriptions
itemHit The item receiving the event.

ItemModifier The action involving the item. These actions are
represented by the following enumeration (which is
described in greater detail on page 2-7):

enum ItemHitModifiers {
 kMouseDown, /* mouse-down event on item */
 kKeyDown, /* key-down event in current edit

item */
 kFieldEntered, /* tab into an edit field */
 kFieldLeft, /* tab out of an edit field */

C H A P T E R 2

Color Picker Manager Reference

2-32

 kCutOp, /* cut in current edit field */
 kCopyOp, /* copy in current edit field */
 kPasteOp, /* paste in current edit field */
 kClearOp, /* clear in current edit field */
 kUndoOp /* undo in current edit field */
};
typedef short ItemModifier;

action The nature of the event. In this field, your color picker
returns a value, defined in the PickerAction enumeration,
describing the event. For more information about the
PickerAction enumeration, see page 2-5.

enum PickerAction {
 kDidNothing, /* no action worth reporting */
 kColorChanged, /* user chose different color */
 kOkHit, /* user clicked OK */
 kCancelHit, /* user clicked Cancel */
 kNewPickerChosen,

/* user chose new color picker */
 kApplItemHit /* Dialog Manager returned an

item in an application-owned
dialog box */

};
typedef short PickerAction;

colorProc A pointer to an application-defined function to handle
color changes. This function, described in detail on
page 2-60, should support the updating of colors in a
document as the user selects them. Your color picker
should call this function.

colorProcData A long integer that your color picker passes to the
application-defined function supplied in the colorProc
field.

where Location, in coordinates local to the dialog box, of the
mouse.

C H A P T E R 2

Color Picker Manager Reference

2-33

Help Item Structure 2

The ExtractPickerHelpItem function, described on page 2-51, reports the
messages and other characteristics for the help balloons for a color picker. Help
balloons are described in detail in the chapter “Help Manager” in Inside
Macintosh: More Macintosh Toolbox.

typedef struct HelpItemInfo { /* help balloon info */
long options; /* 'hmnu' options bits */
Point tip; /* tip location */
Rect altRect; /* alternate rectangle */
short theProc; /* res ID of balloon-definition

function */
short variant; /* variation code */
HMMessageRecord helpMessage; /* help message structure */

} HelpItemInfo;

Field descriptions
options Options set in the 'hmnu' resource for the help balloon.

tip The location, in global coordinates, of the help balloon’s tip.
altRect A rectangle, in global coordinates, that the Help Manager

uses if necessary to calculate a new tip location for the help
balloon.

theProc The resource ID of the 'WDEF' resource containing the
balloon-definition function for the help balloon.

variant The variation code (0–7) used to specify the shape and
position of a help balloon.

helpMessage A help message (HMMessageRecord) structure, which
describes the text for the help message of a help balloon.

SmallFract Type 2

The SmallFract type is derived from the low-order word of a fixed integer. The
Color Picker Manager uses SmallFract values to save memory and to be
compatible with the Color QuickDraw RGBColor structure. You can use the
Fix2SmallFract function, described on page 2-57, to convert a fixed integer to a
SmallFract value. You can use the SmallFract2Fixed function, described on
page 2-58, to convert a SmallFract value to a fixed integer.

C H A P T E R 2

Color Picker Manager Reference

2-34

typedef unsigned short SmallFract; /* unsigned fraction between 0 and
1 */

enum {MaxSmallFract = 0x0000FFFF}; /* maximum small fract value,
as long */

HSV Color Structure 2

The HSVColor structure contains the hue, saturation, and value of a color. Your
application can use an HSVColor structure to specify a color in a PMColor
structure. For example, your application supplies a PMColor structure in a color
picker parameter block that it passes to the PickColor function.

struct HSVColor {
SmallFract hue; /* Fraction of circle, red at 0 */
SmallFract saturation; /* 0-1, 0 for gray, 1 for pure color */
SmallFract value; /* 0-1, 0 for black, 1 for most intensity */

};
typedef struct HSVColor HSVColor;

Field descriptions
hue The SmallFract value for the hue. (The SmallFract data

type is described in the immediately preceding section.)

saturation The SmallFract value for the saturation, where 1 is full
color.

value The SmallFract value for the color’s value, where 1 is
maximum intensity.

The PMColor structure is described on page 2-15, the PickColor function is
described on page 2-36, and the color picker parameter block is described on
page 2-20.

HSL Color Structure 2

The HSLColor structure contains a color’s hue, saturation, and lightness values.
Your application can use an HSLColor structure to specify a color in a PMColor
structure. For example, your application supplies a PMColor structure in a color
picker parameter block that it passes to the PickColor function. Note that the
standard HLS order is altered to HSL.

C H A P T E R 2

Color Picker Manager Reference

2-35

struct HSLColor {
SmallFract hue; /* Fraction of circle, red at 0 */
SmallFract saturation; /* 0-1, 0 for gray, 1 for pure color */
SmallFract lightness; /* 0-1, 0 for black, 1 for white */

};
typedef struct HSLColor HSLColor;

Field descriptions
hue The SmallFract value for the hue. (The SmallFract data

type is described on page 2-33.)

saturation The SmallFract value for the saturation, where 1 is full
color.

lightness The SmallFract value for lightness, where 1 is full white.
The PMColor structure is described on page 2-15, the PickColor function is
described on page 2-36, and the color picker parameter block is described on
page 2-20.

CMY Color Structure 2

The CMYColor structure contains cyan, magenta, and yellow colors. Your
application can use a CMYColor structure to specify a color in a PMColor
structure. For example, your application supplies a PMColor structure in a color
picker parameter block that it passes to the PickColor function. Note that CMY
and RGB colors are complementary.

struct CMYColor {
SmallFract cyan; /* cyan component */
SmallFract magenta; /* magenta component */
SmallFract yellow; /* yellow component */

};
typedef struct CMYColor CMYColor;

Field descriptions
cyan The SmallFract value for the cyan component. (The

SmallFract data type is described on page 2-33.)

magenta The SmallFract value for the magenta component.
yellow The SmallFract value for the yellow component.

C H A P T E R 2

Color Picker Manager Reference

2-36

The PMColor structure is described on page 2-15, the PickColor function is
described on page 2-36, and the color picker parameter block is described on
page 2-20.

Color Picker Manager Functions 2

The section describes the functions defined by the Color Picker Manager for
your application’s use.

Using the Standard Color Picker Dialog Box 2

Your application can use the PickColor function described in this section to
present color pickers to the user and request the user to choose a color. The
GetColor function, which is also described in this section, provides
functionality similar to PickColor, except that GetColor does not support
ColorSync 1.0 color-matching capabilities.

PickColor 2

To use the standard color picker dialog box, you should use the PickColor
function.

pascal OSErr PickColor (ColorPickerInfo *theColorInfo);

theColorInfo A color picker parameter block, which is described on page 2-20.

DESCRIPTION

The PickColor function displays the standard, modal dialog box for color
pickers. Use the color picker parameter block pointed to in the parameter
theColorInfo to specify information to and obtain information from the Color
Picker Manager.

When the user clicks the OK button, the PickColor function removes the dialog
box and returns true in the newColorChosen field of the color picker parameter
block pointed to by the theColorInfo parameter. The PickColor function also
returns the user’s selected color in the field theColor. When the user clicks the

C H A P T E R 2

Color Picker Manager Reference

2-37

Cancel button, PickColor removes the dialog box and returns false in the
newColorChosen field.

SEE ALSO

Listing 2-1 in the chapter “Color Picker Manager” in Advanced Color Imaging on
the Mac OS illustrates how to use the PickColor function. If your application
needs to display color pickers in a dialog box other than the standard, modal
dialog box, your application must use the Color Picker Manager low-level
functions, as described in “Using Customized Dialog Boxes for Color Pickers”
in the chapter “Color Picker Manager” in Advanced Color Imaging on the Mac OS.

GetColor 2

To display a standard Color Picker dialog box, you should use the PickColor
function, which is described in the immediately preceding section. The
GetColor function, which is described here, was designed for use for version 1.0
of the Color Picker Package and is still supported for backward compatibility.

pascal Boolean GetColor (
Point where,
Str255 prompt,
RGBColor *inColor,
RGBColor *outColor);

where A point defining the location of the upper-left corner of the
dialog box. If you set this parameter to (0,0), the dialog box is
centered horizontally on the main screen, with one-third of the
empty space above the box and two-thirds below, regardless of
the screen size. If you set this parameter to (–1,–1), the
GetColor function displays the dialog box on the screen
supporting the greatest pixel depth.

prompt Text for prompting the user to choose a color. This string is
displayed in the upper-left corner of the dialog box.

inColor An RGBColor structure for a color at entry to the picker. This is
the original color, which the user may want for comparison.

C H A P T E R 2

Color Picker Manager Reference

2-38

outColor An RGBColor structure describing the new color. This is set to
the last color that the user picked before clicking OK. On entry,
the outColor parameter is treated as undefined, so the output
color sample initially matches the input. Although the color
being picked may vary widely, the input color sample remains
fixed, and clicking the input sample resets the output color
sample to match it.

DESCRIPTION

The GetColor function displays a standard color picker dialog box onscreen.
The GetColor function returns true and removes the dialog box when the user
clicks the OK button; GetColor returns false and removes the dialog box when
the user clicks the Cancel button.

SPECIAL CONSIDERATIONS

The GetColor function does not support ColorSync 1.0 color matching;
however, the PickColor function does.

Creating a Custom Color Picker Dialog Box 2

If your application needs to create a dialog box other than the standard, modal
dialog box used to display color pickers, your application can use the Color
Picker Manager low-level functions described in this section.

CreateColorDialog 2

To create a system-owned color picker dialog box, use the CreateColorDialog
function.

pascal OSErr CreateColorDialog (
SystemDialogInfo *info,
picker *thePicker);

info A SystemDialogInfo structure, which is described on page 2-24.

C H A P T E R 2

Color Picker Manager Reference

2-39

thePicker The last color picker chosen by the user. Your application often
refers to the color picker returned here in subsequent Color
Picker Manager functions.

DESCRIPTION

The CreateColorDialog function creates a system-owned color picker dialog
box of the type requested in the info parameter and places inside it the color
picker returned in the parameter thePicker. The dialog box is invisible upon
creation; use the SetPickerVisibility function (described on page 2-41) to
make it visible. The Color Picker Manager may change some of the flags in the
SystemDialogInfo structure (such as those regarding the type of dialog box for
the color picker).

SEE ALSO

Listing 2-4 in the chapter “Color Picker Manager” in Advanced Color Imaging on
the Mac OS illustrates how to use the CreateColorDialog function.

CreatePickerDialog 2

To create a color picker–owned dialog box, use the CreatePickerDialog function.

pascal OSErr CreatePickerDialog (
PickerDialogInfo *info,
picker *thePicker);

info A PickerDialogInfo structure, which is described on page 2-25.

thePicker The last color picker chosen by the user. Your application often
refers to the color picker returned here in subsequent Color
Picker Manager functions.

DESCRIPTION

The CreatePickerDialog function creates a color picker–owned color picker
dialog box of the type requested in the info parameter and places inside it the
color picker returned in the parameter thePicker.

C H A P T E R 2

Color Picker Manager Reference

2-40

If the color picker does not have a private dialog box, the Color Picker Manager
creates a modeless dialog box by default. The dialog box is invisible upon
creation; use the SetPickerVisibility function (described on page 2-41) to
make it visible. The Color Picker Manager may change some of the flags in the
PickerDialogInfo structure (such as those regarding the type of dialog box for
the color picker).

SEE ALSO

Listing 2-6 in the chapter “Color Picker Manager” in Advanced Color Imaging on
the Mac OS illustrates how to use the CreatePickerDialog function.

AddPickerToDialog 2

To add a color picker to an application-owned dialog box, use the
AddPickerToDialog function.

pascal OSErr AddPickerToDialog (
ApplicationDialogInfo *info,
picker *thePicker);

info A ApplicationDialogInfo structure, which is described on
page 2-26.

thePicker The last color picker chosen by the user. Your application often
refers to the color picker returned here in subsequent Color
Picker Manager functions.

DESCRIPTION

The AddPickerToDialog function places the color picker returned in the
parameter thePicker inside the dialog box specified by the info parameter. All
of your application’s dialog items must already appear in the dialog box,
because your application may not add dialog items after the dialog box has
been created. The dialog box is invisible upon creation; use the
SetPickerVisibility function (described next) to make it visible. The Color
Picker Manager may change some of the flags in the ApplicationDialogInfo
structure (such as those regarding the type of dialog box for the color picker).

C H A P T E R 2

Color Picker Manager Reference

2-41

SEE ALSO

Listing 2-5 in the chapter “Color Picker Manager” in Advanced Color Imaging on
the Mac OS illustrates how to use the AddPickerToDialog function.

SetPickerVisibility 2

To make a custom dialog box for a color picker visible or invisible, use the
SetPickerVisibility function.

pascal OSErr SetPickerVisibility (
picker thePicker,
short visible);

thePicker A color picker.

visible The visibility state of the color picker.

DESCRIPTION

The SetPickerVisibility function sets the visibility state of the dialog box
containing the color picker specified in the parameter thePicker.

SEE ALSO

Listing 2-4 in the chapter “Color Picker Manager” in Advanced Color Imaging on
the Mac OS illustrates how to use the SetPickerVisibility function. To
determine whether a color picker is visible or not, you can use the
GetPickerVisibility function, which is described next.

C H A P T E R 2

Color Picker Manager Reference

2-42

GetPickerVisibility 2

To determine whether a custom dialog box for a color picker is visible or
invisible, use the GetPickerVisibility function.

pascal OSErr GetPickerVisibility (
picker thePicker,
Boolean *visible);

thePicker A color picker.

visible The visibility state of the color picker dialog box. If the value
pointed to in this parameter is true when
GetPickerVisibility completes, then the dialog box is visible; if
the value is false, then it’s invisible.

DESCRIPTION

In the vis parameter, the GetPickerVisibility function returns a Boolean value
indicating whether the a custom dialog box for the color picker specified in the
parameter thePicker is visible (true) or invisible (false).

SEE ALSO

To change the visibility, use the SetPickerVisibility function, which is
described in the preceding section.

SetPickerPrompt 2

To set the prompt for a custom dialog box for a color picker, you can use the
SetPickerPrompt function.

pascal OSErr SetPickerPrompt (
picker thePicker,
Str255 promptString);

thePicker A color picker.

C H A P T E R 2

Color Picker Manager Reference

2-43

promptString A text string prompting the user to choose a color for a
particular use (for example, “Choose a highlight color:”).

DESCRIPTION

The SetPickerPrompt function sets the dialog box for the color picker specified
in the parameter thePicker to display the prompt supplied in the promptString
parameter.

To set the prompt for a standard, modal dialog box, use the prompt field of the
color picker parameter block, which is described on page 2-20.

SEE ALSO

Listing 2-4 in the chapter “Color Picker Manager” in Advanced Color Imaging on
the Mac OS illustrates how to use the SetPickerPrompt function.

GetPickerOrigin 2

To determine the location of the upper-left corner of a dialog box containing a
color picker, use the GetPickerOrigin function.

pascal OSErr GetPickerOrigin (
picker thePicker,
Point *where);

thePicker A color picker.

where The global coordinates for the upper-left corner of the dialog
box.

DESCRIPTION

In the value pointed to by the where parameter, the GetPickerOrigin function
returns the global coordinates of the origin of the dialog box containing the
color picker specified in the parameter thePicker.

C H A P T E R 2

Color Picker Manager Reference

2-44

SetPickerOrigin 2

To move an application-owned dialog box for a color picker, use the
SetPickerOrigin function.

pascal OSErr SetPickerOrigin (
picker thePicker,
Point where);

thePicker A color picker.

where The global coordinates of where to move the upper-left corner
of the dialog box containing the color picker.

DESCRIPTION

The SetPickerOrigin function moves the upper-left corner of dialog box
containing the color picker specified in the parameter thePicker to the location
specified in the where parameter.

SPECIAL CONSIDERATIONS

The SetPickerOrigin function works only for application-owned dialog boxes;
system-owned and color picker–owned dialog boxes cause SetPickerOrigin to
return an error.

DisposeColorPicker 2

To dispose of a color picker, use the DisposeColorPicker function.

pascal OSErr DisposeColorPicker (picker thePicker);

thePicker A color picker.

C H A P T E R 2

Color Picker Manager Reference

2-45

DESCRIPTION

The DisposeColorPicker function disposes of the memory allocated for the
color picker specified in the parameter thePicker. This function also disposes of
the memory for its dialog box and dialog items.

SEE ALSO

Listing 2-9 in the chapter “Color Picker Manager” in Advanced Color Imaging on
the Mac OS illustrates how to use the DisposeColorPicker function.

Handling Events in a Custom Color Picker Dialog Box 2

This section describes the functions that your application can use to handle
events when displaying a custom dialog box for a color picker.

DoPickerEvent 2

To pass an event to a color picker for handling, use the DoPickerEvent function.

pascal OSErr DoPickerEvent (
picker thePicker,
EventData *data);

thePicker The color picker to handle the event.

data An EventData structure, which is described on page 2-27. You
use this structure to supply a color picker with information
about an event, and to receive information about how the color
picker handled the event.

DESCRIPTION

The DoPickerEvent function uses the EventData structure you point to in the
data parameter to pass an event to the color picker specified in the parameter
thePicker. If the color picker handles the event, it returns the value true in the
handled field of the EventData structure; otherwise, it returns the value false, in
which case your application should continue handling the event.

C H A P T E R 2

Color Picker Manager Reference

2-46

SPECIAL CONSIDERATIONS

The DoPickerEvent function calls the Dialog Manager function DialogSelect. If
your application needs to filter or preprocess events before DialogSelect
handles them, your application must do so before calling DoPickerEvent.

SEE ALSO

Listing 2-9 in the chapter “Color Picker Manager” in Advanced Color Imaging on
the Mac OS illustrates how to use the DoPickerEvent function. Event handling
on the Macintosh is described in the chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials. The Dialog Manager and the
DialogSelect function are described in the chapter “Dialog Manager” in Inside
Macintosh: Macintosh Toolbox Essentials.

DoPickerEdit 2

To request the color picker to perform an editing operation, use the
DoPickerEdit function.

pascal OSErr DoPickerEdit (
picker thePicker,
EditData *data);

thePicker The color picker to perform the editing operation.

data An EditData structure described the editing operation to
perform. (See page 2-29 for information about the EditData
structure.)

DESCRIPTION

The DoPickerEdit function requests the color picker specified in the parameter
thePicker to perform the editing operation specified in the EditData structure
pointed to in the data parameter.

If the user chooses an Edit menu command for the color picker, your
application needs to set the state of the Edit menu items according to the color
picker specifications and send the appropriate message to the color picker. Use

C H A P T E R 2

Color Picker Manager Reference

2-47

the GetPickerEditMenuState function (described on page 2-50) to determine the
state of the Edit menu items before calling DoPickerEdit.

SEE ALSO

Listing 2-10 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to use the DoPickerEdit function.

DoPickerDraw 2

To request a color picker to redraw itself (as, for example, in response to an
update event), use the DoPickerDraw function.

pascal OSErr DoPickerDraw (picker thePicker);

thePicker The color picker to redraw itself.

DESCRIPTION

The DoPickerDraw function requests the color picker specified in the parameter
thePicker to redraw itself.

Getting Colors From and Setting Colors for a Custom Color Picker Dialog Box 2

When creating a custom dialog box for color pickers, your application must
initially set two default colors: an original color and a new color. The original
color is the color that the user is about to change, and the new color is the color
to which the user changes the original. You use the SetPickerColor function to
set both colors.

Whenever the user changes the current color, you need to be able to get the
new color so that you can update your object accordingly. To determine what
color the user is selecting, use the GetPickerColor function, as illustrated in
Listing 2-8 in the chapter “Color Picker Manager” in Advanced Color Imaging on
the Mac OS.

C H A P T E R 2

Color Picker Manager Reference

2-48

SetPickerColor 2

To set either the original or new color for a color picker, use the SetPickerColor
function.

pascal OSErr SetPickerColor (
picker thePicker,
ColorType whichColor,
PMColor *color);

thePicker The color picker for which to set a color.

whichColor Either of two values: kOriginalColor or kNewColor.

color A pointer to a PMColor structure, which is described on
page 2-15.

DESCRIPTION

The SetPickerColor function sets the color picker specified by the parameter
thePicker to use the color specified in the color parameter. If your application
passes kOriginalColor in the whichColor parameter, then SetPickerColor sets
this color as the original color to be edited. If your application passes kNewColor,
then SetPickerColor sets the color to be used as if it were the last color selected
by the user.

Use the SetPickerColor function for setting colors for color pickers in custom
dialog boxes. When your application uses the PickColor function to display the
standard dialog box, your application supplies the original color in the field
theColor of the color picker parameter block. This color is used as the new
color until the user begins editing the color.

SEE ALSO

Listing 2-7 in the chapter “Color Picker Manager” in Advanced Color Imaging on
the Mac OS illustrates how to use the SetPickerColor function.

C H A P T E R 2

Color Picker Manager Reference

2-49

GetPickerColor 2

To obtain either the original or the new color from a color picker, use the
GetPickerColor function.

pascal OSErr GetPickerColor (
picker thePicker,
ColorType whichColor,
PMColor *color);

thePicker The color picker from which to obtain a color.

whichColor Either of two values: kOriginalColor or kNewColor.

color A pointer to a PMColor structure, which is described on
page 2-15.

DESCRIPTION

In the PMColor structure pointed to by the color parameter, the GetPickerColor
function returns a color from the color picker specified by the parameter
thePicker. If your application passes kOriginalColor in the whichColor
parameter, then GetPickerColor returns the color that the user began editing. If
your application passes kNewColor, then GetPickerColor returns the new color
selected by the user.

Use the GetPickerColor function for getting colors from color pickers in custom
dialog boxes. When your application uses the PickColor function to display the
standard dialog box, and the user clicks the OK button, the Color Picker
Manager returns the new color in the field theColor of the color picker
parameter block.

SEE ALSO

Listing 2-8 in the chapter “Color Picker Manager” in Advanced Color Imaging on
the Mac OS illustrates how to use the GetPickerColor function.

C H A P T E R 2

Color Picker Manager Reference

2-50

Getting the Menu State and the Help Balloons for a Color Picker 2

The functions described in this section allow your application to determine
information about a color picker’s Edit menu state, Edit menu items, and help
balloon.

GetPickerEditMenuState 2

To determine a color picker’s specifications for the Edit menu, use the
GetPickerEditMenuState function.

pascal OSErr GetPickerEditMenuState (
picker thePicker,
MenuState *mState);

thePicker The color picker whose Edit menu specifications you need to
determine.

mState A pointer to a MenuState structure, which is described on
page 2-20.

DESCRIPTION

In the MenuState structure pointed to in the mState parameter, the
GetPickerEditMenuState function returns the state of the Edit menu that is
needed by the color picker specified in the parameter thePicker.

Your application needs to make this call only if your application is handling its
own menus and the color picker dialog box is the active window.

SEE ALSO

Listing 2-10 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to use the GetPickerEditMenuState function.

C H A P T E R 2

Color Picker Manager Reference

2-51

ExtractPickerHelpItem 2

The Color Picker Manager provides help balloons for color picker dialog boxes.
For all types of color picker dialog boxes, applications generally don’t need to
determine or change the default help balloons. However, if your application
absolutely requires greater control over Balloon Help, it can use the
ExtractPickerHelpItem function to obtain and change the messages and other
characteristics of the help balloons for a color picker.

pascal OSErr ExtractPickerHelpItem (
picker thePicker,
short itemNo,
short whichState,
HelpItemInfo *helpInfo);

thePicker The color picker whose help balloons you wish to obtain.

itemNo A number corresponding to the position of an item in the item
list resource of the color picker’s dialog box.

whichState For menu items and items in alert or dialog boxes, the state of
the item specified in the itemNo parameter. The following
constants are used to represent the possible states:
kHMEnabledItem, kHMDisabledItem, kHMCheckedItem, and
kHMOtherItem. See the chapter “Help Manager” in Inside
Macintosh: More Macintosh Toolbox for descriptions of these
states for various types of dialog items.

helpInfo A HelpItemInfo structure, as described on page 2-33. In the
helpMessage field of this structure, the Color Picker Manager
passes the default help message in an HMHelpMessage structure.
The Color Picker Manager passes the default characteristics of
the help balloon—that is, the value of the options element of its
help resource, its tip location, its alternate rectangle, its tip
function, and its variation code—in the rest of the fields of the
HelpItemInfo structure.

DESCRIPTION

For the color picker specified in the parameter thePicker, the
ExtractPickerHelpItem function reports the messages and other characteristics
for its help balloons. If your application needs to override the help message or

C H A P T E R 2

Color Picker Manager Reference

2-52

another help balloon characteristic for the item specified in the itemNo
parameter, your application should specify the desired help message and
characteristics in the HelpItemInfo structure pointed to in the helpInfo
parameter, and then use the Help Manager function HMShowBalloon to display
the altered help balloon.

SEE ALSO

Listing 2-14 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to use this function. See the chapter “Help
Manager” in Inside Macintosh: More Macintosh Toolbox for more information
about help balloons.

Setting and Getting Color-Matching Profiles for a Color Picker 2

The functions described in this section allow your application to set and obtain
the destination profiles used by a color picker.

SetPickerProfile 2

To set the destination color-matching profile for a color picker, use the
SetPickerProfile function.

pascal OSErr SetPickerProfile (
picker thePicker,
CMProfileHandle profile);

thePicker A color picker.

profile A handle to a ColorSync 1.0 profile for the final output device.

DESCRIPTION

For the color picker specified in the parameter thePicker, the SetPickerProfile
function sets the color-matching profile specified in the profile parameter to be
the destination profile.

C H A P T E R 2

Color Picker Manager Reference

2-53

SPECIAL CONSIDERATIONS

This version of the Color Picker Manager uses ColorSync 1.0 profiles only. The
ColorSync 1.0 profile is a handle-based profile. The profile format is defined by
Apple Computer. You cannot use version 2.0 profiles, which are identified by
profile references, with this version of the Color Picker Manager. ColorSync 1.0
profiles typically reside in the ColorSyncTM Profiles folder (within the
Preferences folder of the System Folder). They may also be embedded with the
images to which they pertain in graphics files. The appendix “ColorSync
Manager Backward Compatibility” in Advanced Color Imaging on the Mac OS
provides information about the relationship between the ColorSync Manager
version 2.0 and ColorSync 1.0 profiles, which you may find useful. Because
ColorSync 1.0 is supported for backward compatibility only, the ColorSync 1.0
profile format is not described in this book.

SEE ALSO

Listing 2-12 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to use the SetPickerProfile function. To
determine the destination color-matching profile currently used by a color
picker, use the GetPickerProfile function, which is described next.

GetPickerProfile 2

To determine the destination color-matching profile currently used by a color
picker, use the GetPickerProfile function.

pascal OSErr GetPickerProfile (
picker thePicker,
CMProfileHandle *profile);

thePicker A color picker.

profile A handle to a ColorSync 1.0 profile for the final output device.

C H A P T E R 2

Color Picker Manager Reference

2-54

DESCRIPTION

In the color-matching profile pointed to in the profile parameter, the
GetPickerProfile function returns the destination profile currently used by the
color picker specified in the parameter thePicker.

SPECIAL CONSIDERATIONS

This version of the Color Picker Manager uses ColorSync 1.0 profiles only. The
ColorSync 1.0 profile is a handle-based profile. The profile format is defined by
Apple Computer. You cannot use version 2.0 profiles, which are identified by
profile references, with this version of the Color Picker Manager. ColorSync 1.0
profiles typically reside in the ColorSyncTM Profiles folder (within the
Preferences folder of the System Folder). They may also be embedded with the
images to which they pertain in graphics files. The appendix “ColorSync
Manager Backward Compatibility” in Advanced Color Imaging on the Mac OS
provides information about the relationship between the ColorSync Manager
version 2.0 and ColorSync 1.0 profiles, which you may find useful. Because
ColorSync 1.0 is supported for backward compatibility only, the ColorSync 1.0
profile format is not described in this book.

SEE ALSO

Listing 2-13 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to use the GetPickerProfile function. To change
the destination color-matching profile for a color picker, use the
SetPickerProfile function, which is described in the preceding section.

Converting Colors Among Color Models 2

These functions convert between RGB colors and CMY, HLS, and HSV colors.

CMY2RGB 2

To convert a CMY color to its equivalent RGB color, use the CMY2RGB function.

pascal void CMY2RGB (const CMYColor *cColor,
RGBColor *rColor);

C H A P T E R 2

Color Picker Manager Reference

2-55

cColor A CMYColor structure to be converted.

rColor An RGBColor structure for the converted color.

DESCRIPTION

The CMY2RGB function converts the CMY color specified in the cColor parameter
to the RGB color pointed to in the rColor parameter.

RGB2CMY 2

To convert an RGB color to a CMY color, use the RGB2CMY function.

pascal void RGB2CMY (const RGBColor *rColor,
CMYColor *cColor);

rColor An RGBColor structure to be converted.

cColor A CMYColor structure for the converted color.

DESCRIPTION

The RGB2CMY function converts the RGB color specified in the rColor parameter
to the CMY color pointed to in the cColor parameter.

HSL2RGB 2

To convert an HSL color to an RGB color, use the HSL2RGB function.

pascal void HSL2RGB (const HSLColor *hColor,
RGBColor *rColor);

hColor The HSLColor structure to be converted.

rColor An RGBColor structure for the converted color.

C H A P T E R 2

Color Picker Manager Reference

2-56

DESCRIPTION

The HSL2RGB function converts the HSL color specified in the hColor parameter
to the RGB color pointed to in the rColor parameter.

RGB2HSL 2

To convert an RGB color to an HSL color, use the RGB2HSL function.

pascal void RGB2HSL (const RGBColor *rColor,
HSLColor *hColor);

rColor The RGBColor structure to be converted.

hColor An HSLColor structure for the converted color.

DESCRIPTION

The RGB2HSL function converts the RGB color specified in the rColor parameter
to the HSL color pointed to in the hColor parameter.

HSV2RGB 2

To convert an HSV color to an RGB color, use the HSV2RGB function.

pascal void HSV2RGB (const HSVColor *hColor,
RGBColor *rColor);

hColor The HSVColor structure to be converted.

rColor An RGBColor structure for the converted color.

DESCRIPTION

The HSV2RGB function converts the HSV color specified in the hColor parameter
to the RGB color pointed to in the rColor parameter.

C H A P T E R 2

Color Picker Manager Reference

2-57

RGB2HSV 2

To convert an RGB color to an HSV color, use the RGB2HSV function.

pascal void RGB2HSV (const RGBColor *rColor,
HSVColor *hColor);

rColor The RGBColor structure to be converted.

hColor An HSVColor structure for the converted color.

DESCRIPTION

The RGB2HSV function converts the RGB color specified in the rColor parameter
to the HSV color pointed to in the hColor parameter.

Converting Between SmallFract and Fixed Values 2

A SmallFract value can represent a value between 0 and 65,535. Introduced by
the original Color Picker Package, SmallFract values are used in CMYColor,
HSLColor, and HSVColor structures. You can use these functions if you need to
convert SmallFract values to or from fixed values. (They can be assigned
directly to and from integers.)

Fix2SmallFract 2

To convert a fixed integer to a SmallFract value, use the Fix2SmallFract
function.

pascal SmallFract Fix2SmallFract (Fixed f);

f The value of type Fixed to be converted to a SmallFract value.

DESCRIPTION

The Fix2SmallFract function converts the fixed integer specified in the f
parameter into a value of type SmallFract and returns this value as its result.

C H A P T E R 2

Color Picker Manager Reference

2-58

SmallFract2Fix 2

To convert a SmallFract value to a fixed integer, use the SmallFract2Fix
function.

pascal Fixed SmallFract2Fix (SmallFract s);

s The value of type SmallFract value to be converted into a fixed
integer.

DESCRIPTION

The SmallFract2Fix function converts the SmallFract value specified in the s
parameter into a fixed integer, which is returned as the function result.

Application-Defined Functions 2

This section describes functions that your application can define for use by the
Color Picker Manager. For example, the Color Picker Manager calls one
function—defined in this section as MyPickerFilterFunction—when your
application needs to handle events before the Color Picker Manager does. The
Color Picker Manager calls the function defined in this section as
MyColorChangedFunction when your application needs to update colors in a
document as the user selects colors from a color picker.

Handling Application-Directed Events in a Color Picker 2

Applications can generally allow the Color Picker Manager to handle all events
that might occur while displaying the standard dialog box. Update events are
exceptions to this, however.

The PickColor function calls the Dialog Manager function DialogSelect. As
described in the chapter “Dialog Manager” in Inside Macintosh: Macintosh
Toolbox Essentials, DialogSelect does not allow background windows to receive
update events; therefore, at a minimum, your event filter function should
handle update events. If your application needs to filter or preprocess other
events before DialogSelect handles them, your application should do so in its
event filter function.

C H A P T E R 2

Color Picker Manager Reference

2-59

MyPickerFilterFunction 2

Your application should supply the eventProc field of the color picker
parameter block with a pointer to an application-defined filter function for
handling user events meant for your application. Your filter function should
take one parameter—a pointer to an event record—and it should return a
Boolean value. For example, this is how you would declare it if your were to
name it MyPickerFilterFunction.

pascal Boolean MyPickerFilterFunction (EventRecord *event);

event An event record, which is described in the chapter “Event
Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

DESCRIPTION

Your filter function should examine the event record passed in the first
parameter to determine whether your application needs to handle the event
contained in the record. If your application handles the event, your filter
function should return true so that the Color Picker Manager won’t process the
event any further. If your application does not handle the event, your filter
function should returns false so that the Color Picker Manager or the color
picker can handle the event.

SEE ALSO

Listing 2-2 in the chapter “Color Picker Manager” in Advanced Color Imaging on
the Mac OS provides an example of an event filter function for a color picker.

Changing Colors in a Document 2

Your application can define a function that updates colors in a document as the
user selects them from a color picker.

C H A P T E R 2

Color Picker Manager Reference

2-60

MyColorChangedFunction 2

Your application can supply the colorProc field of the color picker parameter
block with a pointer to an application-defined function that handles color
changes. Your function should take two parameters—one for data previously
specified by your application, and another specifying the new color selected by
the user. For example, this is how you would declare it if you were to name it
MyColorChangedFunction.

pascal void MyColorChangedFunction (
long userData,
PMColorPtr newColor);

userData Data that your application supplies in the colorProcData field of
the color picker parameter block (which is described on
page 2-20). Your application can use this value for any purpose
it needs.

newColor A pointer to a PMColor structure that contains the new color
selected by the user. (The PMColor structure is described on
page 2-15.)

DESCRIPTION

Your color-changed function should update the user’s document to use the
color specified in the newColor parameter.

SEE ALSO

Listing 2-3 in the chapter “Color Picker Manager” in Advanced Color Imaging on
the Mac OS provides an example of a color-changed function.

Color Picker–Defined Functions 2

If you are creating your own color picker, it must support the functions
described in this section. When you create a color picker, the Color Picker
Manager uses the Component Manager to request services from your color
picker. The code for your color picker should be contained in a resource, as
described in “Creating a Component Resource for a Color Picker” in the

C H A P T E R 2

Color Picker Manager Reference

2-61

chapter “Color Picker Manager” in Advanced Color Imaging on the Mac OS. The
Component Manager expects that the entry point in this resource is a function
having this format:

pascal ComponentResult MyColorPickerDispatch (
ComponentParameters *params,
Handle storage);

Listing 2-16 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

Whenever the Color Picker Manager uses the Component Manager to send a
request to your color picker, the Component Manager calls your component’s
entry point and passes any parameters, along with information about the
current connection, in a component parameters structure. The Component
Manager also passes a handle to the global storage associated with that
instance of your color picker.

The request codes that the Component Manager sends to your color picker are
described on page 2-12. Your color picker must also support the four required
request codes described in the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox.

When your color picker receives a request, it should examine the parameters to
determine the nature of the request, perform the appropriate processing, set an
error code if necessary, and return an appropriate function result to the
Component Manager.

To extract these parameters, your color picker code should use the
CallComponentFunctionWithStorage function, which invokes a specified function
of your color picker with the parameters originally provided by the Color
Picker Manager. Your color picker passes these parameters by specifying the
same component parameters structure that was received by your color picker’s
main entry point. The CallComponentFunctionWithStorage function also
provides a handle to the memory associated with the current connection. Your
color picker uses this memory to store private data that it initializes in response
to the kInitPicker request code. Therefore, all of the functions described in this
section take a handle to storage as their first parameter.

Setting Up a Color Picker 2

This section describes the functions that your color picker should define for
setting up your color picker.

C H A P T E R 2

Color Picker Manager Reference

2-62

MyTestGraphicsWorld 2

If you create a color picker, it must respond to the kTestGraphicsWorld request
code. So that your color picker can test whether it can operate under existing
conditions, the Color Picker Manager gives your color picker a copy of the
picker flags as if the Color Picker Manager were requesting the color picker to
open. A color picker typically responds to the kTestGraphicsWorld request code
by calling a color picker–defined subroutine (for example,
MyTestGraphicsWorld) to handle the request.

pascal ComponentResult MyTestGraphicsWorld (
PickerStorageHndl storage,
PickerInitData *data);

storage A handle to your color picker’s global data.

data A pointer to a PickerInitData structure, in which one or more
color picker flags may be set by the application. The
PickerInitData structure is described on page 2-18. Your color
picker may need to change some of these flags (such as those
indicating the type of dialog box in which it appears).

DESCRIPTION

Your MyTestGraphicsWorld function should return noErr if your color picker can
operate on the current system with the restrictions pointed to in the data
parameter. If your color picker cannot operate under these conditions, it should
return a result code other than noErr.

SEE ALSO

Listing 2-18 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

MyInitPicker 2

If you create a color picker, it must respond to the kInitPicker request code.
The Color Picker Manager sends this code to request your color picker to

C H A P T E R 2

Color Picker Manager Reference

2-63

instantiate any private data it needs. A color picker responds to the kInitPicker
request code by calling a color picker–defined subroutine (for example,
MyInitPicker) to handle the request.

pascal ComponentResult MyInitPicker (
PickerStorageHndl storage,
PickerInitData *data);

storage A handle to your color picker’s newly initialized global data.

data A pointer to a PickerInitData structure, in which one or more
Color Picker flags may be set. You may want your color picker
to store this information in its global data. The PickerInitData
structure is described on page 2-18.

DESCRIPTION

Using the storage allocated in the storage parameter, your MyInitPicker
function should initialize any private data needed by your color picker.

The Color Picker Manager uses the Component Manager to send the
kInitPicker request code after your color picker has set up all of its external
data. If the Color Picker Manager has opened your color picker only to obtain a
list of color pickers for the More Choices list, your color picker will not receive
this message unless it is actually chosen by the user.

Before handling the kInitPicker request code, your color picker must be able to
handle the kTestGraphicsWorld, kGetDialog, and kGetItemList request codes
(described on page 2-62, page 2-64, and page 2-64, respectively).

Your function should return noErr if successful, or an appropriate result code
otherwise.

SEE ALSO

Listing 2-17 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

C H A P T E R 2

Color Picker Manager Reference

2-64

MyGetDialog 2

If you create a color picker, it must respond to the kGetDialog request code. The
Color Picker Manager sends this code to obtain the custom dialog box for your
color picker, in case your color picker uses a custom dialog box. A color picker
responds to the kGetDialog request code by calling a color picker–defined
subroutine (for example, MyGetDialog) to handle the request.

pascal DialogPtr MyGetDialog (PickerStorageHndl storage);

storage A handle to your color picker’s global data.

DESCRIPTION

If your color picker uses its own dialog box, your MyGetDialog function should
return a pointer to this dialog box as its function result. If your color picker
does not use a color picker–owned dialog box, your MyGetDialog function
should return nil.

MyGetItemList 2

If you create a color picker, it must respond to the kGetItemList request code.
The Color Picker Manager sends this request code to obtain the dialog items for
your color picker. A color picker responds to the kGetItemList request code by
calling a color picker–defined subroutine (for example, MyGetItemList) to
handle the request.

pascal ComponentResult MyGetItemList (PickerStorageHndl storage);

storage A handle to your color picker’s global data.

DESCRIPTION

Your MyGetItemList function should coerce a handle for one or more dialog
items into a long integer and return this as a function result. The Color Picker
Manager adds these items to the color picker dialog box. If your color picker
has no items to add, it should return nil.

C H A P T E R 2

Color Picker Manager Reference

2-65

If your color picker saved the items in a dialog item list ('DITL') resource, your
color picker should use the Resource Manager function GetResource to obtain
the handle, and the Resource Manager function DetachResource to detach the
resource.

SEE ALSO

Listing 2-19 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

MySetVisibility 2

If you create a color picker, it must respond to the kSetVisibility request code.
The Color Picker Manager sends this code to request your color picker to hide
or show itself. Your color picker should respond to the kSetVisibility request
code by calling a color picker–defined subroutine (for example,
MySetVisibility) to handle the request.

pascal ComponentResult MySetVisibility (
PickerStorageHndl storage,
Boolean visible);

storage A handle to your color picker’s global data.

visible A Boolean value, where true means your color picker should
make itself visible and false means invisible.

DESCRIPTION

When passed true in the visible parameter, your MySetVisibility function
should make your color picker visible; when passed false, your function
should make your color picker invisible.

Your function should return noErr if successful, or an appropriate result code
otherwise.

C H A P T E R 2

Color Picker Manager Reference

2-66

Responding to Requests to Return and Set Color Picker Information 2

This section describes the functions that your color picker should define for
returning and setting information used by your color picker.

MyGetColor 2

If you create a color picker, it must respond to the kGetColor request code. The
Color Picker Manager sends this code to request your color picker to return an
original or a new color. A color picker responds to the kGetColor request code
by calling a color picker–defined subroutine (for example, MyGetColor) to
handle the request.

pascal ComponentResult MyGetColor (
PickerStorageHndl storage,
ColorType whichColor,
PMColorPtr color);

storage A handle to your color picker’s global data.

whichColor A type of color—either original or new—requested from your
color picker. Your function should respond to the value
represented by either the kOriginalColor or kNewColor constant.

color A pointer to a PMColor structure, which is described on
page 2-15.

DESCRIPTION

In the PMColor structure pointed to by the color parameter, your MyGetColor
function should return a color. If your MyGetColor function is passed the value
represented by the kOriginalColor constant, it should return the color that the
user first begins to edit. If your MyGetColor function is passed the value
represented by the kNewColor constant, it should return the last color selected
by the user.

Your function should return noErr if successful, or an appropriate result code
otherwise.

C H A P T E R 2

Color Picker Manager Reference

2-67

SEE ALSO

Listing 2-24 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

MySetColor 2

If you create a color picker, it must respond to the kSetColor request code. The
Color Picker Manager sends this code to request your color picker to set either
the original or the new color. A color picker responds to the kSetColor request
code by calling a color picker–defined subroutine (for example, MySetColor) to
handle the request.

pascal ComponentResult MySetColor (
PickerStorageHndl storage,
ColorType whichColor,
PMColorPtr color);

storage A handle to your color picker’s global data.

whichColor A type of color—either original or new—which your color
picker should set. Your function should respond to the value
represented by either the kOriginalColor or kNewColor constant.

color A pointer to a PMColor structure, which is described on
page 2-15.

DESCRIPTION

Your MySetColor function should set an original or a new color to that specified
in the color parameter. If your MySetColor function is passed the value
represented by the kOriginalColor constant, it should set the color that the user
begins to edit. If your MyGetColor function is passed the value represented by
the kNewColor constant, it should set the color to be used as if it were the last
color selected by the user.

Your function should return noErr if successful, or an appropriate result code
otherwise.

C H A P T E R 2

Color Picker Manager Reference

2-68

SEE ALSO

Listing 2-25 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

MySetBaseItem 2

If you create a color picker, it must respond to the kSetBaseItem request code.
The Color Picker Manager sends this code to obtain the first item in your color
picker’s item list. A color picker responds to the kSetBaseItem request code by
calling a color picker–defined subroutine (for example, MySetBaseItem) to
handle the request.

pascal ComponentResult MySetBaseItem (
PickerStorageHndl storage,
short baseItem);

storage A handle to your color picker’s global data.

baseItem In the dialog item list, the number of the first item that belongs
to your color picker.

DESCRIPTION

Your MySetBaseItem function allows your color picker to access its dialog items
through the Dialog Manager, where

RealItemNumber = baseItem + locaItemNumber (1 based)

Your function should return noErr if successful, or an appropriate result code
otherwise.

MyGetIconData 2

If you create a color picker, it must respond to the kGetIconData request code.
The Color Picker Manager sends this request code to obtain information about
your color picker’s icon family and script code. A color picker typically

C H A P T E R 2

Color Picker Manager Reference

2-69

responds to the kGetIconData request code by calling a color picker–defined
subroutine (for example, MyGetIconData) to handle the request.

pascal ComponentResult MyGetIconData (
PickerStorageHndl storage,
PickerIconData *data);

storage A handle to your color picker’s global data.

data A pointer to a PickerIconData structure returned by your color
picker. (The PickerIconData structure is described on
page 2-17.) In the scriptCode field of this structure, your color
picker should return its script code, and in the iconSuiteID
field, your color picker should return the resource ID of its icon
family

DESCRIPTION

Your MyGetIconData function should return the data that the Color Picker
Manager needs to display your picker in the More Choices list—specifically the
script code for its name and the resource ID of your color picker’s icon family.
See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for information about icon families.

Your function should return noErr if successful, or an appropriate result code
otherwise.

SEE ALSO

Listing 2-26 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

MyGetPrompt 2

If you create a color picker, it must respond to the kGetPrompt request code. The
Color Picker Manager sends this code to obtain the prompt string currently
used by your color picker. A color picker responds to the kGetPrompt request

C H A P T E R 2

Color Picker Manager Reference

2-70

code by calling a color picker–defined subroutine (for example, MyGetPrompt) to
handle the request.

pascal ComponentResult MyGetPrompt (
PickerStorageHndl storage,
Str255 prompt);

storage A handle to your color picker’s global data.

prompt Your color picker’s prompt string.

DESCRIPTION

Your MyGetPrompt function should return the current prompt for your color
picker in the prompt parameter.

Your function should return noErr if successful, or an appropriate result code
otherwise.

SEE ALSO

Listing 2-27 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

MySetPrompt 2

If you create a color picker, it must respond to the kSetPrompt request code. The
Color Picker Manager sends this code to set the prompt string used by your
color picker. A color picker responds to the kSetPrompt request code by calling a
color picker–defined subroutine (for example, MySetPrompt) to handle the
request.

pascal ComponentResult MySetPrompt (
PickerStorageHndl storage,
Str255 prompt);

storage A handle to your color picker’s global data.

prompt The new prompt string for your color picker.

C H A P T E R 2

Color Picker Manager Reference

2-71

DESCRIPTION

Your MySetPrompt function should set the prompt for your color picker to the
one specified in the prompt parameter.

Your function should return noErr if successful, or an appropriate result code
otherwise.

SEE ALSO

Listing 2-28 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

MySetOrigin 2

If you create a color picker, it must respond to the kSetOrigin request code. The
Color Picker Manager sends this code to inform your color picker that the
window origin for the color picker has changed. A color picker responds to the
kSetOrigin request code by calling a color picker–defined subroutine (for
example, MySetOrigin) to handle the request.

pascal ComponentResult MySetOrigin (
PickerStorageHndl storage,
Point where);

storage A handle to your color picker’s global data.

where The new window origin for the color picker.

DESCRIPTION

If your color picker maintains any information based on the local coordinate
system of its dialog box, your MySetOrigin function should update that
information.

The Color Picker Manager moves all dialog box items automatically in
response to a new window origin for the dialog box, so it is not necessary for
your color picker to move its items.

Your function should return noErr if successful, or an appropriate result code
otherwise.

C H A P T E R 2

Color Picker Manager Reference

2-72

MyGetProfile 2

If you create a color picker, it must respond to the kGetProfile request code.
For color-matching purposes, the Color Picker Manager sends this code to
obtain the destination profile used by your color picker. A color picker
responds to the kGetProfile request code by calling a color picker–defined
subroutine (for example, MyGetProfile) to handle the request.

pascal CMProfileHandle MyGetProfile (PickerStorageHndl storage);

storage A handle to your color picker’s global data.

DESCRIPTION

As its function result, your MyGetProfile function should return a handle to the
destination ColorSync 1.0 profile used by your color picker.

SPECIAL CONSIDERATIONS

This version of the Color Picker Manager uses ColorSync 1.0 profiles only. The
ColorSync 1.0 profile is a handle-based profile. The profile format is defined by
Apple Computer. You cannot use version 2.0 profiles, which are identified by
profile references, with this version of the Color Picker Manager. ColorSync 1.0
profiles typically reside in the ColorSyncTM Profiles folder (within the
Preferences folder of the System Folder). They may also be embedded with the
images to which they pertain in graphics files. The appendix “ColorSync
Manager Backward Compatibility” in Advanced Color Imaging on the Mac OS
provides information about the relationship between the ColorSync Manager
version 2.0 and ColorSync 1.0 profiles, which you may find useful. Because
ColorSync 1.0 is supported for backward compatibility only, the ColorSync 1.0
profile format is not described in this book.

SEE ALSO

Listing 2-29 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

C H A P T E R 2

Color Picker Manager Reference

2-73

MySetProfile 2

If you create a color picker, it must respond to the kSetProfile request code.
For color-matching purposes, the Color Picker Manager sends this code to set
the destination profile used by your color picker. A color picker responds to the
kSetProfile request code by calling a color picker–defined subroutine (for
example, MySetProfile) to handle the request.

pascal ComponentResult MySetProfile (
PickerStorageHndl storage,
CMProfileHandle profile);

storage A handle to your color picker’s global data.

profile A handle to a ColorSync 1.0 profile (that is, a CMProfile
structure).

DESCRIPTION

Your MySetProfile function should set the destination profile to the one
specified in the profile parameter.

Your function should return noErr if successful, or an appropriate result code
otherwise.

SPECIAL CONSIDERATIONS

This version of the Color Picker Manager uses ColorSync 1.0 profiles only. The
ColorSync 1.0 profile is a handle-based profile. The profile format is defined by
Apple Computer. You cannot use version 2.0 profiles, which are identified by
profile references, with this version of the Color Picker Manager. ColorSync 1.0
profiles typically reside in the ColorSyncTM Profiles folder (within the
Preferences folder of the System Folder). They may also be embedded with the
images to which they pertain in graphics files. The appendix “ColorSync
Manager Backward Compatibility” in Advanced Color Imaging on the Mac OS
provides information about the relationship between the ColorSync Manager
version 2.0 and ColorSync 1.0 profiles, which you may find useful. Because
ColorSync 1.0 is supported for backward compatibility only, the ColorSync 1.0
profile format is not described in this book.

C H A P T E R 2

Color Picker Manager Reference

2-74

SEE ALSO

Listing 2-30 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

MyGetEditMenuState 2

If you create a color picker, it must respond to the kGetEditMenuState request
code. The Color Picker Manager sends this code to request information about
the desired state of the Edit menu for your color picker. A color picker
responds to the kGetEditMenuState request code by calling a color
picker–defined subroutine (for example, MyGetEditMenuState) to handle the
request.

pascal ComponentResult MyGetEditMenuState (
PickerStorageHndl storage,
MenuState *mState);

storage A handle to your color picker’s global data.

mState A MenuState structure, as described on page 2-20.

DESCRIPTION

In the MenuState structure pointed to in the mState parameter, your
MyGetEditMenuState function should return information about your color
picker’s Edit menu. The Color Picker Manager sets the Edit menu to this state.

Your function should return noErr if successful, or an appropriate result code
otherwise.

SEE ALSO

Listing 2-31 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

C H A P T E R 2

Color Picker Manager Reference

2-75

MyExtractHelpItem 2

If you create a color picker, it must respond to the kExtractHelpItem request
code. The Color Picker Manager sends this code to obtain help messages or
other help balloon characteristics from your color picker. A color picker
responds to the kExtractHelpItem request code by calling a color
picker–defined subroutine (for example, MyExtractHelpItem) to handle the
request.

pascal ComponentResult MyExtractHelpItem (
PickerStorageHndl storage,
short itemNo,
short whichState,
HelpItemInfo *helpInfo);

storage A handle to your color picker’s global data.

itemNo A number corresponding to the position of an item in the item
list resource of the color picker’s dialog box. The Help Manager
is ready to display a help balloon for the item represented by
this number.

whichState For menu items and items in alert or dialog boxes, the state of
the item specified in the itemNo parameter. The following
constants are used to represent the possible states:
kHMEnabledItem, kHMDisabledItem, kHMCheckedItem, and
kHMOtherItem.

helpInfo A HelpItemInfo structure, as described on page 2-33. In the
helpMessage field of this structure, the Color Picker Manager
passes the default help message in an HMHelpMessage structure;
your MyExtractHelpItem function changes the help message by
supplying a different HMHelpMessage structure (described in the
chapter “Help Manager” in Inside Macintosh: More Macintosh
Toolbox) for this field. The Color Picker Manager passes the
default characteristics of the help balloon—that is, the value of
the options element of its help resource, its tip location, its
alternate rectangle, its tip function, and its variation code—in
the rest of the fields of the HelpItemInfo structure, which your
MyExtractHelpItem function can also change.

C H A P T E R 2

Color Picker Manager Reference

2-76

DESCRIPTION

Your MyExtractHelpItem function should return information about your color
picker’s help balloons. If your color picker has no help balloons, it should
return the noHelpForItem result code, and the Help Manager will display the
default message and characteristics of the help balloon.

Responding to Events in a Color Picker 2

This section describes the functions that your color picker should define for
responding to events involving your color picker.

MyDrawPicker 2

If you create a color picker, it must respond to the kDrawPicker request code.
The Color Picker Manager sends this code in response to an update event. A
color picker responds to the kDrawPicker request code by calling a color
picker–defined subroutine (for example, MyDrawPicker) to handle the request.

pascal ComponentResult MyDrawPicker (PickerStorageHndl storage);

storage A handle to your color picker’s global data.

DESCRIPTION

Your MyDrawPicker function should redraw your color picker. The Color Picker
Manager calls the Event Manager function BeginUpdate before sending the
kDrawPicker request code, and the Color Picker Manager calls the Event
Manager function EndUpdate after sending the kDrawPicker request code.

Your function should return noErr if successful, or an appropriate result code
otherwise.

SEE ALSO

Listing 2-20 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

C H A P T E R 2

Color Picker Manager Reference

2-77

MyDoEvent 2

If you create a color picker, it must respond to the kEvent request code. The
Color Picker Manager sends this code so that your color picker can handle
events that the Dialog Manager does not handle. A color picker responds to the
kEvent request code by calling a color picker–defined subroutine (for example,
MyDoEvent) to handle the request.

pascal ComponentResult MyDoEvent (
PickerStorageHndl storage,
EventData *data);

storage A handle to your color picker’s global data.

data An EventData structure, as described on page 2-27.

DESCRIPTION

If your color picker needs to perform any event processing in addition to or
instead of that normally performed by the Dialog Manager, your MyDoEvent
function should perform it. The event is passed to your function in the event
record pointed to in the event field of the EventData structure which, in turn, is
pointed to in the data parameter.

In the EventData structure pointed to in the data parameter, your MyDoEvent
function returns information about any event handling it performs. If your
function handles the event, it should set the value of the handled field to true,
in which case the Dialog Manager performs no additional handling of the
event. Your function should set the action field to the particular action it
performed. The colorProc field may point to an application-defined function
that your color picker should call.

Your function should return noErr if successful, or an appropriate result code
otherwise.

SEE ALSO

Listing 2-21 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

C H A P T E R 2

Color Picker Manager Reference

2-78

MyItemHit 2

If you create a color picker, it must respond to the kItemHit request code. The
Color Picker Manager sends this code to inform your color picker of an event
in one of its items. A color picker responds to the kItemHit request code by
calling a color picker–defined subroutine (for example, MyItemHit) to handle the
request.

pascal long MyItemHit (
PickerStorageHndl storage,
ItemHitData *data);

storage A handle to your color picker’s global data.

data An ItemHitData structure, as shown on page 2-31.

DESCRIPTION

Your MyItemHit function should respond to the event for the item reported in
the itemHit field of the ItemHitData structure pointed to in the data parameter.
(This item is passed by the Dialog Manager function DialogSelect.)

The iMod field of the ItemHitData structure informs your function of the action
in the item. These actions are represented by the following constants:

enum ItemHitModifiers {
kMouseDown, /* mouse-down event on the item */
kKeyDown, /* key-down event in current edit item */
kFieldEntered, /* tab into an edit field */
kFieldLeft, /* tab out of an edit field */
kCutOp, /* cut in current edit field */
kCopyOp, /* copy in current edit field */
kPasteOp, /* paste in current edit field */
kClearOp, /* clear in current edit field */
kUndoOp /* undo in current edit field */

};
typedef short ItemModifier;

In the ItemHitData structure pointed to in the data parameter, your MyItemHit
function returns information about any event handling it performs. Your
function should set the action field to the particular action it performed. The

C H A P T E R 2

Color Picker Manager Reference

2-79

colorProc field may contain a pointer to an application-defined function to
handle color changes. This function, described in detail on page 2-60, should
support the updating of colors in a document as the user selects them. Your
color picker should call this function.

Your function should return noErr if successful, or an appropriate result code
otherwise.

SEE ALSO

Listing 2-22 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

MyDoEdit 2

If you create a color picker, it must respond to the kEdit request code. The
Color Picker Manager sends this code to inform your color picker that the user
has chosen one of the edit commands from the Edit menu (or the user has
typed a Command-key equivalent). A color picker responds to the kEdit
request code by calling a color picker–defined subroutine (for example,
MyDoEdit) to handle the request.

pascal ComponentResult MyDoEdit (
PickerStorageHndl storage,
EditData *data);

storage A handle to your color picker’s global data.

data An EditData structure, as described on page 2-29.

DESCRIPTION

If your color picker needs to handle an editing command instead of allowing
the Dialog Manager to handle it, your MyDoEdit function should perform it. For
example, because the Dialog Manager does not handle the Undo command,
your MyDoEdit function can handle it instead. The editing command is passed
to your function in the field theEdit of the EditData structure pointed to in the
data parameter.

C H A P T E R 2

Color Picker Manager Reference

2-80

If your function handles the command, it should set the handled field of the
EditData structure to true, in which case the Dialog Manager performs no
additional processing of the associated event. If your function sets the handled
field to false, then the Color Picker Manager sends your color picker the
kItemHit request code with the appropriate information regarding the event in
the editable-text item.

Your function should return noErr if successful, or an appropriate result code
otherwise.

SEE ALSO

Listing 2-23 in the chapter “Color Picker Manager” in Advanced Color Imaging
on the Mac OS illustrates how to implement this function.

Result Codes 2

firstPickerError –4000
invalidPickerType –4000
requiredFlagsDontMatch –4001
pickerResourceError –4002
cantLoadPicker –4003
cantCreatePickerWindow –4004
cantLoadPackage –4005
pickerCantLive –4006
colorSyncNotInstalled –4007
badProfileError –4008
noHelpForItem –4009

C H A P T E R 3

Contents

3-1

3 ColorSync Manager Reference
for Applications and Device
Drivers

The ColorSync Manager Constants and Data Structures 3-5
Constants for Profile Location Type 3-5
Constants for ColorSync Manager Gestalt Selectors and Responses 3-7
Profile Classes 3-8
Signature of the Apple-Supplied Color Management Module 3-9
Commands for Calling the Caller-Supplied ColorSync Data Transfer
Functions 3-9
Picture Comment IDs for Profiles and Color Matching 3-10
Picture Comment Selectors for the cmComment ID 3-11
Color Space Signatures 3-13
Color Packing for Color Spaces 3-14
Color Spaces 3-15
Rendering Intent Values for Version 2.0 Profiles 3-19
Function Selectors for Color-Conversion-Component Functions 3-20
Operation Codes Used With PrGeneral Function 3-22
Color Conversion Component Version 3-22
The ColorSync Manager Element Tags and Their Signatures for Version 1.0
Profiles 3-22
Profile Location Union 3-23
Profile Location Structure 3-24
File Specification for a File-Based Profile 3-24
Handle Specification for a Memory-Based Profile 3-25
Pointer Specification for a Memory-Based Profile 3-25
Apple Profile Header 3-26
Profile 2.0 Header Structure for the ColorSync Manager 3-26
Concatenated Profile Set Structure 3-30
Color World Information Record 3-31

This document was created with FrameMaker 4.0.4

C H A P T E R 3

3-2

Contents

Color Management Module (CMM) Information Record Structure 3-32
Profile Search Record 3-33
XYZ Color Component Values 3-35
XYZ Color Value 3-35
Fixed XYZ Color Value 3-35
L*a*b* Color Value 3-36
L*u*v* Color Value 3-36
Yxy Color Value 3-37
RGB Color Value 3-37
HLS Color Value 3-37
HSV Color Value 3-38
CMYK Color Value 3-38
CMY Color Value 3-39
HiFi Color Values 3-39
Gray Color Value 3-39
The Color Union 3-40
The ColorSync Manager Bitmap 3-42
Profile Reference 3-43
Profile Search Result Reference 3-44
High-Level Color-Matching-Session Reference 3-44
Color World Reference 3-44
TEnableColorMatchingBlk 3-45
Profile Header for ColorSync 1.0 3-45
PostScript Color Rendering Dictionary (CRD) Virtual Memory Size Tag
Structure 3-48

The ColorSync Manager Functions 3-49
Accessing Profile Files 3-50

CMOpenProfile

3-50

CMCloseProfile

3-51

CMUpdateProfile

3-52

CMNewProfile

3-53

CMCopyProfile

3-55

CMGetProfileLocation

3-56

CMValidateProfile

3-57

CMFlattenProfile

3-58

CMUnflattenProfile

3-59
Accessing Profile Elements 3-60

CMProfileElementExists

3-61

C H A P T E R 3

Contents

3-3

CMCountProfileElements

3-61

CMGetProfileElement

3-62

CMGetProfileHeader

3-64

CMGetPartialProfileElement

3-65

CMGetIndProfileElementInfo

3-66

CMGetIndProfileElement

3-67

CMSetProfileElementSize

3-69

CMSetPartialProfileElement

3-70

CMSetProfileElement

3-71

CMSetProfileHeader

3-72

CMSetProfileElementReference

3-73

CMRemoveProfileElement

3-73

CMGetScriptProfileDescription

3-74
Matching Colors Using the High-Level Functions 3-75

NCMBeginMatching

3-75

CMEndMatching

3-77

CMEnableMatchingComment

3-77
Using Embedded Profiles With QuickDraw 3-78

NCMDrawMatchedPicture

3-78

NCMUseProfileComment

3-79
Matching Colors Using the Low-Level Functions Without
QuickDraw 3-80

NCWNewColorWorld

3-81

CWConcatColorWorld

3-82

CWNewLinkProfile

3-84

CWDisposeColorWorld

3-86

CMGetCWInfo

3-87

CWMatchPixMap

3-88

CWCheckPixMap

3-90

CWMatchBitmap

3-92

CWCheckBitMap

3-95

CWMatchColors

3-97

CWCheckColors

3-98
Assigning and Accessing the System Profile File 3-99

CMSetSystemProfile

3-99

CMGetSystemProfile

3-100
Searching External Profiles 3-101

CMNewProfileSearch

3-101

C H A P T E R 3

3-4

Contents

CMUpdateProfileSearch

3-102

CMDisposeProfileSearch

3-104

CMSearchGetIndProfile

3-104

CMSearchGetIndProfileFileSpec

3-105
Converting Between Color Spaces 3-106

CMXYZToLab

3-108

CMLabToXYZ

3-109

CMXYZToLuv

3-111

CMLuvToXYZ

3-112

CMXYZToYxy

3-113

CMYxyToXYZ

3-114

CMXYZToFixedXYZ

3-116

CMFixedXYZToXYZ

3-117

CMRGBToHLS

3-118

CMHLSToRGB

3-120

CMRGBToHSV

3-121

CMHSVToRGB

3-122

CMRGBToGray

3-124
PostScript Color-Matching Support Functions 3-125

CMGetPS2ColorSpace

3-125

CMGetPS2ColorRenderingIntent

3-126

CMGetPS2ColorRendering

3-128

CMGetPS2ColorRenderingVMSize

3-129
Locating the ColorSync Profiles Folder 3-130

CMGetColorSyncFolderSpec

3-130
Application-Defined Functions for the ColorSync Manager 3-131

MyColorSyncDataTransfer

3-131

MyCMBitmapCallBackProc

3-134

MyCMProfileFilterProc

3-136
Result Codes 3-138

C H A P T E R 3

3-5

ColorSync Manager Reference for Applications and Device Drivers 3

This reference document describes the constants, data structures, and functions
defined for your application’s use by the ColorSync Manager. To support the
ColorSync Manager in your applications and device drivers, use the ColorSync
Manager API.

However, the ColorSync Manager provides backward compatibility with
ColorSync 1.0 for those applications and device drivers written to the
ColorSync 1.0 API. Your application, written to the ColorSync Manager API,
can match, convert, and color-check colors using version 2.0 profiles or, when
necessary, a combination of version 2.0 profiles and ColorSync 1.0 profiles. For
a description of the backward compatibility support provided by the
ColorSync Manager, see the appendix “ColorSync Manager Backward
Compatibility”in

Advanced Color Imaging on the Mac OS.

The ColorSync Manager Constants and Data Structures 3

This section describes the constants and data structures defined for your
application’s use with version 2.0 of the ColorSync Manager API.

Constants for Profile Location Type 3

A ColorSync profile is typically stored in a disk file whose location your
application provides using a data structure of type

CMProfileLocation,

described in “Profile Location Structure” on page 3-24. The profile location data
structure contains a

u

 field whose union holds a file specification for a profile
that is disk-file based. However, to accommodate special requirements, a
ColorSync profile that you copy can be stored in nonrelocatable memory and a
ColorSync profile that you open or create can be stored relocatable memory.
For these special requirements, your application can provide a handle or
pointer specification in the

u

 field of the structure

CMProfileLocation

.
Additionally, your application can create a new or duplicate temporary profile.
For example, you can use a temporary profile for a color-matching session and
the profile will not be saved after the session. For this case, the ColorSync
Manager allows you to specify the profile location as having no specific
location; that is, it is not based in memory or on disk.

You use a data structure of type

CMProfileLocation

 to identify a profile’s
location when

This document was created with FrameMaker 4.0.4

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-6

■

Your application calls the

CMOpenProfile

 function to obtain a reference to the
profile

■

To specify the location for a newly created or duplicate profile when your
application calls the

CMNewProfile

,

CWNewLinkProfile,

 or

CMCopyProfile

functions.

Your application identifies the type of data the

CMProfileLocation

u

 field
holds—a file specification, a handle, or a pointer—in the

CMProfileLocation

structure’s

locType

 field. You use the constants defined by the following
enumeration to identify the location type.

enum {
cmNoProfileBase = 0,
cmFileBasedProfile = 1,
cmHandleBasedProfile = 2,
cmPtrBasedProfile = 3

};

Constant descriptions

cmNoProfileBase

The profile is temporary. It will not persist in memory after
its use for a color session. You can specify this type of
profile location with the

CMNewProfile

 and the

CMCopyProfile

 functions.

cmFileBasedProfile

The profile is disk-file based and the

CMProfLoc

 union,
described beginning on page 3-23, holds a structure of type

CMFileLocation

 identifying the profile file. For a
description of the

CMFileLocation

 type definition, see “File
Specification for a File-Based Profile” on page 3-24. You
can specify this type of profile location with the

CMOpenProfile

,

CMNewProfile

,

CMCopyProfile

, and

CMNewLinkProfile

 functions.

cmHandleBasedProfile

The profile is relocatable-memory based and the

CMProfLoc

union, described beginning on page 3-23, holds a handle to
the profile in a structure of type

CMHandleLocation.

 For a
description of the

CMHandleLocation

 type definition, see
“Handle Specification for a Memory-Based Profile” on
page 3-25.You can specify this type of profile location with

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-7

the

CMOpenProfile,

CMNewProfile,

 and

CMCopyProfile

functions.

cmPtrBasedProfile

The profile is nonrelocatable-memory based and the

CMProfLoc

 union, described beginning on page 3-23, holds
a pointer to the profile in a structure of type

CMPtrLocation.

 For a description of the

CMPtrLocation

 type
definition, see “Pointer Specification for a Memory-Based
Profile” on page 3-25. You can specify this type of profile
location with the

CMOpenProfile

 function only.

Constants for ColorSync Manager Gestalt Selectors and Responses 3

These enumerations define the constants for the selectors that you use with the

Gestalt

 function to test if the ColorSync Manager is available. To test for the
availability of the ColorSync Manager on a 68K-based Mac system, you use the

Gestalt

 function with the

gestaltColorMatchingVersion

 selector. To test for the
availability of the ColorSync Manager on a PowerPC-based system, you use
the

Gestalt

 function with the

gestaltColorMatchingAttr

 selector. The
enumerations also define the constants for response values.

The constants

gestaltColorSync10

 and

gestaltColorSync11

 are returned for
ColorSync versions 1.0 to 1.0.3. The constant

gestaltColorSync11

 indicates
low-level matching only.

enum {
gestaltColorMatchingAttr = 'cmta',
gestaltHighLevelMatching = 0,
gestaltColorMatchingLibLoaded = 1

};

enum {
gestaltColorMatchingVersion = 'cmtc',
gestaltColorSync10 = 0x0100,
gestaltColorSync11 = 0x0110,
gestaltColorSync104 = 0x0104,
gestaltColorSync105 = 0x0105,
gestaltColorSync20 = 0x0200

};

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-8

Profile Classes 3

The ColorSync Manager supports six classes, or types, of profiles. Three of the
profile classes define device profiles for different types of devices: input,
output, and display devices. A device profile describes the characteristics of a
particular device and shows how color is to be converted and matched for the
device in a particular state.

The other three profile classes include definitions for an abstract profile, a color
space profile, and a device-linked profile. A color space profile contains the
data necessary to translate color values expressed in one color space to another,
for example, CIE into RGB, or vice versa, as necessary for color matching. An
abstract profile allows applications to perform special color effects independent
of the devices on which the effects are rendered. A device-linked profile
combines multiple profiles, such as various device profiles and color space
profiles associated with the creation and editing of an image. A profile creator
specifies the profile type in the profile header’s

profileClass

 field. (For a
description of the version 2.0 profile header, see “Profile 2.0 Header Structure
for the ColorSync Manager” on page 3-26.) The following enumeration defines
the profile type signatures:

enum {
cmInputClass = 'scnr',
cmDisplayClass = 'mntr',
cmOutputClass = 'prtr',
cmLinkClass = 'link',
cmAbstractClass = 'abst',
cmColorSpaceClass = 'spac'
};

Constant descriptions

cmInputClass

An input device profile defined for a scanner with a
signature of

'scnr'

.

cmDisplayClass

A display device profile defined for a monitor with a
signature of

'mntr'

.

cmOutputClass

An output device profile defined for a printer with a
signature of

'prtr'

.

cmLinkClass

A device-linked profile with a signature of

'link'

.

cmAbstractClass

An abstract profile with a signature of

'abst'

.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-9

cmColorSpaceClass

A color space profile with a signature of

'spac'

.

Signature of the Apple-Supplied Color Management Module 3

Apple provides a robust color management module (CMM) with the ColorSync
Manager that is installed as part of the ColorSync extension. The ColorSync
Manager uses this CMM as the default when a profile specifies a preferred
CMM that is unavailable or unable to perform a requested function. The
Apple-supplied default CMM supports all the required and optional functions
that make up the ColorSync Manager API for CMMs. For a description of the
CMM functions, see “ColorSync Manager Reference for Color Management
Modules.” Device manufacturers and peripheral developers can provide their
own CMMs or use the one Apple supplies.

To specify explicitly that the Apple-supplied CMM is to be used, set the

CMMType

 field of the profile header to the

'appl'

 signature defined by the
following enumeration. For a description of the

CM2Header

, see “Profile 2.0
Header Structure for the ColorSync Manager” on page 3-26. For a description
of the

CMHeader

, see “Profile Header for ColorSync 1.0” on page 3-45.

enum {
kDefaultCMMSignature= 'appl'
};

Commands for Calling the Caller-Supplied ColorSync Data Transfer Functions 3

When your application calls the

CMFlattenProfile

 function, the

CMUnflattenProfile

 function, or the PostScript-related functions, the selected
CMM—and also the ColorSync dispatcher for the

CMUnflattenProfile

function—calls the flatten function you supply to transform profile data. Your
function is called with one of the commands defined by this enumeration.

Your application provides a pointer to your ColorSync data transfer function as
a parameter to the functions. The dispatcher or the CMM calls your calling
program-supplied ColorSync data transfer function passing the command in
the

command

 parameter. For more information on the flatten function, see
“MyColorSyncDataTransfer” on page 3-131.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-10

enum {
openReadSpool = 1,
openWriteSpool,
readSpool,
writeSpool,
closeSpool

};

Constant descriptions

openReadSpool Directs the function to begin the process of reading data.
openWriteSpool Directs the function to begin the process of writing data.
readSpool Directs the function to read the number of bytes specified

by the MyColorSyncDataTransfer function’s size parameter.
writeSpool Directs the function to write the number of bytes specified

by the MyColorSyncDataTransfer function’s size parameter.
closeSpool Directs the function to complete the data transfer.

Picture Comment IDs for Profiles and Color Matching 3

The ColorSync Manager defines the five picture comments for turning on and
off use of embedded profiles and performing color matching within drawing
code sent to an output device. Your application uses the QuickDraw
PicComment function, described in Inside Macintosh: Imaging With QuickDraw, to
specify these picture comments when turning use of embedded profiles on and
off or turning color matching on and off. The PicComment function’s kind
parameter specifies the kind of picture comment.

IMPORTANT

When you want to terminate use of the currently effective
embedded profile, you should do so explicitly by
specifying a picture comment of kind cmEndProfile. This
terminates use of the current profile and instates use of the
system profile. If you do not include this picture comment,
the currently effective profile remains in effect. This can
cause problems if another picture follows that isn’t
preceded by a profile because the intention is to use the
system profile for that picture. In this case, the currently
effective profile will be used, not the system profile. ▲

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-11

enum {
cmBeginProfile = 220,
cmEndProfile = 221,
cmEnableMatching = 222,
cmDisableMatching = 223,
cmComment = 224
};

Constant descriptions

cmBeginProfile Indicates the beginning of a version 1.0 profile to be
embedded.

cmEndProfile Signals end of the use of an embedded version 2.0 or 1.0
profile.

cmEnableMatching Turns on color matching for either
the ColorSync Manager 2.0 or 1.0. Do not nest
cmEnableMatching and cmDisableMatching pairs.

cmDisableMatching
Turns off color matching for either
the ColorSync Manager 2.0 or 1.0. Do not nest
cmEnableMatching and cmDisableMatching pairs. After the
ColorSync Manager encounters this comment, it ignores all
ColorSync-related picture comments until it encounters the
next cmEnableMatching picture comment. At this point, the
last most recently used profile is reinstated.

cmComment Provides information about a 2.0 embedded profile. This
picture comment is followed by a 4-byte selector further
identifying whether the beginning of a version 2.0
embedded profile follows, more of the profile data follows,
or no profile data follows because the end has been
reached. See “Picture Comment Selectors for the
cmComment ID” on page 3-11 for more
information on the selectors.

Picture Comment Selectors for the cmComment ID 3

To embed a version 2.0 profile in a picture destined for display on another
system or an output device such as a printer, your application uses the
QuickDraw PicComment function specifying a picture comment kind value of

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-12

cmComment (224) followed by a 4-byte selector describing the data in the picture
comment.

A profile may exceed the Quickdraw PicComments 32 KB size limit. To
accommodate large profiles, your application can use an ordered series of
picture comments to embed the profile.

Your application specifies one of the 4-byte selectors defined by the following
enumeration after the cmComment kind value to identify the beginning and
continuation of profile data and to signal the end of it. For a description of how
to use the PicComment function to embed a profile, see the chapter “Developing
ColorSync-Supportive Applications” in Advanced Color Imaging on the Mac OS.

enum {
cmBeginProfileSel = 0,
cmContinueProfileSel = 1,
cmEndProfileSel = 2
};

Constant descriptions

cmBeginProfileSel

Identifies the beginning of a version 2.0 profile data. The
amount of profile data you can specify is limited to 32K
minus 4 bytes for selector 0.

cmContinueProfileSel
Identifies the continuation of version 2.0 profile data. The
amount of profile data you can specify is limited to 32K
minus 4 bytes for selector 1. You can use this selector
repeatedly until all the profile data is embedded.

cmEndProfileSel Signals the end of version 2.0 profile data, no more data
follows. Even if the amount of profile data embedded does
not exceed 32K minus 4 bytes for the selector and your
application did not use selector 1, you must terminate the
process with selector 2. Note that this selector has a
behavior that is different from the cmEndProfile picture
comment described in “Picture Comment IDs for Profiles
and Color Matching,” beginning on page 3-10.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-13

Color Space Signatures 3

A ColorSync version 2.0 profile header contains a dataColorSpace field that
carries the signature of the data color space in which the color values of colors
in an image using the profile are expressed. This enumeration defines the
signatures for the color spaces supported by ColorSync for version 2.0 profiles.

enum {
cmXYZData = 'XYZ ',
cmLabData = 'Lab ',
cmLuvData = 'Luv ',
cmYxyData = 'Yxy ',
cmRGBData = 'RGB ',
cmGrayData = 'GRAY',
cmHSVData = 'HSV ',
cmHLSData = 'HLS ',
cmCMYKData = 'CMYK',
cmCMYData = 'CMY ',
cmMCH5Data = 'MCH5',
cmMCH6Data = 'MCH6',
cmMCH7Data = 'MCH7',
cmMCH8Data = 'MCH8'

};

Constant descriptions

cmXYZData The XYZ data color space with a signature of 'XYZ '.
cmLabData The L*a*b* data color space with a signature of 'Lab '.
cmLuvData The L*u*v* data color space with a signature of 'Luv '.
cmYxyData The Yxy data color space with a signature of 'Yxy '.
cmRGBData The RGB data color space with a signature of 'RGB '.
cmGrayData The Gray data color space with a signature of 'GRAY'.
cmHSVData The HSV data color space with a signature of 'HSV '.
cmHLSData The HLS data color space with a signature of 'HLS '.
cmCMYKData The CMYK data color space with a signature of 'CMYK'.
cmCMYData The CMY data color space with a signature of 'CMY '.
cmMCH5Data The five-channel multichannel (HiFi) data color space with

a signature of 'MCH5'.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-14

cmMCH6Data The six-channel multichannel (HiFi) data color space with
a signature 'MCH6'.

cmMCH7Data The seven-channel multichannel (HiFi) data color space
with a signature 'MCH7'.

cmMCH8Data The eight-channel multichannel (HiFi) data color space
with a signature 'MCH8'.

Color Packing for Color Spaces 3

The ColorSync Manager bitmap CMBitMap data type includes a field that
identifies the color space in which the color values of the bitmap image are
expressed. The following enumeration defines the types of packing used for a
color space’s storage format. The enumeration also defines an alpha channel
that can be added as a component of a color value to define the degree of
opacity or transparency of a color. These constants are combined with data
color space constants in the enumeration described in “Color Spaces” on
page 3-15 to create values that identify a bitmap’s color space. Your application
does not specify these constants directly.

enum {
cmNoColorPacking = 0x0000,
cmAlphaSpace = 0x0080,
cmWord5ColorPacking = 0x0500,
cmLong8ColorPacking = 0x0800,
cmLong10ColorPacking = 0x0a00,
cmAlphaFirstPacking = 0x1000,
cmOneBitDirectPacking = 0x0b00
};

Constant descriptions

cmNoColorPacking
This constant is not used for ColorSync bitmaps.

cmAlphaSpace An alpha channel component is added to the color value.
cmWord5ColorPacking

Each color component value is stored as 5 bits.
cmLong8ColorPacking

Each color component value is stored as 8 bits.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-15

cmLong10ColorPacking

Each color component value is stored as 10 bits.
cmAlphaFirstPacking

An alpha channel is added to the color value as its first
component.

cmOneBitDirectPacking

One bit is used as the pixel format. This storage format is
used by the resulting bitmap pointed to by the
resultBitMap field of the CWCheckBitMap function, described
on page 3-95, in which the bitmap must be only 1 bit deep.

Color Spaces 3

The CMBitmap data type defines a bitmap for an image whose colors may be
matched using the CWMatchBitmap function described on page 3-92 or
color-checked using the CWCheckBitMap function described on page 3-95.

The space field of a CMBitmap type definition identifies the color space in which
the colors of the bitmap image are specified. A color space is characterized by a
number of components or dimensions with each component carrying a
numeric value that together comprise the color value. A color space also
specifies the format in which the color value is stored. For bitmaps in which
color values are packed, the space field of the CMBitmap data type holds a
constant that defines the color space and the packing format.

The following enumeration defines the constants representing the various color
spaces and packing formats in which color values of an image represented by a
bitmap of type CMBitmap may be specified. All of these constants include a
packing format except cmGraySpace. The packing format for cmRGBASpace is 64
bits long.

For color matching to complete successfully using the CWMatchBitmap function,
the color space specified in the CMBitmap data type’s space field must match the
color space specified in the profile’s dataColorSpace field. These source bitmap
and source profile values must match each other and the destination bitmap
and destination profile values must match each other. For color checking to
complete successfully using the CWCheckBitMap function, the source profile’s
dataColorSpace field value and the space field value of the source bitmap must
specify the same color space. These functions will complete successfully as long
as the color spaces are the same without regard for the packing format
specified by the bitmap.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-16

enum {
cmNoSpace = 0,
cmRGBSpace,
cmCMYKSpace,
cmHSVSpace,
cmHLSSpace,
cmYXYSpace,
cmXYZSpace,
cmLUVSpace,
cmLABSpace,
cmReservedSpace1,
cmGraySpace,
cmReservedSpace2,
cmGamutResultSpace,
cmRGBASpace = cmRGBSpace + cmAlphaSpace,
cmGrayASpace = cmGraySpace + cmAlphaSpace,
cmRGB16Space = cmWord5ColorPacking + cmRGBSpace,
cmRGB32Space = cmLong8ColorPacking + cmRGBSpace,
cmARGB32Space = cmLong8ColorPacking +

cmAlphaFirstPacking + cmRGBASpace,
cmCMYK32Space = cmLong8ColorPacking + cmCMYKSpace,
cmHSV32Space = cmLong10ColorPacking + cmHSVSpace,
cmHLS32Space = cmLong10ColorPacking + cmHLSSpace,
cmYXY32Space = cmLong10ColorPacking + cmYXYSpace,
cmXYZ32Space = cmLong10ColorPacking + cmXYZSpace,
cmLUV32Space = cmLong10ColorPacking + cmLUVSpace,
cmLAB32Space = cmLong10ColorPacking + cmLABSpace,
cmGamutResult1Space = cmOneBitDirectPacking +

cmGamutResultSpace
};

Constant descriptions

cmNoSpace The ColorSync Manager does not use this constant.
cmRGBSpace An RGB color space composed of red, green, and blue

components. A bitmap never uses this constant alone.
Instead, this color space is always combined with a
packing format describing the amount of storage per
component.

cmCMYKSpace A CMYK color space composed of cyan, magenta, yellow,
and black. A bitmap never uses this constant alone.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-17

Instead, this color space is always combined with a
packing format describing the amount of storage per
component.

cmHSVSpace An HSV color space composed of hue, saturation, and
value components. A bitmap never uses this constant
alone. Instead, this color space is always combined with a
packing format describing the amount of storage per
component.

cmHLSSpace An HLS color space composed of hue, lightness, and
saturation components. A bitmap never uses this constant
alone. Instead, this color space is always combined with a
packing format describing the amount of storage per
component.

cmYXYSpace A Yxy color space composed of Y, x, and y components. A
bitmap never uses this constant alone. Instead, this color
space is always combined with a packing format
describing the amount of storage per component.

cmXYZSpace An XYZ color space composed of X, Y, and Z components.
A bitmap never uses this constant alone. Instead, this color
space is always combined with a packing format
describing the amount of storage per component.

cmLUVSpace An L*u*v* color space composed of L*, u*, and v*
components. A bitmap never uses this constant alone.
Instead, this color space is always combined with a
packing format describing the amount of storage per
component.

cmLABSpace An L*a*b* color space composed of L*, a*, b* components.
A bitmap never uses this constant alone. Instead, this color
space is always combined with a packing format
describing the amount of storage per component.

cmReservedSpace1

This field is reserved for use by QuickDraw GX.
cmGraySpace A luminance color space with a single component, gray.
cmReservedSpace2 This field is reserved for use by QuickDraw GX.
cmGamutResultSpace

A color space used for the resulting bitmap pointed to by
the resultBitMap field of the CWCheckBitMap function,
described on page 3-95. A bitmap never uses this constant

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-18

alone. Instead, the constant cmGamutResult1Space is used,
combining this value and cmOneBitDirectPacking to define
a bitmap that is 1 bit deep.

cmRGBASpace An RGB color space composed of red, green, and blue
color value components and an alpha channel component.
A bitmap never uses this constant alone. Instead, this
constant is used to indicate the presence of an alpha
channel in combination with cmLong8ColorPacking to
indicate 8-bit packing format and
cmAlphaFirstPacking to indicate the position of the
alpha channel as the first component. The storage size for a
color value expressed in this color space is 64 bits.

cmGrayASpace A luminance color space with two components, a gray
component followed by an alpha channel component.
Each component value is 16 bits.

cmRGB16Space An RGB color space composed of red, green, and blue
components whose values are packed with 5 bits of
storage per component. The storage size for a color value
expressed in this color space is 16 bits, with the high-order
bit not used.

cmRGB32Space An RGB color space composed of red, green, and blue
components whose values are packed with 8 bits of
storage per component. The storage size for a color value
expressed in this color space is 32 bits, with bits 24–31 not
used.

cmARGB32Space An RGB color space composed of red, green, and blue
color value components preceded by an alpha channel
component whose values are packed with 8 bits of storage
per component. The storage size for a color value
expressed in this color space is 32 bits.

cmCMYK32Space A CMYK color space composed of cyan, magenta, yellow,
and black components whose values are packed with 8 bits
of storage per component. The storage size for a color
value expressed in this color space is 32 bits.

cmHSV32Space An HSV color space composed of hue, saturation, and
value components whose values are packed with 10 bits of
storage per component. The storage size for a color value
expressed in this color space is 32 bits, with the high-order
2 bits not used.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-19

cmHLS32Space An HLS color space composed of hue, lightness, and
saturation components whose values are packed with 10
bits of storage per component. The storage size for a color
value expressed in this color space is 32 bits, with the
high-order 2 bits not used.

cmYXY32Space A Yxy color space composed of Y, x, and y components
whose values are packed with 10 bits of storage per
component. The storage size for a color value expressed in
this color space is 32 bits, with the high-order 2 bits not
used.

cmXYZ32Space An XYZ color space composed of X, Y, and Z components
whose values are packed with 10 bits per component. The
storage size for a color value expressed in this color space
is 32 bits, with the high-order 2 bits not used.

cmLUV32Space An L*u*v* color space composed of L*, u*, and v*
components whose values are packed with 10 bits per
component. The storage size for a color value expressed in
this color space is 32 bits, with the high-order 2 bits not
used.

cmLAB32Space An L*a*b* color space composed of L*, a*, and b*
components whose values are packed with 10 bits per
component. The storage size for a color value expressed in
this color space is 32 bits, with the high-order 2 bits not
used.

cmGamutResult1Space

A gamut result color space used for the resulting bitmap
pointed to by the resultBitMap field of the CWCheckBitMap
function, described on page 3-95, with 1-bit direct packing.

Rendering Intent Values for Version 2.0 Profiles 3

The rendering intent specified by a profile controls the approach a CMM uses
to translate the colors of an image to the color gamut of a destination device.
Version 2.0 profiles support four types of rendering intents. Your application
can set the intent, for example, based on a user’s choice of the best approach for
rendering an image. The following enumeration defines the possible rendering
intents:

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-20

enum {
cmPerceptual = 0,
cmRelativeColorimetric = 1,
cmSaturation = 2,
cmAbsoluteColorimetric = 3

};

Constant descriptions

cmPerceptual All the colors of a given gamut may be scaled to fit within
another gamut. This intent is best suited to realistic
images, such as photographic images.

cmRelativeColorimetric

The colors that fall within the gamuts of both devices are
left unchanged. This intent is best suited to logo images.

cmSaturation

The relative saturation of colors is maintained from gamut
to gamut. This intent is best suited to bar graphs and pie
charts in which the actual color displayed is less important
than its vividness.

cmAbsoluteColorimetric

This approach is based on a device-independent color
space in which the result is an idealized print viewed on a
ideal type of paper having a large dynamic range and
color gamut.

Function Selectors for Color-Conversion-Component Functions 3

The ColorSync Manager defines the following color-conversion-component
function selectors used for the color conversion functions supported by the
color conversion component. Your application does not use these selectors.
Your application uses the color conversion functions, described beginning on
page 3-106, to call the color conversion component to convert color values
between color spaces within the same base families.

enum {
kCMXYZToLab = 0,
kCMLabToXYZ = 1,
kCMXYZToLuv = 2,
kCMLuvToXYZ = 3,

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-21

kCMXYZToYxy = 4,
kCMYxyToXYZ = 5,
kCMRGBToHLS = 6,
kCMHLSToRGB = 7,
kCMRGBToHSV = 8,
kCMHSVToRGB = 9,
kCMRGBToGRAY = 10,
kCMXYZToFixedXYZ = 11,
kCMFixedXYZToXYZ = 12

};

Constant descriptions

kCMXYZToLab Selector for the CMXYZToLab function described on
page 3-108.

kCMLabToXYZ Selector for the CMLabToXYZ function described on
page 3-109.

kCMXYZToLuv Selector for the CMXYZToLuv function described on
page 3-111.

kCMLuvToXYZ Selector for the CMLuvToXYZ function described on
page 3-112.

kCMXYZToYxy Selector for the CMXYZToYxy function described on
page 3-113.

kCMYxyToXYZ Selector for the CMYxyToXYZ function described on
page 3-114.

kCMRGBToHLS Selector for the CMRGBToHLS function described on
page 3-118.

kCMHLSToRGB Selector for the CMHLSToRGB function described on
page 3-120.

kCMRGBToHSV Selector for the CMRGBToHSV function described on
page 3-121.

kCMHSVToRGB Selector for the CMHSVToRGB function described on
page 3-122.

kCMRGBToGRAY Selector for the CMRGBToGRAY function described on
page 3-124.

kCMXYZToFixedXYZ Selector for the CMXYZToFixedXYZ function described on
page 3-116.

kCMFixedXYZToXYZ Selector for the CMFixedXYZToXYZ function described on
page 3-117.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-22

Operation Codes Used With PrGeneral Function 3

This enumeration defines operation codes used with the PrGeneral function to
enable or disable color matching and, for ColorSync 1.0, to register a profile
with the profile responder or remove the profile’s registration. For information
on the PrGeneral function, see Inside Macintosh: Imaging With QuickDraw.

enum {
enableColorMatchingOp = 12,
registerProfileOp = 13

};

Color Conversion Component Version 3

This enumeration defines the color conversion component version:

enum {
CMConversionInterfaceVersion = 1
};

The ColorSync Manager Element Tags and Their Signatures for Version 1.0 Profiles 3

The ICC version 2.0 profile format differs from the version 1.0 profile format.
Your application cannot use the ColorSync Manager API to update a version
1.0 profile or search for version 1.0 profiles. However, your application can use
the remaining ColorSync Manager API that pertains to profiles with version 1.0
profiles.

Your application can open a version 1.0 profile using the CMOpenProfileFile
function, obtain the version 1.0 profile header using the CMGetProfileHeader
function, and access version 1.0 profile elements using the CMGetProfileElement
function.

To make this possible, the ColorSync Manager API includes support for the
version 1.0 profile header structure and synthesizes tags to allow you to access
four 1.0 elements outside the version 1.0 profile header. The following
enumeration defines these tags:

enum {
cmCS1ChromTag = 'chrm',
cmCS1TRCTag = 'trc ',

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-23

cmCS1NameTag = 'name',
cmCS1CustTag = 'cust'

};

Constant descriptions

'chrm' The tag signature for the profile chromaticities tag whose
element data specifies the XYZ chromaticities for the six
primary and secondary colors (red, green, blue, cyan,
magenta, and yellow).

'trc ' Profile response data for the associated device.
'name' The tag signature for the profile name string. This is an

international string consisting of a Macintosh script code
followed by a 63-byte text string identifying the profile.

'cust' Private data for a custom CMM.

Profile Location Union 3

In most cases, a ColorSync version 2.0 profile is stored in a disk file. However,
to support special requirements, a profile can also be located in memory. You
use a union of type CMProfLoc to identify the location of a profile. You specify
the union in the u field of the CMProfileLocation data type. Your application
passes a CMProfileLocation structure to the function when it calls the
CMOpenProfile function to identify the location of a profile or the CMNewProfile,
CWNewLinkProfile, or CMCopyProfile functions to specify the location for a
newly created profile.

union CMProfLoc {
CMFileLocation fileLoc;
CMHandleLocation handleLoc;
CMPtrLocation ptrLoc;

};

Field descriptions
fileLoc A file system specification record of type CMFileLocation

that tells the location of the profile disk file. For a
description of the CMFileLocation data structure, see “File
Specification for a File-Based Profile” on page 3-24.

handleLoc A data structure of type CMHandleLocation containing a
handle that indicates the location of a profile in relocatable

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-24

memory. For a description of the CMHandleLocation data
structure, see “Handle Specification for a Memory-Based
Profile” on page 3-25.

ptrLoc A data structure of type CMPtrLocation holding a pointer
that points to a profile in nonrelocatable memory. For a
description of the CMPtrLocationPtr data structure, see
“Pointer Specification for a Memory-Based Profile” on
page 3-25.

Profile Location Structure 3

Your application passes a profile location structure of type CMProfileLocation
to a function when it calls the CMOpenProfile function to identify the location of
a profile or the CMNewProfile, CWNewLinkProfile, or CMCopyProfile functions to
specify the location for a newly created or duplicate profile.

struct CMProfileLocation{
short locType;
CMProfLoc u;

};

Field descriptions
locType The type of data structure the u field’s CMProfLoc union

holds — a file specification, a handle, or a pointer. To
specify the type, you use the constants defined in the
enumeration described in “Constants for Profile Location
Type” on page 3-5.

u A union of type CMProfLoc identifying the profile location.
For a description of the CMProfLoc union, see “Profile
Location Union” on page 3-23.

File Specification for a File-Based Profile 3

Your application uses the CMFileLocation structure to provide a file
specification for a profile stored in a disk file. You provide the file specification
structure in the CMProfLoc union of the CMProfileLocation structure’s u field to
tell the location of an existing profile or where a profile is to be created.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-25

struct CMFileLocation {
FSSpec spec;

};

Field description

spec A file system specification structure of type FSSpec that
tells the location of the profile file. A file specification
structure includes the volume reference number, the
directory ID of the parent directory, and the filename or
directory name. For a description of the FSSpec data
structure, see Inside Macintosh: Files.

Handle Specification for a Memory-Based Profile 3

Your application uses the CMHandleLocation structure to provide a handle
specification for a profile stored in relocatable memory. You provide the handle
specification structure in the CMProfLoc union of the CMProfileLocation
structure’s u field to indicate an existing profile or where a profile is to be
created.

struct CMHandleLocation {
Handle h;

};

Field description

h A data structure of type Handle containing a handle that
indicates the location of a profile in memory. For a
description of the Handle data structure, see Inside
Macintosh: Memory.

Pointer Specification for a Memory-Based Profile 3

Your application uses the CMPtrLocation structure to provide a pointer
specification for a profile stored in nonrelocatable memory. You provide the
pointer specification structure in the CMProfLoc union of the CMProfileLocation
structure’s u field to point to an existing profile.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-26

struct CMPtrLocation {
Ptr p;

};

Field description

p A data structure of type Ptr holding a pointer that points
to the location of a profile in memory. For a description of
the Ptr data structure, see Inside Macintosh: Memory.

Apple Profile Header 3

Your application cannot obtain a discrete profile header value using the
element tag scheme available for use with elements outside the header. Instead,
to set or modify values of a profile header, your application must obtain the
entire profile header using the CMGetProfileHeader function described on
page 3-64 and replace the modified header using the CMSetProfileHeader
function described on page 3-72. To obtain and replace the header for either
profile version, these functions take a union of type CMAppleProfileHeader with
variants for ColorSync 1.0 profile headers and ColorSync Manager version 2.0
profile headers.

union CMAppleProfileHeader {
CMHeader cm1;
CM2Header cm2;

};

Field descriptions
cm1 A version 1.0 profile header. For a description of the

ColorSync version 1.0 profile header, see “Profile Header
for ColorSync 1.0” on page 3-45.

cm2 A version 2.0 profile header. For a description of the
ColorSync version 2.0 profile header, see “Profile 2.0
Header Structure for the ColorSync Manager” on
page 3-26.

Profile 2.0 Header Structure for the ColorSync Manager 3

To set or modify elements within a ColorSync Manager version 2.0 profile
header, your application must obtain the entire profile header using the

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-27

CMGetProfileHeader function described on page 3-64 and replace the header
using the CMSetProfileHeader function described on page 3-72.

The ColorSync Manager version 2.0 defines the following CM2header profile
structure which supports the header format specified by the ICC format
specification for version 2.0 profiles.

struct CM2Header {
unsigned long size;
OSType CMMType;
unsigned long profileVersion;
OSType profileClass;
OSType dataColorSpace;
OSType profileConnectionSpace;
CMDateTime dateTime;
OSType CS2profileSignature;
OSType platform;
unsigned long flags;
OSType deviceManufacturer;
unsigned long deviceModel;
unsigned long deviceAttributes[2];
unsigned long renderingIntent;
CMFixedXYZColor white;
char reserved[48];

};

Field descriptions
size The total size in bytes of the profile.

CMMType The signature of the preferred CMM to be used for
color-matching and color-checking sessions for this profile.
To obviate conflicts with other CMMs, this signature must
be registered with the ICC. For the signature of the
Apple-supplied CMM, see “Signature of the
Apple-Supplied Color Management Module” on page 3-9.

profileVersion The version of the profile format. The first 8 bits indicate
the major version number, followed by 8 bits indicating the
minor version number. The following 2 bytes are reserved.
The profile version number is not tied to the version of the
ColorSync Manager. Profile formats and their versions are
defined by the ICC. For example, a major version change

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-28

may indicate the addition of new required tags to the
profile format; a minor version change may indicate the
addition of new optional tags.

profileClass One of the six types of profile classes supported by the
ICC: input, display, output, device link, color space
conversion or abstract. For the signatures representing
profile classes, see “Profile Classes” on page 3-8.

dataColorSpace The color space of the profile. Color values used to express
colors of images using this profile are specified in this color
space. For a list of the color space signatures, see “Color
Space Signatures” on page 3-13.

profileConnectionSpace
The profile connection space or PCS. The profile
connection spaces are cmXYZData or cmLabData. For the
signatures for these two color spaces, see “Color Space
Signatures” on page 3-13.

dateTime The date and time when the profile was created. You can
use this value to keep track of your own versions of this
profile.

CS2profileSignature
The 'acsp' constant as required by the ICC format.

platform The signature of the primary platform on which this
profile runs. For Apple Computer, this is 'APPL'. For other
platforms, refer to the International Color Consortium Profile
Format Specification. See “Introduction to the ColorSync
Manager” in Advanced Color Imaging on the Mac OS for
information on how to obtain this document. This value is
registered with the ICC.

flags Flags to indicate hints for the preferred CMM, such as
quality and speed options. The flags field consists of an
unsigned long data type. The low word of the 16 bits is
reserved for use by the ICC. The high word is available for
use by color management systems. The ColorSync
Manager uses the high word in the following way: it uses
the least significant 2 bits of the high word for the quality
and speed flag. This flag specifies the quality for color
matching, which can be normal mode, draft mode, or best
mode. Best mode is slowest, but it produces the highest

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-29

quality result. (This feature is provided by the ColorSync
Manager; it is not defined by the ICC profile specification.)
Use of the first 2 bits of the low word is prescribed by the
ICC. The first two bits are set in the following way:
The first bit at position 0 is used to indicate if the profile is
embedded. The bit is set in the following way:
cmEmbeddedProfile = 0 if the profile is embedded and 1 if
the profile is not embedded in a file.
The second bit at position 1 is used to indicate if the profile
can be used independently: cmEmbeddedUse = 0 if the profile
can be used independently and 1 if it is to be used as an
embedded profile only. You should interpret the setting of
this bit as an indication of copyright protection. If the
profile developer set this bit to 1, you should use this
profile as an embedded profile only and not copy the
profile for your own purposes. The profile developer also
specifies explicit copyright intention using the cprt profile
tag.

deviceManufacturer
The signature of the manufacturer of the device to which
this profile applies. This value is registered with the ICC.

deviceModel The model of this device, as registered with the ICC.
deviceAttributes

Attributes that are unique to this particular device setup,
such as media type, paper, and ink types. This field
consists of an array of 2 unsigned long data types, [0] and
[1]. The low word of long [1] is reserved by the ICC. The
high word of long [1] and the entire word of long [0] are
available for your use. Each of the first two bits is set to 1 if
the flag is on and 0 if it is off. The first bit at position 0 is
set to 1 if the media is transparency and 0 if the media is
reflective. The second bit at position 1 is set to 1 if the
media is matte and 0 if the media is glossy.

renderingIntent
The preferred rendering intent for the object or file tagged
with this profile. Rendering intents are perceptual, relative
colorimetric, saturation, and absolute colorimetric.This
field consists of an unsigned long data type. The low word
is reserved by the ICC. The high word is available for use.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-30

The ColorSync Manager uses the high word for setting the
rendering intent. You can use the constants defined by the
ColorSync Manager for the rendering intents to set this
field. See “Rendering Intent Values for Version 2.0 Profiles”
on page 3-19. For information about rendering intents, see
the chapter “Developing ColorSync-Supportive
Applications” in Advanced Color Imaging on the Mac OS.

white The profile illuminant white reference point which is
expressed in the XYZ color space.

reserved This field is reserved for future use.

Concatenated Profile Set Structure 3

A color world is not limited to two profiles. It can include a series of profiles
that describe the processing to be carried out in a work flow sequence such as
scanning, printing, and previewing an image.

To identify a set of profiles, your application uses a data structure of type
CMConcatProfileSet that includes an array to hold the set of profile references.
You provide this array as the profileSet field of the CMConcatProfileSet
structure. You specify the profiles of the array in processing order—from source
through destination.

The array identifies a concatenated profile set your application can use to
establish a color world in which the sequential relationship among the profiles
exists until your application disposes of the color world. Alternatively, you can
create a device-linked profile composed of a series of linked profiles that
remains intact and available for use again after your application disposes of the
concatenated color world. In either case, you use a data structure of type
CMConcatProfileSet to define the profile set.

A device-linked profile accommodates users who use a specific configuration
requiring a combination of device profiles and possibly nondevice profiles
repeatedly over time.

To set up a color world that includes a concatenated set of profiles, your
application uses the CWConcatColorWorld function, passing it a structure of type
CMConcatProfileSet. For a description of the CWConcatColorWorld function, see
page 3-82. Your application may use the CMConcatProfileSet structure to pass
the CWConcatColorWorld function an array containing a set of profile references
or an array containing only the profile reference of a device-linked profile.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-31

To create a device-linked profile, your application calls the CWNewLinkProfile
function passing it a structure of type CMConcatProfileSet. For a description of
the CWNewLinkProfile function, see page 3-84.

struct CMConcatProfileSet {
unsigned short keyIndex;
unsigned short count;
CMProfileRef profileSet[1];

};

Field descriptions
keyIndex A zero-based index into the array of profile references

identifying the profile whose CMM is to be used for the
entire session. The profile’s CMMType field identifies the
CMM.

count The number of profiles in the profile array. A minimum of
one profile is required.

profileSet A variable-length array of profile references. The profiles
whose references you specify must be in processing order
from source to destination. The rules governing the types
of profiles you can specify in a profile array differ
depending on whether you are creating a profile set for the
CWConcatColorWorld function or for the CWNewLinkProfile
function. See the functions for details.

Color World Information Record 3

Your application supplies a color world information record structure of type
CMCWInfoRecord as a parameter to the CMGetCWInfo function to obtain
information about a given color world. The ColorSync Manager uses this data
structure to return information about the color world.

struct CMCWInfoRecord {
unsigned long cmmCount;
CMMInfoRecord cmmInfo[2];

};

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-32

Field descriptions
cmmCount The number of CMMs involved in the color-matching

session, either 1 or 2.

cmmInfo An array containing two elements. Depending on the
value that cmmCount returns, the cmmInfo array contains one
or two records of type CMMInfoRecord reporting the CMM
type and version number.
If cmmCount is 1, the first element of the array (cmmInfo[0])
identifies the CMM and the second element of the array
(cmmInfo[1]) is undefined.
If cmmCount is 2, the first element of the array (cmmInfo[0])
identifies the source CMM and the second element of the
array (cmmInfo[1]) identifies the destination CMM. For a
description of the CMMInfoRecord data structure, see “Color
Management Module (CMM) Information Record
Structure” on page 3-32.

Color Management Module (CMM) Information Record Structure 3

Your application supplies an array containing two CMM information record
structures of type CMMInfoRecord as a field of the CMCWInfoRecord structure.
These structures allow the CMGetCWInfo function to return information about
the one or two CMMs used in a given color world. Your application must
allocate memory for the array. When your application calls the CMGetCWInfo
function, it passes a pointer to the CMCWInfoRecord structure containing the
array.

struct CMMInfoRecord {
OSType CMMType;
long CMMVersion;

};

Field descriptions
CMMType The signature of the CMM as specified in the profile

header’s CMMType field. The CMGetCWInfo function returns
this value.

CMMVersion The version of the CMM. The CMGetCWInfo function returns
this value.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-33

Profile Search Record 3

Your application supplies a search record of type CMSearchRecord as the
searchSpec parameter to the CMNewProfileSearch function to provide the
ColorSync Manager with the search criteria to use in determining which
version 2 profiles to include in the result list and which to filter out. You cannot
use the ColorSync Manager search functions to search for ColorSync 1.0
profiles.

The ColorSync Manager preserves this information internally along with the
search result list until your application calls the CMDisposeProfileSearch
function to release the memory. This allows your application to call the
CMUpdateProfileSearch function to update the search result if the ColorSync
Profiles folder contents change without needing to provide the search
specification again. A search record is defined by the CMSearchRecord type
definition.

struct CMSearchRecord {
OSType CMMType;
OSType profileClass;
OSType dataColorSpace;
OSType profileConnectionSpace;
unsigned long deviceManufacturer;
unsigned long deviceModel;
unsigned long deviceAttributes[2];
unsigned long profileFlags;
unsigned long searchMask;
CMProfileFilterUPP filter;

};

Constant descriptions

CMMType The signature of a CMM. The CMMType field of a profile’s
header must specify this signature if the searchMask
bitmask you specify includes this field.

profileClass The class of profile to search for. The profileClass field of
a profile’s header must specify this signature if the
searchMask bitmask you specify includes this field. For a
list of profile classes and the constants for their signatures,
see “Profile Classes” on page 3-8.

dataColorSpace A data color space. The dataColorSpace field of a profile’s
header must specify this value if the searchMask bitmask

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-34

you specify includes this field. For a list of the color space
signatures, see “Color Space Signatures” on page 3-13.

profileConnectionSpace

A profile connection color space. The
profileConnectionSpace field of a profile’s header must
match this value if the searchMask bitmask you specify
includes this field. The profile connection spaces are
cmXYZData or cmLabData. For the signatures of these two
color spaces, see “Color Space Signatures” on page 3-13.

deviceManufacturer

The signature of the manufacturer. The deviceManufacturer
field of a profile’s header must match this value if the
searchMask bitmask you specify includes this field.

deviceModel The model of a device. The deviceModel field of a profile’s
header must match this value if the searchMask bitmask
you specify includes this field.

deviceAttributes
Attributes for a particular device setup, such as media
type, paper, and ink types. The deviceAttributes field of a
profile’s header must match these attributes if the
searchMask bitmask you specify includes this field.

profileFlags Flags that indicate hints for the preferred CMM, such as
quality, speed, and memory options. The flags field of a
profile’s header must specify this value if the searchMask
bitmask you specify includes this field. In most cases, you
will not want to search for profiles based on the flags
settings.

searchMask A bitmask that specifies the search record fields to be used
in the profile search. Here are the defined bitmask values:

cmMatchAnyProfile 0x00000000
cmMatchProfileCMMType 0x00000001
cmMatchProfileClass 0x00000002
cmMatchDataColorSpace 0x00000004
cmMatchProfileConnectionSpace 0x00000008
cmMatchManufacturer 0x00000010
cmMatchModel 0x00000020
cmMatchAttributes 0x00000040
cmMatchProfileFlags 0x00000080

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-35

filter A pointer to a calling program-supplied function. This
function examines a profile to determine if it should be
excluded from the profile search result list based on
criteria such as an element or elements not included in the
search record fields. For more information, see the
MyCMProfileFilterProc function on page 3-136.

XYZ Color Component Values 3

Three components combine to express a color value defined by the CMXYZColor
type definition in the XYZ color space. Each color component is described by a
numeric value defined by the CMXYZComponent type definition. A component
value of type CMXYZComponent is expressed as a 16-bit value. This is formatted
as an unsigned value with 1 bit of integer portion and 15 bits of fractional
portion.

typedef unsigned short CMXYZComponent;

XYZ Color Value 3

Color component values defined by CMXYZComponent type definition combine to
form a color value specified in the XYZ color space. The color value is defined
by the CMXYZColor type definition.

Your application uses the CMXYZColor data structure to specify a color value in
the CMColor union to be used in low-level color matching, color checking, or
color conversion. You also use the CMXYZColor data structure to specify the XYZ
white point reference used in the conversion of colors to or from the XYZ color
space.

struct CMXYZColor {
CMXYZComponent X;
CMXYZComponent Y;
CMXYZComponent Z;

};

Fixed XYZ Color Value 3

The CMFixedXYZColor data type is used to specify the profile illuminant in the
profile header’s white field and to specify other profile element values. Your

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-36

application uses the CMFixedXYZColor data type to specify color values to be
converted to and from color values defined by the CMXYZColor data type.

Color component values defined by the Fixed type definition can be used to
specify a color value in the XYZ color space with greater precision than a color
whose components are expressed as CMXYZComponent data types. The Fixed data
type is a signed 32-bit value. A color value expressed in the XYZ color space
whose color components are of type Fixed is defined by the CMFixedXYZColor
type definition.

To convert color values, you use the CMFixedXYZToXYZ function described on
page 3-117 and the CMXYZToFixedXYZ function described on page 3-116.

struct CMFixedXYZColor {
Fixed X;
Fixed Y;
Fixed Z;

};

L*a*b* Color Value 3

A color expressed in the L*a*b* color space is composed of L, a, and b
component values. Each color component is expressed as a numeric value
within the range of 0 to 65280. For the L component, this maps to 0 to 100
inclusive. For the a component, this maps to –128 to 127 inclusive. For the b
component, this maps to –128 to 127 inclusive. The color value is defined by the
CMLabColor type definition.

struct CMLabColor {
unsigned short L;
unsigned short a;
unsigned short b;

};

L*u*v* Color Value 3

A color value expressed in the L*u*v* color space is composed of L, u, and v
component values. Each color component is expressed as a numeric value
within the range of 0 to 65535. For the L component, this maps to 0 to 100
inclusive. For the u component, this maps to –128 to 127.996 inclusive. For the

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-37

v component, this maps to –128 to 127.996 inclusive. The color value is defined
by the CMLuvColor type definition.

struct CMLuvColor {
unsigned short L;
unsigned short u;
unsigned short v;

};

Yxy Color Value 3

A color value expressed in the Yxy color space is composed of capY, x, and y
component values. Each color component is expressed as a numeric value
within the range of 0 to 65535 which maps to 0 to 1. The color value is defined
by the CMYxyColor type definition

struct CMYxyColor {
unsigned short capY; /* 0..65535 maps to 0..1 */
unsigned short x; /* 0..65535 maps to 0..1 */
unsigned short y; /* 0..65535 maps to 0..1 */

};

RGB Color Value 3

A color value expressed in the RGB color space is composed of red, green, and
blue component values. Each color component is expressed as a numeric value
within the range of 0 to 65535.

struct CMRGBColor {
unsigned short red;
unsigned short green;
unsigned short blue;

};

HLS Color Value 3

A color value expressed in the HLS color space is composed of hue, lightness,
and saturation component values. Each color component is expressed as a

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-38

numeric value within the range of 0 to 65535 inclusive. The hue value
represents a fraction of a circle in which red is positioned at 0.

struct CMHLSColor {
unsigned short hue;
unsigned short lightness;
unsigned short saturation;

};

HSV Color Value 3

A color value expressed in the HSV color space is composed of hue, saturation,
and value component values. Each color component is expressed as a numeric
value within the range of 0 to 65535 inclusive. The hue value represents a
fraction of a circle in which red is positioned at 0.

typedef struct CMHSVColor {
unsigned short hue;
unsigned short saturation;
unsigned short value;

}CMHSVColor;

CMYK Color Value 3

A color value expressed in the CMYK color space is composed of cyan, magenta,
yellow, and black component values. Each color component is expressed as a
numeric value within the range of 0 to 65535 inclusive.

struct CMCMYKColor {
unsigned short cyan;
unsigned short magenta;
unsigned short yellow;
unsigned short black;

};

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-39

CMY Color Value 3

A color value expressed in the CMY color space is composed of cyan, magenta,
and yellow component values. Each color component is expressed as a numeric
value within the range of 0 to 65535 inclusive.

struct CMCMYColor {
unsigned short cyan;
unsigned short magenta;
unsigned short yellow;

};

HiFi Color Values 3

A color expressed in one of the multichannel color spaces with 5, 6, 7, or 8
channels. The color value for each channel component is expressed as an
unsigned byte of type char.

struct CMMultichannel5Color {
unsigned char components[5];

};

struct CMMultichannel6Color {
unsigned char components[6];

};

struct CMMultichannel7Color {
unsigned char components[7];

};

struct CMMultichannel8Color {
unsigned char components[8];

};

Gray Color Value 3

A color value expressed in the Gray color space is composed of a single
component, gray, represented as a numeric value within the range of 0 to 65535
inclusive.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-40

struct CMGrayColor {
unsigned short gray;

};

The Color Union 3

Your application may use a union of type CMColor to specify a color value
defined by one of the 14 data types supported by the union. Your application
specifies an array of unions of type CMColor containing a list of colors to be
matched, checked, or converted. The array is passed as a parameter to the
low-level color matching, color checking, or color conversion functions. The
following functions use a color union:

■ The CWMatchColors function, described on page 3-97, matches the colors in
the color list array to the data color space of the destination profile specified
by the color world.

■ The CWCheckColors function, described on page 3-98, checks the colors in the
color list array against the color gamut specified by the color world’s
destination profile.

■ The color conversion functions, described from page 3-108 to page 3-114,
take source and destination array parameters of type CMColor specifying lists
of colors to be converted from one color space to another.

You do not use a union of type CMColor to convert colors expressed in the XYZ
color space as values of type CMFixedXYZ because the CMColor union does not
support the CMFixedXYZ data type.

The color union is defined by the CMColor type definition.

union CMColor {
CMRGBColor rgb;
CMHSVColor hsv;
CMHLSColor hls;
CMXYZColor XYZ;
CMLabColor Lab;
CMLuvColor Luv;
CMYxyColor Yxy;
CMCMYKColor cmyk;
CMCMYColor cmy;
CMGrayColor gray;
CMMultichannel5Color mc5;

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-41

CMMultichannel6Color mc6;
CMMultichannel7Color mc7;
CMMultichannel8Color mc8;
};

A color union can contain one of the following fields.

Field descriptions
rgb A color value expressed in the RGB color space as data of

type CMRGBColor. See “RGB Color Value” on page 3-37 for a
description of the CMRGBColor data type.

hsv A color value expressed in the HSV color space as data of
type CMHSVColor. See “HSV Color Value” on page 3-38 for a
description of the CMHSVColor data type.

hls A color value expressed in the HLS color space as data of
type CMHLSColor. See “HLS Color Value” on page 3-37 for a
description of the CMHLSColor data type.

XYZ A color value expressed in the XYZ color space as data of
type CMXYZColor. See “XYZ Color Value” on page 3-35 for a
description of the CMXYZColor data type.

Lab A color value expressed in the L*a*b* color space as data of
type CMLabColor. See “L*a*b* Color Value” on page 3-36 for
a description of the CMLabColor data type.

Luv A color value expressed in the L*u*v* color space as data
of type CMLuvColor. See “L*u*v* Color Value” on page 3-36
for a description of the CMLuvColor data type.

Yxy A color value expressed in the Yxy color space as data of
type CMYxyColor. See “Yxy Color Value” on page 3-37 for a
description of the CMYxyColor data type.

cmyk A color value expressed in the CMYK color space as data
of type CMCMYKColor. See “CMYK Color Value” on
page 3-38 for a description of the CMCMYKColor data type.

cmy A color value expressed in the CMY color space as data of
type CMCMYColor. See “CMY Color Value” on page 3-39 for a
description of the CMCMYColor data type.

gray A color value expressed in the Gray color space as data of
type CMGrayColor. See “Gray Color Value” on page 3-39 for
a description of the CMGrayColor data type.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-42

mc5 A color value expressed in the five-channel multichannel
color space as data of type CMMultichannel5Color. See “HiFi
Color Values” on page 3-39 for a description of the
CMMultichannel5Color data type.

mc6 A color value expressed in the six-channel multichannel
color space as data of type CMMultichannel6Color. See “HiFi
Color Values” on page 3-39 for a description of the
CMMultichannel6Color data type.

mc7 A color value expressed in the seven-channel multichannel
color space as data of type CMMultichannel7Color. See “HiFi
Color Values” on page 3-39 for a description of the
CMMultichannel7Color data type.

mc8 A color value expressed in the eight-channel multichannel
color space as data of type CMMultichannel8Color. See “HiFi
Color Values” on page 3-39 for a description of the
CMMultichannel8Color data type.

The ColorSync Manager Bitmap 3

The ColorSync Manager provides a bitmap structure of type CMBitmap to
describe color bitmap images. When your application calls the CWMatchBitmap
function, described on page 3-92, you pass a pointer to the source bitmap of
type CMBitMap containing the image whose colors are to be matched to the color
gamut of the destination device’s image specified by the destination profile of
the given color world. If you do not want the image color matched in place,
you can also pass a pointer to a resulting bitmap of type CMBitmap to define and
hold the color matched image. When your application calls the CWCheckBitMap
function, described on page 3-95, it passes a pointer to the source bitmap of
type CMBitMap describing the source image and a pointer to a resulting bitmap
of type CMBitMap to hold the color check results.

IMPORTANT

For QuickDraw GX, an image can have an indexed bitmap
to a list of colors. The ColorSync Manager does not
support indexed bitmaps. Instead, your application can
use the low-level matching functions to match the
individual elements of the color table. ▲

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-43

struct CMBitmap {
char *image;
long width;
long height;
long rowBytes;
long pixelSize;
CMBitmapColorSpace space;
long user1;
long user2;
};

Field descriptions
image A pointer to a bit image.

width The width of the bit image, that is, the number of pixels in
a row.

height The height of the bit image, that is, the number of rows in
the image.

rowBytes The offset in bytes from one row of the image to the next.
pixelSize The number of bits per pixel.
space The color space in which the colors of the bitmap image

are specified. For a description of the possible color spaces
for color bitmaps, see “Color Spaces,” beginning on
page 3-15.

user1 Not used by ColorSync. This field is reserved for use by
QuickDraw GX.

user2 Not used by ColorSync. This field is reserved for use by
QuickDraw GX.

Profile Reference 3

A profile reference is the means by which your application gains access to a
profile. Several ColorSync Manager functions return a profile reference to your
application. Your application then passes it as a parameter on subsequent calls
to other ColorSync Manager functions that use profiles.

The ColorSync Manager returns a unique profile reference in response to each
individual call to the CMOpenProfile, CMCopyProfile, and CMNewProfile functions
described beginning on page 3-50. This allows multiple applications concurrent

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-44

access to a profile. The ColorSync Manager defines an abstract private data
structure of type CMPrivateProfileRecord for the profile reference.

typedef struct CMPrivateProfileRecord *CMProfileRef;

Profile Search Result Reference 3

A search result consists of a list of profiles matching certain search criteria.
When your application calls the CMNewProfileSearch function described on
page 3-101 to search in the ColorSync Profiles folder for profiles that meet
certain criteria, the ColorSync Manager returns a reference to an internal
private data structure containing the search result. In subsequent calls to the
ColorSync Manager functions, your application passes the search result
reference to the function to update the search result list, dispose of it, open a
reference to a profile at a specific position in the list, or to obtain the file
specification for a profile in the list. The ColorSync Manager defines an abstract
private data structure of type CMPrivateProfileSearchResult for the search
result reference.

struct CMPrivateProfileSearchResult *CMProfileSearchRef;

High-Level Color-Matching-Session Reference 3

The ColorSync Manager defines an abstract private data structure of type
CMPrivateMatchRefRecord for the color-matching-session reference. When your
application calls the NCMBeginMatching function described on page 3-75 to begin
a high-level color-matching session, the ColorSync Manager returns a reference
to the color-matching session which you must later pass to the CMEndMatching
function to conclude the session.

struct CMPrivateMatchRefRecord *CMMatchRef;

Color World Reference 3

Your application passes a color world reference as a parameter on calls to
functions to hold color-matching and color-checking sessions and to dispose of
the color world. When your application calls the NCWNewColorWorld function
described on page 3-81 and the CWConcatColorWorld function described on
page 3-82 to allocate a color world for color-matching and color-checking

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-45

sessions, the ColorSync Manager returns a reference to the color world. The
ColorSync Manager defines an abstract private data structure of type
CMPrivateColorWorldRecord for the color world reference.

struct CMPrivateColorWorldRecord *CMWorldRef;

TEnableColorMatchingBlk 3

You pass a structure defined by the TEnableColorMatchingBlk data type to the
PrGeneral function when you use the EnableColorMatchingOp opcode, described
in “Operation Codes Used With PrGeneral Function” on page 3-22.
ColorSync-supportive drivers support the EnableColorMatchingOp operation
code as a PrGeneral call that turns the fEnableIt flag on or off to enable or
disable color matching.

struct TEnableColorMatchingBlk {
short iOpCode;
short iError;
long lReserved;
THPrint hPrint;
Boolean fEnableIt;
SInt8 filler;
};

Field descriptions
iOpCode The PrGeneral printing opcode.

iError The returned error code.
lReserved Reserved for future use.
hPrint A valid print record.
fEnableIt The flag set by the EnableColorMatchingOp opcode.
SInt8 Filler.

Profile Header for ColorSync 1.0 3

ColorSync 1.0 defines a version 1.0 profile whose structure and format are
different from that of the ICC version 2.0 profile.

Your application cannot use the ColorSync Manager API to update a version
1.0 profile or to search for version 1.0 profiles. However, your application can

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-46

use the remaining ColorSync Manager API that pertains to profiles with
version 1.0 profiles.

Your application can open a version 1.0 profile using the CMOpenProfileFile
function, obtain the version 1.0 profile header using the CMGetProfileHeader
function, and access version 1.0 profile elements using the CMGetProfileElement
function. To make this possible, the ColorSync Manager API includes a union,
described in “Apple Profile Header” on page 3-26, that supports either profile
header version. The CMHeader data type defines the version 1.0 profile header.

struct CMHeader {
unsigned long size;
OSType CMMType;
unsigned long applProfileVersion;
OSType dataType;
OSType deviceType;
OSType deviceManufacturer;
unsigned long deviceModel;
unsigned long deviceAttributes[2];
unsigned long profileNameOffset;
unsigned long customDataOffset;
CMMatchFlag flags;
CMMatchOption options;
CMXYZColor white;
CMXYZColor black;

};

Field descriptions
size The total size in bytes of the profile, including any custom

data.

CMMType The signature of the preferred CMM to be used for
color-matching and color-checking sessions for this profile.
To obviate conflicts with other CMMs, this signature must
be registered with the ICC. For the signature of the
Apple-supplied CMM, see “Signature of the
Apple-Supplied Color Management Module” on page 3-9.

applProfileVersion
The Apple profile version. Set this field to $0100 (defined
as the constant kCMApplProfileVersion).

dataType The kind of color data. The types are

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-47

rgbData = 'RGB ', source or destination profiles
cmykData = 'CMYK', destination profiles
grayData = 'GRAY', source or destination profiles
xyzData = 'XYZ ' source or destination profiles

deviceType The kind of device. The types are
monitorDevice = 'mntr'
scannerDevice = 'scnr'
printerDevice = 'prtr'

deviceManufacturer
A name supplied by the device manufacturer.

deviceModel The device model specified by the manufacturer.
deviceAttributes Private information such as paper surface and ink

temperature.
profileNameOffset The offset to the profile name from the top of data.
customDataOffset The offset to any custom data from the top of data.
flags A field used by drivers; it can hold one of the following:

CMNativeMatchingPreferred
CMTurnOffCache
The CMNativeMatchingPreferred flag is available for
developers of intelligent peripherals that can off-load color
matching into the peripheral. Most drivers will not use this
flag. (Its default setting is 0, meaning that the profile
creator does not care whether matching occurs on the host
or the device.)
The CMTurnOffCache flag can be used by CMMs that won’t
benefit from a cache, such as those that can look up data
from a table with less overhead, or that don’t want to take
the memory hit a cache entails, or that do their own
caching and don’t want the CMM to do it. (The default is
0, meaning turn on cache.)

options The options field specifies the kind of matching this profile
is for; it can be CMPerceptualMatch, the default,
CMColorimetricMatch, or CMSaturationMatch. The options
are set by the image creator.

white The white point for this profile expressed in XYZ space.
black The black point for this profile expressed in XYZ space.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-48

PostScript Color Rendering Dictionary (CRD) Virtual Memory Size Tag Structure 3

To specify the maximum virtual memory size of the color rendering dictionary
(CRD) for a specific rendering intent for a particular PostScript Level 2 printer
type, a printer profile can include the Apple-defined 'psvm' optional tag. This
tag’s element data includes an array containing one entry for each rendering
intent and its virtual memory size.

If a PostScript printer profile includes this tag, the Apple-supplied CMM will
use the tag and return the values specified by the tag when your application or
device driver calls the CMGetPS2ColorRenderingVMSize function described on
page 3-129.

If a PostScript printer profile does not include this tag, the CMM uses an
algorithm to determine the VM size of the CRD, which may be assessed as
greater than the actual maximum VM size.

The CMIntentCRDVMSize data type defines the rendering intent and its
maximum VM size. The CMPS2CRDVMSizeType data type for the tag includes an
array containing one or more members of type CMIntentCRDVMSize.

struct CMIntentCRDVMSize {
long renderingIntent;
unsigned long VMSize;

};

For example, a rendering intent might be 0 and its VM size 120 KB.

Constant descriptions

renderingIntent The rendering intent whose CRD virtual memory size you
want to obtain. Rendering intent values are
0 (cmPerceptual)
1 (cmRelativeColorimetric)
2 (cmSaturation)
3 (cmAbsoluteColorimetric)

VMSize The virtual memory size of the CRD for the rendering
intent specified for the renderingIntent field.

The CMPS2CRDVMSizeType data type defines the Apple-defined 'psvm' optional
tag.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-49

struct CMPS2CRDVMSizeType {
OSType typeDescriptor;
unsigned long reserved;
unsigned long count;
CMIntentCRDVMSize intentCRD[1];

};

Constant descriptions

typeDescriptor The 'psvm' tag signature.
reserved Reserved for future use.
count The number of entries in the intentCRD array. You should

specify at least 4 entries: 0, 1, 2, and 3.
CMIntentCRDVMSize

A variable-sized array of four or more members defined by
the CMIntentCRDSize data type.

The ColorSync Manager Functions 3

This section describes the functions defined for your application’s use by the
ColorSync Manager.

The functions are organized into the following categories:

■ profile file and element access

■ high-level QuickDraw-specific matching

■ low-level matching

■ system profile access

■ external profile searching

■ color conversion

■ PostScript-support functions

■ utilities

■ calling-program-supplied function prototypes

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-50

Accessing Profile Files 3

This section describes the functions you use to open, update, close, create, copy,
validate, flatten, and unflatten profiles.

CMOpenProfile 3

To open a specific profile and receive a reference to the profile, use the
CMOpenProfile function.

pascal CMError CMOpenProfile (CMProfileRef *prof
 const CMProfileLocation *theProfile);

prof A reference to a unique internal private data structure. For
more information, see “Profile Reference” on page 3-43.

theProfile The location of the profile, which you specify using the
CMProfileLocation data type described on page 3-24.
Commonly a profile is disk-file based. However, the profile may
be a file-based profile, a handle-based profile, or a
pointer-based profile.

DESCRIPTION

If the CMOpenProfile function completes successfully, the profile reference is
returned to your application. You need this reference to identify the profile to
be used when your application calls functions, for example, to color match,
copy, and update a profile, and validate its contents.

The ColorSync Manager maintains private storage for each request to open a
profile, allowing more than one application to use a profile concurrently.

When you create a new profile or modify the elements of an existing profile,
the ColorSync Manager stores the new or modified elements in the private
storage it maintains for your application. Any new or changed profile elements
are not incorporated into the profile itself until your application calls the
CMUpdateProfile function, described on page 3-52, to update the profile. If you
call the CMCopyProfile function, described on page 3-55, to create a copy of an
existing profile under a new name, any changes you have made are

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-51

incorporated in the profile duplicate but the original profile remains
unchanged.

Before you call the CMOpenProfile function, you must set the CMProfileLocation
data structure to identify the location of the profile to be opened. Most
commonly, a profile is stored in a disk file. If the profile is in a disk file, use the
profile location data type to provide its file specification. If the profile is in
memory, use the profile location data type to specify a handle or pointer to the
profile.

Your application must obtain a profile reference before you copy or validate a
profile, and before you flatten the profile to embed it.

For example, your application may open a profile, call the CMGetProfileHeader
function to obtain the profile’s header in order to modify its values, set new
values, call the CMSetProfileHeader function to replace the modified header,
and finally pass the profile reference to a function such as NCWNewColorWorld to
be used as the source or destination profile in a color world for a
color-matching session.

When you close your reference to the profile by calling the CMCloseProfile
function, described on page 3-51, your changes are discarded.

CMCloseProfile 3

To close a reference to a profile, use the CMCloseProfile function.

pascal CMError CMCloseProfile (CMProfileRef prof);

prof The profile reference to be closed. For more information, see
“Profile Reference” on page 3-43.

DESCRIPTION

The CMCloseProfile function closes the specified reference to a profile returned
from a previous call to the CMOpenProfile or CMNewProfile functions.

The CMCloseProfile function releases memory allocated in association with the
profile reference. Any temporary changes your application made to the profile
are not recorded in the profile before the profile reference is closed unless you
first call the CMUpdateProfile function to update the profile.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-52

The CMCloseProfile function does not close the profile itself. Instead, it closes
your application’s unique reference to the profile. The profile will remain open
if other references to it exist. The ColorSync Manager closes the profile when
the last reference to the profile is closed.

If you create a new profile by calling the CMNewProfile function, the profile is
saved to disk when you call the CMCloseProfile function unless you specified
NULL as the profile location when you created the profile.

SEE ALSO

To save changes to a profile before closing it, use the CMUpdateProfile function,
which is described next.

CMUpdateProfile 3

To save modifications to a profile, use the CMUpdateProfile function.

pascal CMError CMUpdateProfile (CMProfileRef prof);

prof A reference to the profile to be updated. For more information,
see “Profile Reference” on page 3-43.

DESCRIPTION

The CMUpdateProfile function makes permanent any changes or additions your
application has made to the profile indicated by the profile reference if no other
references to that profile exist.

Each time an application calls the CMOpenProfile function, a unique reference to
the profile is created. More than one reference to a profile may exist. If the
profile is opened by another program when your application calls this function,
the ColorSync Manager returns an error and does not update the profile.

You cannot use the CMUpdateProfile function to update a ColorSync 1.0 profile.
For information on updating a ColorSync 1.0 profile, see the appendix,
“ColorSync Manager Backward Compatibility”

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-53

SEE ALSO

After you fill in tags and their data elements for a new profile created by calling
the CMNewProfile function, described on page 3-53, you must call
CMUpdateProfile to write the element data to the new profile.

If you modify an open profile, you must call CMUpdateProfile to save the
changes to the profile file before you call CMCloseProfile, described on
page 3-51. Otherwise, the changes are discarded.

To modify a profile header, you use the CMGetProfileHeader function described
on page 3-64 and the CMSetProfileHeader function described on page 3-72.

To set profile elements outside the header, you use the CMSetProfileElement
function described on page 3-71, the CMSetProfileElementSize function
described on page 3-69, and the CMSetPartialProfileElement function
described on page 3-70.

CMNewProfile 3

To create a new profile and associated backing copy, use the CMNewProfile
function.

pascal CMError CMNewProfile (CMProfileRef *prof,
 const CMProfileLocation *theProfile);

prof A reference to the profile that the ColorSync Manager returns if
the function completes successfully. For more information, see
“Profile Reference” on page 3-43.

theProfile
The location for the new profile. You use the CMProfileLocation
data type, described on page 3-24, to specify the profile
location. The default disk file type for a profile is prof.A profile
is commonly disk-file based. However, to accommodate special
requirements, you can create a new profile in relocatable
memory that is a handle-based profile or you can create a
temporary profile that isn’t saved after you call the
CMCloseProfile function. To create a temporary profile, you can

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-54

either specify cmNoProfileBase as the kind of profile in the
profile location structure or you can specify NULL for this
parameter.

DESCRIPTION

The CMNewProfile function creates a new profile and backing copy in the
location you specify. After you create the profile, you must fill in the profile
header fields and populate the profile with tags and their element data, and
then call CMUpdateProfile, described on page 3-52, to save the element data to
the profile file. The default ColorSync 2.0 profile contents include a profile
header of type CM2Header, described on page 3-26, and an element table.

To set profile elements outside the header, you use the CMSetProfileElement
function described on page 3-71, the CMSetProfileElementSize function
described on page 3-69, and the CMSetPartialProfileElement function
described on page 3-70. You set these elements individually, identifying them
by their tag names.

When you create a new profile, all fields of the CM2Header profile header are set
to zero except the size and profileVersion fields.To set the header elements,
you call the CMGetProfileHeader function described on page 3-64 to get a copy
of the header, assign values to the header fields, then call the
CMSetProfileHeader function described on page 3-72 to write the new header to
the profile.

For each profile type, such as a device profile, there is a specific set of elements
and associated tags defined by the ICC that a profile must contain to meet the
baseline requirements. The ICC also defines optional tags that a particular
CMM might use to optimize or improve its processing. You can also define
private tags, whose tag signatures you register with the ICC, to provide a
CMM with greater capability to refine its processing.

After you fill in the profile with tags and their element data, you must call the
CMUpdateProfile function to write the new profile elements to the profile file.

Special Considerations

This function is most commonly used by profile developers who create profiles
for device manufacturers and by calibration applications. In most cases,
application developers use existing profiles. ◆

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-55

SEE ALSO

For information on how to fill in a profile with tags and element data including
a description of the profile tags, refer to the International Color Consortium Profile
Format Specification. See Advanced Color Imaging on the Mac OS, “Introduction to
the ColorSync Manager” for information on how to obtain this document.

CMCopyProfile 3

To duplicate an existing profile, use the CMCopyProfile function.

pascal CMError CMCopyProfile (CMProfileRef *targetProf,
const CMProfileLocation *targetLocation,
CMProfileRef srcProf);

targetProf A reference to the copy of the profile. The ColorSync Manager
returns this reference to your application if the function
completes successfully. For more information, see “Profile
Reference” on page 3-43.

targetLocation
The location in memory or on disk where the ColorSync
Manager is to create the copy of the profile. A profile is
commonly disk-file based. However, to accommodate special
requirements, you can create a new profile in relocatable
memory that is a handle-based profile or you can create a
temporary profile that isn’t saved after you call the
CMCloseProfile function. To create a temporary profile, you can
either specify cmNoProfileBase as the kind of profile in the
profile location structure or you can specify NULL for this
parameter. To specify the location, you use the
CMProfileLocation data type described on page 3-24.

srcProf The reference for the profile to be duplicated.

DESCRIPTION

The CMCopyProfile function duplicates an existing open profile whose reference
you specify. If you have made temporary changes to the profile, which you
have not saved by calling CMUpdateProfile, those changes are included in the

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-56

copy of the profile to be created. They are not saved to the original profile
unless you call CMUpdateProfile for that profile.

Unless you are copying a profile that you created, you should not infringe on
copyright protection specified by the profile creator. To obtain the copyright
information, you call the CMGetProfileElement function, described on page 3-62,
specifying the cprt tag signature for the copyright element. You should also
check the flags field of the CMProfileHeader, described in “Profile 2.0 Header
Structure for the ColorSync Manager,” beginning on page 3-26, for copyright
information. The second bit of the flags field at position 1 is used to indicate if
the profile can be used independently. If the profile developer set this bit to 1,
you should use this profile as an embedded profile only and not copy the
profile for your own purposes.

A calibration program might use this function, for example, to copy a device’s
original profile, then modify the copy to reflect the current state of the device.
You might also want to copy a profile after you unflatten it.

SEE ALSO

To copy a profile, you must obtain a reference to that profile by either opening
the profile or creating it. To open a profile, use the CMOpenProfile function
described on page 3-50. To create a new profile, use the CMNewProfile function
described on page 3-53.

CMGetProfileLocation 3

To identify the physical file location of a profile given a profile reference, use
the CMGetProfileLocation function.

pascal CMError CMGetProfileLocation(CMProfileRef prof,
CMProfileLocation *theProfile)

prof A reference to the profile to be tested. For information on profile
references, see “Profile Reference” on page 3-43.

theProfile The physical location of the profile. This value is returned if the
function completes successfully. See “Profile Location
Structure” on page 3-24.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-57

SEE ALSO

To open a profile and obtain a reference to it, use the CMOpenProfile function
described on page 3-50.

CMValidateProfile 3

To test if a profile contains the minimum set of elements required by the CMM
to be used for color matching or color checking, use the CMValidateProfile
function.

pascal CMError CMValidateProfile (CMProfileRef prof,
 Boolean *valid,
 Boolean *preferredCMMnotfound);

prof A reference to the profile to be tested. For information on profile
references, see “Profile Reference” on page 3-43.

valid A flag that returns true if the profile contains the minimum set
of elements and false if it doesn’t.

preferredCMMnotfound
A flag that returns true if the CMM specified by the profile was
not available to perform the validation or does not support this
function and the default Apple-supplied CMM was used. If the
profile’s CMM is able to perform the test, this flag returns false.

DESCRIPTION

When your application calls the CMValidateProfile function, the ColorSync
Manager dispatches the function to the CMM specified by the CMMType header
field of the profile whose reference you specify. The preferred CMM can
support this function or not.

If the preferred CMM supports this function, it determines if the profile
contains the baseline elements for the profile type, which the CMM requires to
perform color matching or gamut checking. For each profile type, such as a
device profile, there is a specific set of required tagged elements defined by the
ICC that the profile must include. The ICC also defines optional tags, which
may be included in a profile. A CMM might use these optional elements to
optimize or improve its processing. Additionally, a profile might include

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-58

private tags defined to provide a CMM with processing capability particular to
the needs of that CMM. The profile developer can define these private tags,
register the tag signatures with the ICC, and include the tags in a profile. The
CMM checks only for the existence of profile elements; it does not check the
element’s content and size.

If the preferred CMM does not support the CMValidateProfile function request,
the ColorSync Manager calls the Apple-supplied default CMM to handle the
validation request.

CMFlattenProfile 3

To transfer a profile stored in an independent disk file to an external profile
format that can be embedded in a graphics document, use the
CMFlattenProfile function.

pascal CMError CMFlattenProfile (CMProfileRef prof,
unsigned long flags,
CMFlattenUPP proc, void *refCon,
Boolean *preferredCMMnotfound);

prof A reference to the profile to be flattened. For more information,
see “Profile Reference” on page 3-43.

flags Reserved for future use.

proc A pointer to a function that you provide to perform the
low-level data transfer. For a description of the
MyColorSyncDataTransfer function, see page 3-131.

refCon A reference constant for application data which the Color
Management Module (CMM) passes to the
MyColorSyncDataTransfer function each time it calls the
function. For example, the reference constant may point to a
data structure that holds information required by the
MyColorSyncDataTransfer function to perform the data transfer,
such as the reference number to a disk file in which the
flattened profile is to be stored.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-59

preferredCMMnotfound
A flag that is set to true if the CMM specified by the profile was
not available or it does not support this function and the default
Apple-supplied CMM was used to flatten the profile. If the
profile’s CMM supports this function, this flag is set to false.

DESCRIPTION

The ColorSync Manager dispatches the CMFlattenProfile function to the CMM
specified by the profile whose reference you provide. If the preferred CMM is
unavailable or it doesn’t support this function, then the default Apple-supplied
CMM is used.

The ColorSync Manager passes to the CMM the pointer to your
profile-flattening function. The CMM calls your MyColorSyncDataTransfer
function to perform the actual data transfer. For a description of the
MyColorSyncDataTransfer function declaration, see page 3-131.

SEE ALSO

To unflatten a profile embedded in a graphics document to an independent
disk file, use the CMUnflattenProfile function, described on page 3-59.

CMUnflattenProfile 3

To transfer a profile that was embedded in a graphics document to an
independent disk file, use the CMUnflattenProfile function.

pascal CMError CMUnflattenProfile (FSSpec *resultFileSpec,
 CMFlattenUPP proc, void *refCon,
 Boolean *preferredCMMnotfound);

resultFileSpec
The profile file specification for the independent disk file, which
is returned if the function completes successfully.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-60

proc A pointer to a calling-program-supplied function that you
provide to receive the profile data from the CMM and store in a
file. For a description of the MyColorSyncDataTransfer function,
see page 3-131.

refCon A reference constant for application data which the CMM
passes to the MyColorSyncDataTransfer function each time it
calls the function.

preferredCMMnotfound
A flag that is set to true if the CMM specified by the profile was
not available or does not support this function and the default
Apple-supplied CMM was used to unflatten the profile. If the
profile’s CMM supports this function, this flag is set to false.

DESCRIPTION

The ColorSync Manager dispatches the CMUnflattenProfile function to the
CMM specified by the profile to be transferred to a disk file. If the preferred
CMM is unavailable or it doesn’t support this function, then the default
Apple-supplied CMM is used.

The ColorSync Manager calls your unflattening function to identify the CMM
to which it dispatches the CMUnflattenProfile function. For this reason, your
function must buffer at least 8 bytes of data. For a description of the
MyColorSyncDataTransfer unflattening function prototype, see page 3-131.

The CMM calls your MyColorSyncDataTransfer function to transfer the profile
data from the graphics document to an independent disk file.

Before you can obtain a profile reference to a profile that was embedded in a
graphics document, you must use this function to unflatten the profile. Then
you can call CMOpenProfile to open the profile and obtain a reference to it.

After you’re finished with the profile, you must call the CMCloseProfile
function to close the profile and call the File Manager’s FSpDelete function to
delete the file.

Accessing Profile Elements 3

This section describes the functions you use to examine, set, and change
individual elements of a profile.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-61

CMProfileElementExists 3

To test whether a given profile contains a specific element based on the
element’s tag signature, use the CMProfileElementExists function.

pascal CMError CMProfileElementExists (CMProfileRef prof,
OSType tag,
Boolean *found);

prof A reference to the profile. For information on profile references,
see “Profile Reference” on page 3-43.

tag The tag signature for the element in question. For a complete
list of the tag signatures a profile may contain, including a
description of each tag, refer to the International Color
Consortium Profile Format Specification. For information on how
to obtain this document, see “Profiles” in the chapter
“Introduction to the ColorSync Manager” of Advanced Color
Imaging on the Mac OS. The signatures for profile tags are
defined in the CMICCProfile.h header file.

found A flag that is set to true if the profile contains the element or
false if it doesn’t.

DESCRIPTION

You cannot use this function to test whether a profile element in the profile
CM2Header profile header exists. Instead, you must call the CMGetProfileHeader
function, described on page 3-64, to copy the profile header and read its
contents.

CMCountProfileElements 3

To count the number of elements in a profile, use the CMCountProfileElements
function.

pascal CMError CMCountProfileElements
(CMProfileRef prof,
 unsigned long *elementCount);

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-62

prof A reference to the profile. For information on profile references,
see “Profile Reference” on page 3-43.

elementCount
A one-based count of the number of elements. The ColorSync
Manager returns this number if the function completes
successfully.

DESCRIPTION

Every element in the profile outside the header is counted. A profile may
contain tags that are references to other elements. These tags are included in
the count. For information about profiles and their tags, see “Profile Properties”
in the chapter “Introduction to the ColorSync Manager” in Advanced Color
Imaging on the Mac OS.

CMGetProfileElement 3

To obtain the element data given the element’s tag signature, use the
CMGetProfileElement function.

pascal CMError CMGetProfileElement (CMProfileRef prof, OSType tag,
unsigned long *elementSize,
void *elementData);

prof A reference to the profile containing the target element. For
information on profile references, see “Profile Reference” on
page 3-43.

tag The tag signature for the element in question. The tag identifies
the element. For a complete list of the public tag signatures a
profile may contain, including a description of each tag, refer to
the International Color Consortium Profile Format Specification. The
signatures for profile tags are defined in the CMICCProfile.h
header file.

elementSize
On entry, the size of the element data to be copied. Specify NULL
to copy the entire element data. To obtain a portion of the
element data, specify the number of bytes to be copied.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-63

On return, the size of the data returned.

elementData
A pointer to the memory you allocated to hold the copy of the
returned element data. On return, this buffer holds the element
data.

To obtain the element size in the elementSize parameter
without copying the element data to this buffer, specify NULL for
this parameter.

DESCRIPTION

Before you call the CMGetProfileElement function to obtain the element data for
a specific element, you must know the size in bytes of the element data in order
to allocate a buffer to hold the returned data.

The CMGetProfileElement function serves two purposes. If you don’t know the
size of the element you want to obtain, you can call this function to get the
element size, then call the function again to obtain the element data. Both times
you call the function, you specify the reference to the profile containing the
element in the prof parameter and the tag signature of the element in the tag
parameter.

To obtain the element data size, call the CMGetProfileElement function
specifying a pointer to an unsigned long data type in the elementSize field and
a NULL value in the elementData field.

After you obtain the element size, you should allocate a buffer large enough to
hold the returned element data, then call the CMGetProfileElement function
again, specifying NULL in the elementSize parameter to copy the entire element
data and a pointer to the data buffer in the elementData parameter.

To copy only a portion of the element data beginning from the first byte,
allocate a buffer the size of the number of bytes of element data you want to
obtain and specify the number of bytes to be copied in the elementSize
parameter. In this case, on return the elementSize parameter contains the size
in bytes of the element data actually returned.

SEE ALSO

You cannot use the CMGetProfileElement function to copy a portion of element
data beginning from an offset into the data. To copy a portion of the element

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-64

data beginning from any offset, use the CMGetPartialProfileElement function
on page 3-65.

You cannot use this function to obtain a portion of a profile element in the
profile CM2Header profile header. Instead, you must call the CMGetProfileHeader
function, described on page 3-64, to copy the profile header and read its
contents.

CMGetProfileHeader 3

To obtain the profile header for a specific profile, use the CMGetProfileHeader
function.

pascal CMError CMGetProfileHeader (CMProfileRef prof,
CMAppleProfileHeader *header);

prof A reference to the profile whose header is to be copied. For
information on profile references, see “Profile Reference” on
page 3-43.

header A copy of the profile header. Depending on the profile version,
this may be a ColorSync 2.0 or 1.0 header. For information
about the ColorSync 2.0 profile header structure, see “Profile 2.0
Header Structure for the ColorSync Manager” on page 3-26. For
information about the ColorSync 1.0 header, see “Profile
Header for ColorSync 1.0” on page 3-45 and the appendix,
“ColorSync Manager Backward Compatibility.”

DESCRIPTION

The CMGetProfileHeader function returns the header for a ColorSync 2.0 or
ColorSync 1.0 profile. To return the header, the function uses a union of type
CMAppleProfileHeader, described on page 3-45, with variants for version 1.0 and
2.0 headers.

A 32-bit version value is located at the same offset in either header. For
ColorSync 2.0, this is the NumVersion field. For ColorSync 1.0, this is the
applProfileVersion field. You can inspect the version and interpret the
remaining header fields depending on the profile version.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-65

SEE ALSO

To copy a profile header to a profile after you modify the header’s contents, use
the CMSetProfileHeader function, described on page 3-72.

CMGetPartialProfileElement 3

To obtain a portion of the element data, given a reference to the profile
containing the element and the element’s tag signature, use the
CMGetPartialProfileElement function.

pascal CMError CMGetPartialProfileElement
(CMProfileRef prof, OSType tag,
 unsigned long offset,
 unsigned long *byteCount,
 void *elementData);

prof A reference to the profile containing the target element. For
information on profile references, see “Profile Reference” on
page 3-43.

tag The tag signature for the element in question. For a complete
list of the tag signatures a profile may contain, including a
description of each tag, refer to the International Color
Consortium Profile Format Specification. The signatures for profile
tags are defined in the CMICCProfile.h header file.

offset Beginning from the first byte of the element data, the offset
from which to begin copying the element data.

byteCount On entry, the number of bytes of element data to copy
beginning from the offset specified by the offset parameter. On
return, the number of bytes actually copied.

elementData
The buffer to hold the element data to be copied.

DESCRIPTION

The CMGetPartialProfileElement function allows you to copy any portion of
the element data beginning from any offset into the data. For the

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-66

CMGetPartialProfileElement function to copy the element data and return it to
you, your application must allocate a buffer in memory to hold the data.

You cannot use this function to obtain a portion of a profile element in the
profile’s CM2Header header. Instead, you must call the CMGetProfileHeader
function, described on page 3-64, to copy the profile header and read its
contents.

CMGetIndProfileElementInfo 3

To obtain the element tag and data size of an element by index, use the
CMGetIndProfileElementInfo function.

pascal CMError CMGetIndProfileElementInfo
(CMProfileRef prof, unsigned long index,
 OSType *tag, unsigned long *elementSize,
 Boolean *refs);

prof A reference to the profile containing the element. For
information on profile references, see “Profile Reference” on
page 3-43.

index A one-based element index within the range returned as the
elementCount parameter of the CMCountProfileElements
function.

tag The tag signature of the element corresponding to the index.
The ColorSync Manager returns the tag if the function
completes successfully.

elementSize
The size in bytes of the element data corresponding to the tag.
The ColorSync Manager returns the size if the function
completes successfully.

refs A flag that is set to true if more than one tag in the profile refers
to element data associated with the tag corresponding to the
index.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-67

DESCRIPTION

Before calling this function, you must call the CMCountProfileElements function,
described on page 3-61, that returns the total number of elements in the profile
as the elementCount parameter. The number you specify for the
CMGetIndProfileElementInfo function’s index parameter must be in the range of
1 to elementCount.The index order of elements is determined internally by the
ColorSync Manager and is not publicly defined.

You might want to call this function, for example, to print out the contents of a
profile.

CMGetIndProfileElement 3

To obtain the element data corresponding to a particular index, use the
CMGetIndProfileElement function.

pascal CMError CMGetIndProfileElement
(CMProfileRef prof,
 unsigned long index,
 unsigned long *elementSize,
 void *elementData);

prof A reference to the profile containing the element. For
information on profile references, see “Profile Reference” on
page 3-43.

index The index of the element whose data you want to obtain. This is
a one-based element index within the range returned as the
elementCount parameter of the CMCountProfileElements
function.

elementSize
On entry, the size of the element data to be copied. Specify NULL
to copy the entire element data. To obtain a portion of the
element data, specify the number of bytes to be copied.

On return, the size of the element data actually copied.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-68

elementData
A pointer to the memory you allocated to hold the copy of the
returned element data. On return, this buffer holds the element
data.

To obtain the element size in the elementSize parameter
without copying the element data to this buffer, specify NULL for
this parameter.

DESCRIPTION

Before you call the CMGetIndProfileElement function to obtain the element data
for an element at a specific index, you must know the size in bytes of the
element data in order to allocate a buffer large enough to hold the returned
data.

You can call the CMGetIndProfileElementInfo function, described on page 3-66,
to obtain the data size of an element given the element’s index. Alternatively,
you can call the CMGetIndProfileElement function specifying a pointer to an
unsigned long data type in the elementSize field and a NULL value in the
elementData field.

After you get the size of the element data, you should allocate a buffer to hold
the returned element data, then call the CMGetIndProfileElement function
specifying NULL in the elementSize parameter to copy the entire element data
and a pointer to the data buffer in the elementData parameter.

To copy only a portion of the element data beginning from the first byte,
allocate a buffer the size of the number of bytes of element data you want to
obtain and specify the number of bytes to be copied in the elementSize
parameter. On return the elementSize parameter contains the size in bytes of
the element data actually copied.

SEE ALSO

Before calling this function, you should call the CMCountProfileElements
function, described on page 3-61, that returns the total number of elements in
the profile as the elementCount parameter.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-69

CMSetProfileElementSize 3

To reserve the element data size for a specific tag before setting the element
data, use the CMSetProfileElementSize function.

pascal CMError CMSetProfileElementSize
(CMProfileRef prof,
 OSType tag,
 unsigned long elementSize);

prof A reference to the profile in which the element data size is to be
reserved. For information on profile references, see “Profile
Reference” on page 3-43.

tag The tag signature for the element whose size is to be reserved.
The tag identifies the element. For a complete list of the tag
signatures a profile may contain, including a description of each
tag, refer to the International Color Consortium Profile Format
Specification. The signatures for profile tags are defined in the
CMICCProfile.h header file.

elementSize
The total size in bytes to be reserved for the element data.

DESCRIPTION

Your application may use the CMSetProfileElementSize function to reserve the
size of element data for a specific tag before you call the
CMSetPartialProfileElement function, described next, to set the element data.
The most efficient way to set a large amount of element data when you know
the size of the data is to first set the size, then call the
CMSetPartialProfileElement function to set each of the data segments. Calling
the CMSetProfileElementSize function first eliminates the need for the
ColorSync Manager to repeatedly increase the size for the data each time you
call the CMSetPartialProfileElement function.

In addition to reserving the element data size, the CMSetProfileElementSize
function sets the element tag, if it does not already exist.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-70

CMSetPartialProfileElement 3

To set part of the element data for a specific tag, use the
CMSetPartialProfileElement function.

pascal CMError CMSetPartialProfileElement
(CMProfileRef prof,
 OSType tag,
 unsigned long offset,
 unsigned long byteCount,
 void *elementData);

prof A reference to the profile containing the tag for which the
element data is to be set. For information on profile references,
see “Profile Reference” on page 3-43.

tag The tag signature for the element whose data is to be set. The
tag identifies the element. For a complete list of the tag
signatures a profile may contain, including a description of each
tag, refer to the International Color Consortium Profile Format
Specification. The signatures for profile tags are defined in the
CMICCProfile.h header file.

offset The offset of the existing element data to which to begin
transferring the new element data.

byteCount The number of bytes of element data to transfer.

elementData
The buffer containing the element data to be transferred.

DESCRIPTION

You can use the CMSetPartialProfileElement function to set the data for an
element when the amount of data is large and you need to copy it to the profile
in segments.

After you set the element size, you can call CMSetPartialProfileElement
function repeatedly, as many times as necessary, each time appending a
segment of data to the end of the data already copied until all the element data
is copied.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-71

If you know the size of the element data, you should call
CMSetProfileElementSize (page 3-69) to reserve it before you call the
CMSetPartialProfileElement function to set element data in segments. Setting
the size first avoids the extensive overhead required to increase the size for the
element data with each call to append another segment of data.

SEE ALSO

To copy the entire data for an element as a single operation when the amount
of data is small enough to allow this, call the CMSetProfileElement function
described on page 3-71.

CMSetProfileElement 3

To set or replace the element data for a specific tag, use the
CMSetProfileElement function.

pascal CMError CMSetProfileElement
(CMProfileRef prof, OSType tag,
 unsigned long elementSize,
 void *elementData);

prof A reference to the profile containing the tag for which the
element data is to be set. For information on profile references,
see “Profile Reference” on page 3-43.

tag The tag signature for the element whose data is to be set. For a
complete list of the tag signatures a profile may contain,
including a description of each tag, refer to the International
Color Consortium Profile Format Specification. See “Profiles” in the
chapter “Introduction to the ColorSync Manager” of Advanced
Color Imaging on the Mac OS for information on how to obtain
this document. The signatures for profile tags are defined in the
CMICCProfile.h header file.

elementSize
The size in bytes of the element data to be set.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-72

elementData
A pointer to the buffer containing the element data to be
transferred to the profile.

DESCRIPTION

The CMSetProfileElement function replaces existing element data if an element
with the specified tag is already present in the profile. Otherwise, it sets the
element data for a new tag. Your application is responsible for allocating
memory for the buffer to hold the data to be transferred.

CMSetProfileHeader 3

To set the header for a specific profile, use the CMSetProfileHeader function.

pascal CMError CMSetProfileHeader (CMProfileRef prof,
const CMAppleProfileHeader *header);

prof A reference to the profile whose header is to be set. For
information on profile references, see “Profile Reference” on
page 3-43.

header The new header for the profile.

DESCRIPTION

You can use the CMSetProfileHeader function to set a header for a version 1.0 or
a version 2.0 ColorSync profile. Before you call this function, you must set the
values for the header, depending on the version of the profile. For a version 2.0
profile, you use the CM2Header data structure, described “Profile 2.0 Header
Structure for the ColorSync Manager” on page 3-26. For a version 1.0 profile,
you use the CMHeader data structure, described in “Profile Header for ColorSync
1.0” on page 3-45 and discussed in the appendix, “ColorSync Manager
Backward Compatibility.” You pass the header you supply in the
CMAppleProfileHeader union which is described in “Apple Profile Header” on
page 3-26.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-73

CMSetProfileElementReference 3

To add a tag to a profile to refer to data corresponding to a previously set
element, use the CMSetProfileElementReference function.

pascal CMError CMSetProfileElementReference (CMProfileRef prof,
OSType elementTag, OSType referenceTag);

prof A reference to the profile to which the new tag is to be added.
For information on profile references, see “Profile Reference” on
page 3-43.

elementTag The original element’s signature tag corresponding to the
element data to which the new tag will refer.

referenceTag The new tag signature to be added to the profile to refer to the
element data corresponding to elementTag.

DESCRIPTION

After the CMSetProfileElementReference function completes successfully, the
specified profile will contain more than one tag corresponding to a single piece
of data. All of these tags are of equal importance. Your application may set a
reference to an element that was originally a reference itself without circularity.

If you call CMSetProfileElement (page 3-71) subsequently for one of the tags
acting as a reference to another tag’s data, then the element data you provide is
set for the tag and the tag is no longer considered a reference. Instead, the tag
corresponds to its own element data and not that of another tag.

CMRemoveProfileElement 3

To remove an element corresponding to a specific tag, use the
CMRemoveProfileElement function.

pascal CMError CMRemoveProfileElement (CMProfileRef prof,
OSType tag);

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-74

prof A reference to the profile containing the tag to be removed. For
information on profile references, see “Profile Reference” on
page 3-43.

tag The tag signature for the element to be removed.

DESCRIPTION

The CMRemoveProfileElement function deletes the tag as well as the element data
from the profile.

CMGetScriptProfileDescription 3

To obtain the name of a profile and the script code identifying the language in
which the profile name is specified, use the CMGetScriptProfileDescription
function.

pascal CMError CMGetScriptProfileDescription(CMProfileRef prof,
Str255 name, ScriptCode *code);

prof A reference to the profile whose profile name and script code
you want to obtain.

name The profile name, returned if the function completes
successfully.

code The script code, returned if the function completes successfully.

DESCRIPTION

The element data of the text description tag, whose signature is 'desc',
specifies the profile name and script code. The profile name is returned as a
Pascal string. This function returns that information to you so that your
application does not need to obtain and parse the element data, which contains
other data such as the name in UniCode format.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-75

Matching Colors Using the High-Level Functions 3

The following high-level ColorSync Manager functions that you use to perform
color matching acknowledge and use QuickDraw.

NCMBeginMatching 3

To set up a high-level ColorSync matching session that acknowledges
QuickDraw operations, use the NCMBeginMatching function.

pascal CMError NCMBeginMatching (CMProfileRef src,
CMProfileRef dst,
CMMatchRef *myRef);

src The source profile for the matching session. To indicate the
ColorSync system profile, specify a NULL value. For information
on profile references, see “Profile Reference” on page 3-43.

dst The destination profile for the matching session. To indicate the
ColorSync system profile, specify a NULL value. For information
on profile references, see “Profile Reference” on page 3-43.

myRef A reference to the high-level matching session.

DESCRIPTION

The NCMBeginMatching function sets up a high-level matching session using
QuickDraw, telling the ColorSync Manager to match all colors drawn to the
current graphics device using the specified source and destination profiles.

The NCMBeginMatching function returns a reference to the color-matching
session. You must later pass this reference to the CMEndMatching function,
described next, to conclude the session.

The source and destination profiles define how the match is to occur. Passing
NULL for either the source or destination profile is equivalent to passing the
system profile. If the current device is a screen device, matching to all screen
devices occurs.

The NCMBeginMatching and CMEndMatching functions can be nested. In such
cases, the ColorSync Manager first matches to the most recently added profiles

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-76

first. Therefore, if you want to use the NCMBeginMatching-CMEndMatching pair to
perform a page preview, which typically entails color matching from a source
device (scanner) to a destination device (printer) to a preview device (display),
you would first call NCMBeginMatching with the printer-to-display profiles, and
then call NCMBeginMatching with the scanner-to-printer profiles. The ColorSync
Manager then matches all drawing from the scanner to the printer and then
back to the display. The print preview process entails multiprofile
transformations, and the ColorSync Manager low-level functions which
include the use of concatenated profiles well suited to print preview processing
offer an easier and faster way to do this.

Note
If you call NCMBeginMatching before drawing to the screen’s
graphics device (as opposed to an offscreen device), you
must call CMEndMatching to finish a matching session and
before calling WaitNextEvent or any other routine (such as
Window Manager routines) that could draw to the screen.
Failing to do so will cause unwanted matching to occur.
Furthermore, if a device has color matching enabled, you
cannot call the CopyBits procedure to copy from it to itself
unless the source and destination rectangles are the
same. ◆

Even if you call the NCMBeginMatching function before calling the QuickDraw
DrawPicture function, the ColorSync picture comments such as
cmEnableMatching and cmDisableMatching are not acknowledged. For the
ColorSync Manager to recognize these comments and allow them to be used,
you must call the NCMDrawMatchedPicture function for color matching using
picture comments.

This function causes matching for the specified devices rather than for the
current color graphics port.

SEE ALSO

The high-level color-matching function NCMBeginMatching that uses QuickDraw
performs color matching in a manner acceptable to most applications.
However, if your application needs a finer level of control over color matching,
it can use the low-level matching functions described in “Matching Colors
Using the Low-Level Functions Without QuickDraw,” beginning on page 3-80.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-77

For background information on graphics devices, see Inside Macintosh: Imaging
With QuickDraw.

CMEndMatching 3

To conclude a high-level QuickDraw matching session initiated by a previous
call to the NCMBeginMatching function, use the CMEndMatching function.

pascal void CMEndMatching (CMMatchRef myRef);

myRef A reference to the matching session to end. This reference was
previously created and returned by a call to NCMBeginMatching
function.

DESCRIPTION

The CMEndMatching function releases private memory allocated for the
high-level matching session to be concluded.

After you call the NCMBeginMatching function and before you call CMEndMatching
to end the session, embedded color-matching picture comments, such as
cmEnableMatching and cmDisableMatching, are not acknowledged. After you
call CMEndMatching, processing reverts to its previous state.

CMEnableMatchingComment 3

To insert a comment in the currently open picture that turns matching on or off,
use the CMEnableMatchingComment function.

pascal void CMEnableMatchingComment (Boolean enableIt);

enableIt A flag that directs the ColorSync Manager to generate a
cmEnableMatching PicComment comment if true or a
cmDisbleMatching PicComment comment if false.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-78

Using Embedded Profiles With QuickDraw 3

NCMDrawMatchedPicture 3

To match a picture’s colors to a destination device’s color gamut as the picture
is drawn, use the NCMDrawMatchedPicture function.

pascal void NCMDrawMatchedPicture (PicHandle myPicture,
CMProfileRef dst,
Rect *myRect);

myPicture The QuickDraw picture whose colors are to be matched.

dst The profile of the destination device. To indicate the system
profile, specify a NULL value.

myRect The destination rectangle for rendering the picture specified by
myPicture.

DESCRIPTION

The NCMDrawMatchedPicture function operates in the context of the current color
graphics port. This function sets up and takes down a color-matching session.
It automatically matches all colors in a picture to the destination profile for a
destination device as the picture is drawn. It uses the ColorSync system profile
as the initial source profile and any embedded profiles thereafter. (Because
color-matching picture comments embedded in the picture to be matched are
recognized, embedded profiles are used.)

For embedded profiles to be used correctly, the currently effective profile must
be terminated by a picture comment of kind cmEndProfile after drawing
operations using that profile are performed. If a picture comment was not
specified to end the profile, the profile will remain in effect until the next
embedded profile is introduced with a picture comment of kind
cmBeginProfile. However, use of the next profile might not be the intended
action. It is good practice to always pair use of the cmBeginProfile and
cmEndProfile picture comments. When the ColorSync Manager encounters an
cmEndProfile picture comment, it restores use of the system profile for
matching until it encounters another cmBeginProfile picture comment.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-79

The picture will be drawn with matched colors to all screen graphics devices. If
the current graphics device is not a screen device, matching will occur for that
graphics device only.

If the current port is an original QuickDraw graphics port,then calling this
function is equivalent to calling DrawPicture, in which case, no color matching
occurs.

NCMUseProfileComment 3

To automatically embed a profile into an open picture, use the
NCMUseProfileComment function.

pascal CMError NCMUseProfileComment (CMProfileRef prof,
 unsigned long flags);

prof A reference to the profile to be embedded. For information on
profile references, see “Profile Reference” on page 3-43.

flags Reserved for future use.

DESCRIPTION

The NCMUseProfileComment function automatically generates the picture
comments required to embed the specified profile into the open picture. This
function performs all the tasks that your application would need to do to
embed a profile. It calls the QuickDraw PicComment function with a picture
comment kind value of cmComment and a 4-byte selector that describes the type
of data in the picture comment: 0 to begin the profile, 1 to continue, and 2 to
end the profile. If the size in bytes of the profile and the 4-byte selector together
exceed 32 KB, this function segments the profile data and embeds the multiple
segments in consecutive order using selector 1 to embed each segment.

IMPORTANT

You can use this function to embed all types of profiles in
an image, including device-linked profiles, but not abstract
profiles. You cannot use this function to embed ColorSync
1.0 profiles in an image. ▲

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-80

The NCMUseProfileComment function precedes the profile it embeds with a
picture comment of kind cmBeginProfile. For embedded profiles to be used
correctly, the currently effective profile must be terminated by a picture
comment of kind cmEndProfile after drawing operations using that profile are
performed. You are responsible for adding the picture comment of kind
cmEndProfile. If a picture comment was not specified to end the profile
following the drawing operations to which the profile applies, the profile will
remain in effect until the next embedded profile is introduced with a picture
comment of kind cmBeginProfile. However, use of the next profile might not
be the intended action. It is good practice to always pair use of the
cmBeginProfile and cmEndProfile picture comments. When the ColorSync
Manager encounters an cmEndProfile picture comment, it restores use of the
system profile for matching until it encounters another cmBeginProfile picture
comment.

Matching Colors Using the Low-Level Functions Without QuickDraw 3

This section describes the functions you use to perform color matching using
the ColorSync Manager without QuickDraw. To use the low-level functions,
you first create a color-matching world, which establishes how matching will
take place between the given profiles.

For the ColorSync Manager low-level functions, a color world defines the
aspects that characterize how the color-matching session will occur based on
information contained in the profiles that you supply when your application
sets up the color world. Your application can define a color world for color
transformations between a source profile and a destination profile or it can
define a color world for color transformations among a series of concatenated
profiles.

For the low-level ColorSync Manager functions, a color world is the equivalent
of the ColorSync Manager high-level functions that use source and destination
profiles. From your application’s perspective, the difference in specifying
profiles for the low-level functions is that instead of calling a function and
passing it references to the profiles for the session, first you must create a color
world using those profile references and pass the color world to the function.

Once you create a color world, it persists until you dispose of it, independent of
the functions for which you use it. High-level functions that take source and
destination profile reference parameters are state based, whereas the low-level
functions are not.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-81

NCWNewColorWorld 3

To create a color world for color matching based on the source and destination
profiles, use the NCWNewColorWorld function.

pascal CMError NCWNewColorWorld (CMWorldRef *cw, CMProfileRef src,
CMProfileRef dst);

cw A reference to a matching session that the ColorSync Manager
returns if the function completes successfully. You pass this
reference to other functions that use the color world.

src A reference to the source profile to be used in the
color-matching world. This profile’s dataColorSpace element
corresponds to the source data type for subsequent calls to
functions that use this color world. For information on profile
references, see “Profile Reference” on page 3-43.

dst A reference to the destination profile to be used in the
color-matching world. This profile’s dataColorSpace element
corresponds to the destination data type for subsequent calls to
functions using this color world. For information on profile
references, see “Profile Reference” on page 3-43.

DESCRIPTION

You must set up a color world before your application can perform low-level
color-matching or color-checking operations. To set up a color world in which
these operations can occur, your application can call the NCWNewColorWorld
function after obtaining references to the profiles to be used as the source and
destination profiles for the color world. The following rules govern the types of
profiles allowed:

■ You may specify a device profile or a color space conversion profile for the
source and destination profiles.

■ You may not specify a device-linked profile or an abstract profile for either
the source profile or the destination profile.

■ You may specify the system profile explicitly by reference or by giving NULL
for either the source profile or the destination profile.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-82

You should call the CMCloseProfile function, described on page 3-51, for both
the source and destination profiles to dispose of their references after the
NCWNewColorWorld function completes execution.

When a color-matching or color-checking function is called using this color
world, to determine the CMM to use for the session, the ColorSync Manager
follows the CMM selection arbitration scheme described in the chapter
“Introduction to the ColorSync Manager” in Advanced Color Imaging on the Mac
OS.

For a brief description of a color world, see “Matching Colors Using the
Low-Level Functions Without QuickDraw” on page 3-80.

SEE ALSO

The CWConcatColorWorld function described on page 3-82 also allocates a color
world reference of type CMWorldRef.

CWConcatColorWorld 3

To set up a color world that includes a set of profiles for various color
transformations among devices in a sequence, use the CWConcatColorWorld
function.

pascal CMError CWConcatColorWorld (CMWorldRef *cw,
 CMConcatProfileSet *profileSet);

cw A reference to a color world that the ColorSync Manager
returns if the function completes successfully. You pass this
reference to other functions that use the color world for
color-matching and color-checking sessions.

profileSet An array of profiles describing the processing to be carried out.
The array is in processing order—source through destination.
See “Concatenated Profile Set Structure” on page 3-30 for the
definition of the CMConcatProfileSet structure.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-83

DESCRIPTION

The CWConcatColorWorld function sets up a session for color processing that
includes a set of profiles. The array of profiles is in processing order—source
through destination. Your application passes the function a data structure of
type CMConcatProfileSet to identify the profile array.

The keyIndex field of the CMConcatProfileSet data structure specifies the index
of the profile within the profile array whose preferred CMM is to be used for
the entire color-matching or color-checking session. The profile header’s
CMMType field specifies the CMM. This CMM will fetch the profile elements
necessary for the session.

The quality flag setting—indicating normal mode, draft mode, or best mode—
specified by the first profile prevails for the entire session; the quality flags of
following profiles in the sequence are ignored. The quality flag setting is stored
in the flags field of the profile header. See “Profile 2.0 Header Structure for the
ColorSync Manager,” beginning on page 3-26 for more information on the use
of flags.

The rendering intent specified by the first profile is used to color match to the
second profile, the rendering intent specified by the second profile is used to
color match to the third profile, and so on through the series of concatenated
profiles.

The following rules govern the profiles you may specify in the profile array
pointed to by the profileSet parameter for use with the CWConcatColorWorld
function:

■ In the profile array, you can pass in one or more profiles, but you must
specify at least one profile. If you specify only one profile, it must be a
device-linked profile. If you specify a device-linked profile, you cannot
specify any other profiles in the profiles array; a device-linked profile must
be used alone.

■ In the profile array, you can specify an abstract profile anywhere in the
sequence other than as the first or last profile.

■ For the first and last profiles, you can specify device profiles or color space
conversion profiles.

■ You cannot specify NULL to indicate the system profile.

■ If you specify a color space profile in the middle of the profile sequence, it is
ignored by the Apple-supplied CMM.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-84

You should call the CMCloseProfile function, described on page 3-51, for each
profile to dispose of its reference after the CWConcatColorWorld function
completes execution.

For a brief description of a color world, see “Matching Colors Using the
Low-Level Functions Without QuickDraw” on page 3-80.

SEE ALSO

Instead of passing in an array of profiles, you can specify a device-linked
profile. For information on how to create a device-linked profile, see the
CWNewLinkProfile function, which is described next.

CWNewLinkProfile 3

To create a device-linked profile, use the CWNewLinkProfile function.

pascal CMError CWNewLinkProfile (CMProfileRef *prof,
const CMProfileLocation *targetLocation,
CMConcatProfileSet *profileSet);

prof A reference to the new device-linked profile. For information on
profile references, see “Profile Reference” on page 3-43. The
ColorSync Manager returns this reference if the function
completes successfully.

targetLocation
The location specification for the resulting profile. The
ColorSync Manager returns this value if the function completes
successfully. A device-linked profile cannot be a temporary
profile: that is, it cannot have a location type of cmNoProfileBase.

profileSet An array of profiles describing the processing to be carried out.
The array is in processing order—source through destination.
For a description of the CMConcatProfileSet data type, see
“Concatenated Profile Set Structure” on page 3-30.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-85

DESCRIPTION

You can use this function to create a new single profile containing a set of
profiles and pass the device-linked profile to the CWConcatColorWorld function,
described on page 3-82, instead of specifying each profile in an array. A
device-linked profile provides a means of storing in concatenated format a
series of device profiles and nondevice profiles that are used repeatedly in the
same sequence.

The zero-based keyIndex field of the CMConcatProfileSet data structure,
described in “Concatenated Profile Set Structure” on page 3-30, specifies the
index of the profile within the device-linked profile whose preferred CMM is to
be used for the entire color-matching or color-checking session. The profile
header’s CMMType field specifies the CMM. This CMM will fetch the profile
elements necessary for the session.

The quality flag setting—indicating normal mode, draft mode, or best mode—
specified by the first profile prevails for the entire session; the quality flags of
profiles that follow in the sequence are ignored. The quality flag setting is
stored in the flag field of the profile header. See “Profile 2.0 Header Structure
for the ColorSync Manager,” beginning on page 3-26 for more information on
the use of flags.

The rendering intent specified by the first profile is used to color match to the
second profile, the rendering intent specified by the second profile is used to
color match to the third profile, and so on through the series of concatenated
profiles.

The following rules govern the content and use of a device-linked profile:

■ The first and last profiles you specify in the profiles array for a device-linked
profile must be device profiles.

■ You cannot include another device-linked profile in the series of profiles you
specify in the profiles array.

■ The only way to use a device-linked profile is to pass it to the
CWConcatColorWorld function as the sole profile specified in the profileSet
array.

■ You cannot embed a device-linked profile in an image.

■ You cannot specify NULL to indicate the system profile.

When your application is finished with the device-linked profile, it must close
the profile with the CMCloseProfile function, described on page 3-51.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-86

This function maintains privately all the profile information required by the
color world for color-matching and color-checking sessions. Therefore, you
should call the CMCloseProfile function for each profile used to build a
device-linked profile to dispose of their references after the CWNewLinkProfile
function completes execution.

For a brief description of a color world, see “Matching Colors Using the
Low-Level Functions Without QuickDraw” on page 3-80.

CWDisposeColorWorld 3

To release the private storage associated with a color world when your
application has finished using the color world, use the CWDisposeColorWorld
function.

pascal void CWDisposeColorWorld (CMWorldRef cw);

cw A color world reference. See “Color World Reference” on
page 3-44.

SEE ALSO

The NCWNewColorWorld function described on page 3-81 and the
CWConcatColorWorld function described on page 3-82 both allocate color world
references of type CMWorldRef.

The CWMatchColors function described on page 3-97, the CWCheckColors function
described on page 3-98, the CWMatchBitmap function described on page 3-92, and
the CWCheckBitMap function described on page 3-95 use color worlds. You must
dispose of the color worlds that these functions use when your application is
finished with them.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-87

CMGetCWInfo 3

To obtain information about the Color Management Modules (CMMs) used for
a specific color world, use the CMGetCWInfo function.

pascal CMError CMGetCWInfo (CMWorldRef cw, CMCWInfoRecord *info);

cw A reference to the color world about which you want
information. See “Color World Reference” on page 3-44.

info A pointer to a structure of type CMCWInfoRecord, described on
page 3-31, that your application supplies. The ColorSync
Manager returns information in this structure describing the
number and kind of CMMs involved in the matching session
and the CMM type and version of each CMM used.

DESCRIPTION

To learn whether one or two CMMs are used for color matching and color
checking in a given color world and to obtain the CMM type and version
number of each one used, your application must first obtain a reference to the
color world. To obtain a reference to a ColorSync color world, you must create
the color world using the NCWNewColorWorld function or the
CWConcatColorWorld function.

The source and destination profiles you specify when you create a color world
identify their preferred CMMs, and you explicitly identify the profile whose
CMM is to be used for a device-linked profile or a concatenated color world.
However, you cannot be certain if the specified CMM will be used until the
ColorSync Manager determines internally if the CMM is available and able to
perform the requested function. For example, in some cases the Apple-supplied
default CMM will be used.

The CMGetCWInfo function identifies the CMM or CMMs to be used. Your
application must allocate a data structure of type CMCWInfoRecord and pass a
pointer to it in the info parameter. The CMGetCWInfo function returns the color
world information in this structure. The structure includes a cmmCount field
identifying the number of CMMs to be used and an array of two members
containing structures of type CMMInfoRecord described on page 3-32. The
CMGetCWInfo function returns information in one or both of the CMM
information records depending on whether one or two CMMs are used.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-88

For a brief description of a color world, see “Matching Colors Using the
Low-Level Functions Without QuickDraw” on page 3-80.

SEE ALSO

The NCWNewColorWorld function described on page 3-81 and the
CWConcatColorWorld function described on page 3-81 both allocate color world
references of type CMWorldRef.

CWMatchPixMap 3

To match a pixel map in place using a given color world, use the CWMatchPixMap
function.

pascal CMError CWMatchPixMap (CMWorldRef cw, PixMap *myPixMap,
CMBitmapCallBackUPP progressProc,
void *refCon);

cw A reference to the color world in which the matching is to occur.
See “Color World Reference” on page 3-44.

myPixMap The pixel map to be matched. A pixel map is a QuickDraw
structure describing pixel data. The pixel map must be
nonrelocatable; to ensure this, you should lock the handle to the
pixel map before you call this function.

progressProc
A calling-program-supplied callback function that allows your
application to monitor progress or abort the operation as the
pixel map colors are matched.

The Apple-supplied CMM calls your function approximately
every half-second unless color matching occurs quickly enough
to warrant not calling your function; this happens when there is
a small amount of data to be matched.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-89

If the function returns a result of true, the operation is aborted.
Specify NULL for this parameter if your application will not
monitor the pixel map color matching. For information on the
callback function and its type definition, see the description of
the MyCMBitmapCallBackProc on page 3-134.

refCon A reference constant for application data that is passed as a
parameter to calls to progressProc.

DESCRIPTION

The CWMatchPixMap function matches a pixel map in place using the profiles
specified by the given color world. The preferred CMM, as determined by the
ColorSync Manager based on the color world configuration, is called to
perform the color matching.

If the preferred CMM is not available, then the ColorSync Manager calls the
Apple-supplied default CMM to perform the matching. If the preferred CMM
is available but it does not implement the CMMatchPixMap function, then the
ColorSync Manager unpacks the colors in the pixel map to create a color list
and calls the preferred CMM’s CMMatchColors function, passing to this function
the list of colors to be matched. Every CMM must support the CMMatchColors
function.

For this function to complete successfully, the source and destination profiles’
data color spaces (dataColorSpace field) must be RGB in order to match the
data color space of the pixel map, which is implicitly RGB. For color spaces
other than RGB, you should use the CWMatchBitmap function described on
page 3-92.

If you specify a pointer to a calling program-supplied MyCMBitmapCallBackProc
function in the progressProc parameter, the CMM performing the color
matching calls your function to monitor progress of the session. Each time the
CMM calls your function, it passes the function any data you specified in the
CWMatchPixMap function’s refCon parameter. If the ColorSync dispatcher
performs the color matching, it calls your callback monitoring function once
every scan line during this process.

You can use the reference constant to pass in any kind of data your callback
function requires. For example, if your application uses a dialog box with a
thermometer to inform the user of the color matching session’s progress, you
can use the reference constant to pass the dialog box’s window reference to the

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-90

callback routine. For information about the callback function, see the
MyCMBitmapCallBackProc function on page 3-134.

SEE ALSO

The NCWNewColorWorld function described on page 3-81 and the
CWConcatColorWorld function described on page 3-81 both allocate color world
references of type CMWorldRef.

Your application does not interact with the CMMatchColors function. However, if
you want to know more about this function, see “ColorSync Manager
Reference for Color Management Modules.”

CWCheckPixMap 3

To check the colors of a pixel map using the profiles of a given color world to
determine if the colors are in the gamut of the destination device, use the
CWCheckPixMap function.

pascal CMError CWCheckPixMap (CMWorldRef cw, PixMap *myPixMap,
CMBitmapCallBackUPP progressProc,
void *refCon,
BitMap *resultBitMap);

cw A reference to the color world in which the color checking is to
occur. See “Color World Reference” on page 3-44.

myPixMap The pixel map whose colors are to be checked. A pixel map is a
QuickDraw structure describing pixel data. The pixel map must
be nonrelocatable; to ensure this, you should lock the handle to
the pixel map.

progressProc
A calling program-supplied callback function that allows your
application to monitor progress or abort the operation as the
pixel map colors are checked against the gamut of the
destination device.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-91

The Apple-supplied CMM calls your function approximately
every half-second unless color checking occurs quickly enough
to warrant not calling your function; this happens when there is
a small amount of data to be checked. If the function returns a
result of true, the operation is aborted. Specify NULL for this
parameter if your application will not monitor the pixel map
color checking. For information on the callback function and its
type definition, see the MyCMBitmapCallBackProc function on
page 3-134.

refCon A reference constant for application data passed as a parameter
to calls to your MyCMBitmapCallBackProc function pointed to by
progressProc.

resultBitMap
A QuickDraw bitmap in which pixels are set to 1 if the
corresponding pixel of the pixel map indicated by myPixMap is
out of gamut. Boundaries of the bitmap indicated by
resultBitMap must equal the parameter of the pixel map
indicated by the myPixMap.

DESCRIPTION

The CWCheckPixMap function performs a gamut test of the pixel data of the
myPixMap pixel map according to the profiles corresponding to the specified
color world to determine if the colors of the pixel map are within the gamut of
the destination device as specified by the destination profile. The gamut test
provides a preview of color matching using the specified color world.

The preferred CMM, as determined by the ColorSync Manager based on the
profiles of the color world configuration, is called to perform the color
matching.

If the preferred CMM is not available, then the ColorSync Manager calls the
Apple-supplied default CMM to perform the matching. If the preferred CMM
is available but it does not implement the CMCheckPixmap function, then the
ColorSync Manager unpacks the colors in the pixel map to create a color list
and calls the preferred CMM’s CMCheckColors function passing to this function
the list of colors to be matched. Every CMM must support the CMCheckColors
function.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-92

For this function to complete successfully, the source and destination profiles’
data color spaces (dataColorSpace field) must be RGB in order to match the
data color space of the pixel map, which is implicitly RGB.

If you specify a pointer to a calling program-supplied MyCMBitmapCallBackProc
function in the progressProc parameter, the CMM performing the color
checking calls your function to monitor progress of the session. Each time the
CMM calls your function, it passes the function any data you specified in the
CWCheckPixMap function’s refCon parameter.

You can use the reference constant to pass in any kind of data your callback
function requires. For example, if your application uses a dialog box with a
thermometer to inform the user of the color checking session’s progress, you
can use the reference constant to pass the dialog box’s window reference to the
callback routine. For information about the callback function, see the
MyCMBitmapCallBackProc function page 3-134.

You should ensure that the buffer pointed to by the baseAddr field of the
bitmap passed in the resultBitMap parameter is zeroed out.

SEE ALSO

The NCWNewColorWorld function described on page 3-81 and the
CWConcatColorWorld function described on page 3-81 both return color world
references of type CMWorldRef.

CWMatchBitmap 3

To match the colors of a bitmap to the gamut of the destination device using
the profiles specified by the color world, use the CWMatchBitmap function.

pascal CMError CWMatchBitmap (CMWorldRef cw,CMBitMap *bitMap,
CMBitmapCallBackUPP progressProc,
void *refCon,CMBitMap *matchedBitMap);

cw A reference to the color world in which the matching is to occur.
See “Color World Reference” on page 3-44.

bitMap A pointer to the bitmap containing the source image data
whose colors are to be matched.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-93

progressProc
A calling program-supplied callback function that allows your
application to monitor progress or abort the operation as the
bitmap colors are matched. The Apple-supplied CMM calls
your function approximately every half second unless color
matching occurs quickly enough to warrant not calling your
function; this happens when there is a small amount of data to
be matched. If the function returns a result of true, the
operation is aborted. To match colors without monitoring the
process, specify NULL for this field. For a description of the
function your application supplies, see the MyCMBitmapCallBack
function on page 3-134.

refCon A reference constant for application data passed through as a
parameter to calls to the progressProc function.

matchedBitMap
A pointer to the resulting matched bitmap containing the
color-matched image. You must allocate the pixel buffer
pointed to by the image field of the CMBitMap structure. If you
specify NULL for matchedBitMap, then the source bitmap is
matched in place.

DESCRIPTION

The CWMatchBitmap function matches a bitmap using the profiles specified by
the given color world.

The ColorSync Manager dispatches this function to the preferred CMM. The
ColorSync Manager determines the preferred CMM based on the color world
configuration. If the color world you pass in was created by the
NCWNewColorWorld function, it contains a source and destination profile, in
which case the arbitration scheme described in the chapter “Introduction to the
ColorSync Manager” in Advanced Color Imaging on the Mac OS is used to
determine the preferred CMM. If the color world you pass in was created by
the CWConcatColorWorld function, then the keyIndex field of the
CMConcatProfileSet data structure identifies the preferred CMM. If the
preferred CMM is not available, the Apple-supplied CMM is used to perform
the color matching.

You should ensure that the buffer pointed to by the image field of the bitmap
passed in the bitMap parameter is zeroed out before you call this function.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-94

The following color spaces are currently supported for the CWMatchBitmap
function:

■ cmGraySpace

■ cmGrayASpace

■ cmRGB16Space

■ cmRGB32Space

■ cmARGB32Space

■ cmCMYK32Space

■ cmHSV32Space

■ cmHLS32Space

■ cmYXY32Space

■ cmXYZ32Space

■ cmLUV32Space

■ cmLAB32Space

The ColorSync Manager does not explicitly support a CMY color space.
However, for printers that have a CMY color space, you can use either of the
following circumventions to make the adjustment:

■ You can use a CMY profile, which the ColorSync Manager does support,
with a CMYK color space. If you specify a CMYK color space in this case, the
ColorSync Manager zeroes out the K channel to simulate a CMY color space.

■ You can use an RGB color space and pass in the bitmap along with an RGB
profile, then perform the conversion from RGB to CMY yourself.

For this function to complete successfully, the source profile’s dataColorSpace
field value and the space field value of the source bitmap pointed to by the
bitMap parameter must specify the same data color space. Additionally, the
destination profile’s dataColorSpace field value and the space field value of
the resulting bitmap pointed to by the matchedBitMap parameter must specify
the same data color space.

Matching sessions set up with one of the multichannel color data types are not
supported with this function.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-95

SEE ALSO

The NCWNewColorWorld function described on page 3-81 and the
CWConcatColorWorld function described on page 3-82 both allocate color world
references of type CMWorldRef.

CWCheckBitMap 3

To test the colors of the pixel data of a bitmap, to determine if the colors map to
the gamut of the destination device using a given color world, use the
CWCheckBitMap function.

pascal CMError CWCheckBitMap (CMWorldRef cw, const CMBitMap *bitMap,
CMBitmapCallBackUPP progressProc,
void *refCon,
CMBitMap *resultBitMap);

cw A reference to the color world to be used for the color check.
See “Color World Reference” on page 3-44.

bitMap The bitmap data whose colors are to be tested.

progressProc

A calling program-supplied callback function that allows your
application to monitor progress or abort the operation as the
bitmap’s colors are checked against the gamut of the
destination device. The Apple-supplied CMM calls your
function approximately every half-second unless color checking
occurs quickly enough to warrant not calling your function; this
happens when there is a small amount of data to be checked. If
the function returns a result of true, the operation is aborted.
Specify NULL for this parameter if your application will not
monitor the bitmap color checking. For information on the
callback function and its type definition, see the
MyCMBitmapCallBackProc on page 3-134.

refCon A reference constant for application data passed as a parameter
to calls to progressProc.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-96

resultBitMap
A pointer to the resulting bitmap, indicating the outcome of the
color check. The bitmap must have bounds equal to the
parameter of the source bitmap pointed to by bitMap. You must
allocate the pixel buffer pointed to by the image field of the
CMBitMap structure and initialize the buffer to zeroes. Pixels are
set to 1 if the corresponding pixel of the source bitmap
indicated by bitMap is out of gamut. You must set the space field
of the CMBitMap structure to cmGamutResult1Space color space
storage format (see “Color Spaces” on page 3-15).

DESCRIPTION

When your application calls the CWCheckBitMap function, the ColorSync
Manager dispatches the function to the preferred CMM. The ColorSync
Manager determines the preferred CMM based on the color world
configuration. If the color world you pass in was created by the
NCWNewColorWorld function, the color world contains a source and destination
profile, in which case the arbitration scheme described in “Introduction to the
ColorSync Manager” in Advanced Color Imaging on the Mac OS is used to
determine the preferred CMM. If the color world you pass in was created by
the CWConcatColorWorld function, then the keyIndex field of the
CMConcatProfileSet data structure identifies the preferred CMM. If the
preferred CMM is not available, the Apple-supplied CMM is used to perform
the color matching.

For this function to complete successfully, the source profile’s dataColorSpace
field value and the space field value of the source bitmap pointed to by the
bitMap parameter must specify the same data color space.

SEE ALSO

The NCWNewColorWorld function described on page 3-81 and the
CWConcatColorWorld function described on page 3-82 both allocate color world
references of type CMWorldRef.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-97

CWMatchColors 3

To match colors in a color list, use the CWMatchColors function.

pascal CMError CWMatchColors (CMWorldRef cw, CMColor *myColors,
unsigned long count);

cw A reference to the color world that describes how matching is to
occur in the color-matching session. See “Color World
Reference” on page 3-44.

myColors An array of type CMColor, described on page 3-40. On entry,
this array contains the list of colors to be matched. On return,
this array contains the list of matched colors specified in the
color data space of the color world’s destination profile.

count A one-based count of the number of colors in the color list of
the myColors array.

DESCRIPTION

The CWMatchColors function matches colors according to the profiles
corresponding to the specified color world. On entry, the color values in the
myColors array are assumed to be specified in the data color space of the source
profile. On return, the color values in the myColors array are transformed to the
data color space of the destination profile.

All Color Management Module (CMM)s must support this function. The
ColorSync Manager follows the arbitration scheme described in the chapter
“Introduction to the ColorSync Manager” in Advanced Color Imaging on the Mac
OS to determine which CMM is to be used for the color-matching session.

This function supports color matching sessions set up with one of the
multichannel color data types.

SEE ALSO

The NCWNewColorWorld function described on page 3-81 and the
CWConcatColorWorld function described on page 3-82 both create color worlds
and return color-world references of type CMWorldRef.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-98

CWCheckColors 3

To test a list of colors to see if they fall within a destination device’s gamut, use
the CWCheckColors function.

pascal CMError CWCheckColors (CMWorldRef cw,CMColor *myColors,
unsigned long count, long *result);

cw A reference to the color world describing how the test is to
occur. See “Color World Reference” on page 3-44.

myColors An array of type CMColor, described on page 3-40, containing a
list of colors.This function assumes the color values are
specified in the data color space of the source profile.

count The number of colors in the array. This is a one-based count.

result A pointer to a buffer of long data types used as a bitfield with
each bit representing a color in the array pointed to by
myColors. Allocate enough memory to allow for 1 bit to
represent each color in the myColors array. Bits in the result
field are set to 1 if the corresponding color is out of gamut for
the destination device. Ensure that the buffer you allocate is
zeroed-out before you call this function.

DESCRIPTION

The color test provides a preview of color matching using the specified color
world.

All CMMs must support this function. The ColorSync Manager follows the
arbitration scheme described in the chapter “Introduction to the ColorSync
Manager” in Advanced Color Imaging on the Mac OS to determine which CMM is
to be used for the color-checking session.

The result bit array returns indication of whether the colors in the list are in or
out of gamut for the destination profile. If a bit is set, its corresponding color
falls out of gamut for the destination device. The leftmost bit in the field
corresponds to the first color in the list.

This function supports matching sessions set up with one of the multichannel
color data types.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-99

SEE ALSO

The NCWNewColorWorld function described on page 3-81 and the
CWConcatColorWorld function described on page 3-82 both allocate color-world
references of type CMWorldRef.

Assigning and Accessing the System Profile File 3

The ColorSync Manager provides two functions that allow your application to
identify a profile as the system profile and obtain a reference to that profile.
These two functions replace the capability provided by the ColorSync 1.0
Profile Responder. The ColorSync system profile represents an abstract display
device. The ColorSync Manager use it as the default profile and color space if
your application does not specify a profile for the ColorSync Manager color
matching and checking functions.

CMSetSystemProfile 3

To identify a profile as the current system profile, use the CMSetSystemProfile
function.

pascal CMError CMSetSystemProfile (const FSSpec *profileFileSpec);

profileFileSpec
The file specification for the new system profile.

DESCRIPTION

By default, the Apple-supplied profile for the Apple 13-inch color monitor is
configured as the system profile. By calling the CMSetSystemProfile function,
your application may specify a new system profile.

An end user can use the ColorSync Manager control panel to identify a
different profile as the system profile.

You can configure only a display device profile as the system profile.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-100

SEE ALSO

To specify the profile file location, you use the FSSpec data type, described in
Inside Macintosh: Files.

CMGetSystemProfile 3

To obtain a reference to the current system profile, use the CMGetSystemProfile
function.

pascal CMError CMGetSystemProfile (CMProfileRef *prof);

prof A reference to the current system profile. The ColorSync
Manager returns this reference if the function completes
successfully.

DESCRIPTION

To give the system profile as a function parameter for any of several functions
including NCMBeginMatching, NCMDrawMatchedPicture, and NCWNewColorWorld,
you may specify the profile reference or you may specify NULL.

For all other functions, you must specify an explicit reference to the system
profile. You may use this function to obtain a reference to the system profile.

There are other purposes for which your application might obtain a reference
to the current system profile. For example, your application might need to get
the profile name of the current system profile in order to display the name to
the application user.

To identify the location of the physical file, call the CMGetProfileLocation
function described on page 3-56.

SEE ALSO

When your application is finished using the current system profile, it must
close the reference to the profile by calling the CMCloseProfile function,
described on page 3-51.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-101

Searching External Profiles 3

The ColorSync Manager profiles are stored in the Macintosh’s ColorSyncTM
Profiles folder, which is located in the Preferences folder within the System
Folder. The functions in this section allow your application to search for
profiles within the ColorSyncTM Profiles folder based on certain criteria and
obtain references to the selected profiles and their file specifications.

IMPORTANT

Only profiles with a major version number of 0x02 are
included in the profile search result. ▲

CMNewProfileSearch 3

To begin a new profile search, use the CMNewProfileSearch function.

pascal CMError CMNewProfileSearch (CMSearchRecord *searchSpec,
void *refCon, unsigned long *count,
CMProfileSearchRef *searchResult);

searchSpec The search specification. For a description of the information
you may provide in a search record of type CMSearchRecord to
define the search, see “Profile Search Record” on page 3-33.

refCon A reference constant for application data passed as a parameter
to calls to the filter function. For a description of the filter
function, see the MyCMProfileFilterProc function on page 3-136.

count A one-based count of profiles matching the search specification.
The ColorSync Manager returns this number if the function
completes successfully.

searchResult
A reference to the profile search result list. The ColorSync
Manager returns this reference if the function completes
successfully. For a description of the CMProfileSearchRef private
data type, see “Profile Search Result Reference” on page 3-44.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-102

DESCRIPTION

The CMNewProfileSearch function sets up and defines a new search identifying
through the search record the elements that a profile must contain to qualify for
inclusion in the search result list. The function searches the ColorSyncTM
Profiles folder for version 2.0 profiles that meet the criteria and returns a list of
these profile in an internal private data structure whose reference is returned to
you in the searchResult parameter.

You must provide a search record of type CMSearchRecord identifying the search
criteria. You control which fields of the search record are used for any given
search through a search bit mask whose value you set in the search record’s
searchMask field.

Among the information you can provide in the search record is a pointer to a
calling program-supplied filter function to be used to eliminate profiles from
the search based on additional criteria not defined by the search record. The
search result reference is passed to the filter function after the search is
performed. For a description of the filter function and its prototype, see the
MyCMProfileFilterProc function page 3-136.

Your application cannot directly access the search result list. Instead, you pass
the returned search result list reference to other search-related functions that
allow you to use the result list.

SEE ALSO

To obtain a reference to a profile corresponding to a specific index in the list,
use the CMSearchGetIndProfile function described on page 3-104. To obtain the
file specification for a profile corresponding to a specific index in the list, use
the CMSearchGetIndProfileFileSpec function described on page 3-105. To
update the search result list, use the CMUpdateProfileSearch function described
on page 3-102.

CMUpdateProfileSearch 3

To update an existing search result, use the CMUpdateProfileSearch function.

pascal CMError CMUpdateProfileSearch (CMProfileSearchRef search,
void *refCon, unsigned long *count);

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-103

search A reference to a search result list returned to your application
when you called the CMNewProfileSearch function. For a
description of the CMProfileSearchRef private data type, see
“Profile Search Result Reference” on page 3-44.

refCon A reference constant for application data passed as a parameter
to calls to the filter function specified by the original search
specification. For a description of the filter function, see the
MyCMProfileFilterProc function on page 3-136.

count A one-based count of the number of profiles matching the
original search specification passed to the CMNewProfileSearch
function if the function result is noErr. Otherwise undefined.

DESCRIPTION

After a profile search has been set up and performed through a call to the
CMNewProfileSearch function, the CMUpdateProfileSearch function updates the
existing search result. This is necessary if the contents of the ColorSync
Profiles folder have changed since the original search result was created.

The search update uses the original search specification, including the filter
function indicated by the search record. Data given in the
CMUpdateProfileSearch function’s refCon parameter is passed to the filter
function each time it is called.

Sharing a disk over a network makes it possible for the ColorSync Profiles
folder contents to be modified at any time.

SEE ALSO

For a description of the function you call to begin a new search, see the
CMNewProfileSearch function on page 3-101. This is the function that specifies
the filter function referred to in the description of the refCon parameter.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-104

CMDisposeProfileSearch 3

To free the private memory allocated for a profile search after your application
has completed the search, use the CMDisposeProfileSearch function.

pascal void CMDisposeProfileSearch (CMProfileSearchRef search);

search A reference to the profile search result list whose private
memory is to be released. For a description of the
CMProfileSearchRef private data type, For a description of the
CMProfileSearchRef private data type, see “Profile Search Result
Reference” on page 3-44.

SEE ALSO

To set up a search, use the CMNewProfileSearch function described on
page 3-101. To obtain a reference to a profile corresponding to a specific index
in the list, use the CMSearchGetIndProfile function described on page 3-104. To
obtain the file specification for a profile corresponding to a specific index in the
list, use the CMSearchGetIndProfileFileSpec function described on page 3-105.
To update the search result list, use the CMUpdateProfileSearch function
described on page 3-102.

CMSearchGetIndProfile 3

To open the profile corresponding to a specific index into a specific search
result list and obtain a reference to that profile, use the CMSearchGetIndProfile
function.

pascal CMError CMSearchGetIndProfile (CMProfileSearchRef search,
unsigned long index,
CMProfileRef *prof);

search A reference to the profile search result list containing the profile
whose reference you want to obtain. For a description of the
CMProfileSearchRef private data type, see “Profile Search Result
Reference” on page 3-44.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-105

index The position of the profile in the search result list. This value is
specified as a one-based index into the set of profiles of the
search result. The number must be within the range returned as
the count parameter of the CMNewProfileSearch function or the
CMUpdateProfileSearch function if the search result was
updated.

prof A reference to the profile associated with the specified index.
The ColorSync Manager returns this reference if the function
completes successfully.

SEE ALSO

Before your application can call the CMSearchGetIndProfile function, it must
call the CMNewProfileSearch function to perform a profile search and produce a
search result list. The search result list is a private data structure maintained by
the ColorSync Manager. After your application has finished using the profile
reference, it must close the reference by calling the CMCloseProfile function.

CMSearchGetIndProfileFileSpec 3

To obtain the file specification for the profile at a specific index into a search
result, use the CMSearchGetIndProfileFileSpec function.

pascal CMError CMSearchGetIndProfileFileSpec
(CMProfileSearchRef search,
 unsigned long index,
 FSSpec *profileFile);

search A reference to the profile search result containing the profile
whose file specification you want to obtain. For a description of
the CMProfileSearchRef private data type, see “Profile Search
Result Reference” on page 3-44.

index The index of the profile whose file specification you want to
obtain. This is a one-based index into a set of profiles in the
search result list. This number must be within the range

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-106

returned as the count parameter of the CMNewProfileSearch
function or the CMUpdateProfileSearch function if the search
result was updated.

profileFile
The file specification for the profile. The ColorSync Manager
returns this value if the function completes successfully. For a
description of the FSSpec data type, see Inside Macintosh: Files.

DESCRIPTION

Before your application can call the CMSearchGetIndProfile function, it must
call the CMNewProfileSearch function to perform a profile search and produce a
search result list. The search result list is a private data structure maintained by
ColorSync.

The CMSearchGetIndProfileFileSpec function obtains the Macintosh file system
file specification for a profile at a specific index in the search result list.

Converting Between Color Spaces 3

The ColorSync Manager includes a color conversion component that supports
functions your application can call to convert a list of colors within the same
base family. Color conversion, which does not require the use of color profiles,
is a much simpler process than color matching.

The color conversion functions support conversion only between color spaces
in the same base family, that is between the base color space and any of its
derived color spaces or between two derivatives of the same base family.

You can convert a list of colors between XYZ and any of its derived color
spaces, which include L*a*b*, L*u*v*, and Yxy, or between any two of the
derived color spaces. You can also convert colors defined in the XYZ color
space between CMXYZColor data types in which the color components are
expressed as 16-bit unsigned values and CMFixedXYZColor data types in which
the colors are expressed as 32-bit signed values.

You can convert a list of colors between RGB, which is the base-additive
device-dependent color space, and any of its derived color spaces, such as HLS,
HSV, and Gray, or between any two of the derived color spaces.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-107

Here are brief descriptions of the XYZ color space and its derivative color
spaces:

■ The XYZ space, referred to as the interchange color space, is the
fundamental, or base CIE-based independent color space.

■ The L*a*b* color space is a CIE-based independent color space used for
representing subtractive systems, where light is absorbed by colorants such
as inks and dyes. The L*a*b* color space is derived from the XYZ color
space. The default white point for the L*a*b* interchange space is the D50
white point.

■ The L*u*v* color space is a CIE-based color space used for representing
additive color systems, including color lights and emissive phosphor
displays. The L*u*v* color space is derived from the XYZ color space.

■ The Yxy color space expresses the XYZ values in terms of x and y
chromaticity coordinates, somewhat analogous to the hue and saturation
coordinates of HSV space. This allows color variation in Yxy space to be
plotted on a two-dimensional diagram.

■ The XYZ color space includes two XYZ data type formats. The
CMFixedXYZColor data type uses the Fixed data type for each of the three
components. Fixed is a signed 32-bit value. The CMFixedXYZColor data type,
which is also used in the ColorSync Manager profile.The CMXYZColor data
type uses 16-bit values for each component.

Here are brief descriptions of the RGB color space and its derivative color
spaces:

■ The RGB color space is a three-dimensional color space whose components
are the red, green, and blue intensities that make up a given color.

■ The HLS and HSV color spaces belong to the family of RGB-based color
spaces, which are directly supported by most color displays and scanners.

■ Gray spaces typically have a single component, ranging from black to white.
The Gray color space is used for black-and-white and grayscale display and
printing.

To convert colors from one color space to another, you don’t need to specify
source and destination profiles. Instead, you must identify the ColorSync
Manager color conversion component that is to perform the color conversion
by specifying the component instance your application uses. The component
instance identifies your application’s unique access path to the ColorSync

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-108

Manager color conversion component. Your application must use the
Component Manager to open a connection to the color conversion component.

The color conversion component is a stand-alone component that all
applications can use, including third-party CMMs. The color conversion
component, which is part of the ColorSync extension, is registered at startup
time but loaded only when needed.

Note
The color conversion functions do not support conversion
of HiFi colors. ◆

CMXYZToLab 3

To convert colors specified in the XYZ color space to the L*a*b* color space, use
the CMXYZToLab function. Both color spaces are device independent.

pascal ComponentResult CMXYZToLab (ComponentInstance ci,
const CMColor *src, const CMXYZColor *white,
CMColor *dst, unsigned long count);

ci The component instance identifying the connection your
application owns to the color conversion component that
performs the conversion. The ColorSync Manager color
conversion component has a component type of 'ccnv', a
component subtype of 'dflt', and a component manufacturer
of 'appl'.

src A pointer to an array containing the list of XYZ colors to be
converted to L*a*b* colors.

white The reference white point.

dst A pointer to an array containing the list of L*a*b* colors
resulting from the conversion.

count The number of colors to be converted.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-109

DESCRIPTION

The CMXYZToLab function converts one or more colors defined in the XYZ color
space to equivalent colors defined in the L*a*b* color space.

The ci parameter specifies the component instance identifying the path your
application uses to gain access to the conversion component. A component
instance is returned to your application when you call the Component
Manager’s OpenComponent or OpenDefaultComponent function to open a
connection to the component. When you no longer need access to the
conversion component, your application must call the Component Manager’s
CloseComponent function to close the connection and dispose of the private
storage used by the component instance.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMXYZToLab function to overwrite the source colors with the
resulting converted color specifications.

SEE ALSO

For information on how to open a connection to the conversion component to
obtain a component instance and close the connection, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

CMLabToXYZ 3

To convert colors specified in the L*a*b* color space to the XYZ color space, use
the CMLabToXYZ function. Both color spaces are device independent.

pascal ComponentResult CMLabToXYZ (ComponentInstance ci,
const CMColor *src,
const CMXYZColor *white,
CMColor *dst, unsigned long count);

ci The component instance identifying the connection your
application owns to the color conversion component that
performs the conversion. The ColorSync Manager color

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-110

conversion component has a component type of 'ccnv', a
component subtype of 'dflt', and a component manufacturer
of 'appl'.

src A pointer to a buffer containing the list of L*a*b* colors to be
converted to XYZ colors.

white The reference white point.

dst A pointer to a buffer containing the list of colors as specified in
the XYZ color space resulting from the conversion.

count The number of colors to be converted.

DESCRIPTION

The CMLabToXYZ function converts one or more colors defined in the L*a*b color
space to equivalent colors defined in the XYZ color space.

The ci parameter specifies the component instance identifying the path your
application uses to gain access to the conversion component. A component
instance is returned to your application when you call the Component
Manager’s OpenComponent or OpenDefaultComponent function to open a
connection to the component. When you no longer need access to the
conversion component, your application must call the Component Manager’s
CloseComponent function to close the connection dispose of the private storage
used by the component instance.

SEE ALSO

For information on how to open a connection to the conversion component to
obtain a component instance and close the connection, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-111

CMXYZToLuv 3

To convert colors specified in the XYZ color space to the L*u*v* color space, use
the CMXYZToLuv function. Both color spaces are device independent.

pascal ComponentResult CMXYZToLuv (ComponentInstance ci,
const CMColor *src,
const CMXYZColor *white,
CMColor *dst,
unsigned long count);

ci The component instance identifying the connection your
application owns to the color conversion component that
performs the conversion. The ColorSync Manager color
conversion component has a component type of 'ccnv', a
component subtype of 'dflt', and a component manufacturer
of 'appl'.

src A pointer to an array containing the list of XYZ colors to be
converted to L*u*v* colors.

white The reference white point.

dst A pointer to an array containing the list of colors represented in
L*u*v* color space resulting from the conversion.

count The number of colors to be converted.

DESCRIPTION

The CMXYZToLuv function converts one or more colors defined in the XYZ color
space to equivalent colors defined in the L*u*v* color space.

The ci parameter specifies the component instance identifying the path your
application uses to gain access to the conversion component. A component
instance is returned to your application when you call the Component
Manager’s OpenComponent or OpenDefaultComponent function to open a
connection to the component. When you no longer need access to the
conversion component, your application must call the Component Manager’s
CloseComponent function to close the connection and dispose of the private
storage used by the component instance.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-112

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMXYZToLuv function to overwrite the source colors with the
resulting converted color specifications.

SEE ALSO

For information on how to open a connection to the conversion component to
obtain a component instance and close the connection, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

CMLuvToXYZ 3

To convert colors specified in the L*u*v* color space to the XYZ color space, use
the CMLuvToXYZ function. Both color spaces are device independent.

pascal ComponentResult CMLuvToXYZ (ComponentInstance ci,
const CMColor *src,
const CMXYZColor *white,
CMColor *dst,
unsigned long count);

ci The component instance identifying the connection your
application owns to the color conversion component that
performs the conversion. The ColorSync Manager color
conversion component has a component type of 'ccnv', a
component subtype of 'dflt', and a component manufacturer
of 'appl'.

src A pointer to an array containing the list of L*u*v* colors to be
converted.

white The reference white point.

dst A pointer to an array containing the list of colors, resulting from
the conversion, as specified in the XYZ color space.

count The number of colors to be converted.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-113

DESCRIPTION

The CMLuvToXYZ function converts one or more colors defined in the L*a*b color
space to equivalent colors defined in the XYZ color space.

The ci parameter specifies the component instance identifying the path your
application uses to gain access to the conversion component. A component
instance is returned to your application when you call the Component
Manager’s OpenComponent or OpenDefaultComponent function to open a
connection to the component. When you no longer need access to the
conversion component, your application must call the Component Manager’s
CloseComponent function to close the connection dispose of the private storage
used by the component instance.

SEE ALSO

For information on how to open a connection to the conversion component to
obtain a component instance and close the connection, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

CMXYZToYxy 3

To convert colors specified in the XYZ color space to the Yxy color space, use
the CMXYZToYxy function. Both color spaces are device independent.

pascal ComponentResult CMXYZToYxy (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

ci The component instance identifying the connection your
application owns to the color conversion component that
performs the conversion. The ColorSync Manager color
conversion component has a component type of 'ccnv', a
component subtype of 'dflt', and a component manufacturer
of 'appl'.

src A pointer to an array containing the list of XYZ colors to be
converted to Yxy colors.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-114

dst A pointer to an array containing the list of colors resulting from
the conversion represented in the Yxy color space.

count The number of colors to be converted.

DESCRIPTION

The CMXYZToYxy function converts one or more colors defined in the XYZ color
space to equivalent colors defined in the Yxy color space.

The ci parameter specifies the component instance identifying the path your
application uses to gain access to the conversion component. A component
instance is returned to your application when you call the Component
Manager’s OpenComponent or OpenDefaultComponent function to open a
connection to the component. When you no longer need access to the
conversion component, your application must call the Component Manager’s
CloseComponent function to close the connection and dispose of the private
storage used by the component instance.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMXYZToYxy function to overwrite the source colors with the
resulting converted color specifications.

SEE ALSO

For information on how to open a connection to the conversion component to
obtain a component instance and close the connection, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

CMYxyToXYZ 3

To convert colors specified in the Yxy color space to the XYZ color space, use
the CMYxyToXYZ function. Both color spaces are device independent.

pascal ComponentResult CMYxyToXYZ (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-115

ci The component instance identifying the connection your
application owns to the color conversion component that
performs the conversion. The ColorSync color conversion
component has a component type of 'ccnv', a component
subtype of 'dflt', and a component manufacturer of 'appl'.

src A pointer to an array containing the list of Yxy colors to be
converted.

dst A pointer to an array containing the list of colors, resulting from
the conversion, as specified in the XYZ color space.

count The number of colors to be converted.

DESCRIPTION

The CMYxyToXYZ function converts one or more colors defined in the Yxy color
space to equivalent colors defined in the XYZ color space.

The ci parameter specifies the component instance identifying the path your
application uses to gain access to the conversion component. A component
instance is returned to your application when you call the Component
Manager’s OpenComponent or OpenDefaultComponent function to open a
connection to the component. When you no longer need access to the
conversion component, your application must call the Component Manager’s
CloseComponent function to close the connection and dispose of the private
storage used by the component instance.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMYxyToXYZ function to overwrite the source colors with the
resulting converted color specifications.

SEE ALSO

For information on how to open a connection to the conversion component to
obtain a component instance and close the connection, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-116

CMXYZToFixedXYZ 3

To convert colors specified in the XYZ color space whose components are
expressed as XYZ 16-bit unsigned values of type CMXYZColor to equivalent
colors expressed as 32-bit signed values of type CMFixedXYZColor, use the
CMXYZToFixedXYZ function. The XYZ color space is device independent.

pascal ComponentResult CMXYZToFixedXYZ (ComponentInstance ci,
const CMXYZColor *src,
CMFixedXYZColor *dst,
unsigned long count);

ci The component instance identifying the connection your
application owns to the color conversion component for the
conversion. The ColorSync Manager color conversion
component has a component type of 'ccnv', a component
subtype of 'dflt', and a component manufacturer of 'appl'.

src A pointer to an array containing the list of XYZ colors to be
converted to Fixed XYZ colors.

dst A pointer to an array containing the list of colors resulting from
the conversion in which the colors are specified as Fixed XYZ
colors.

count The number of colors to be converted.

DESCRIPTION

The CMXYZToFixedXYZ function converts one or more colors whose components
are defined as XYZ colors to equivalent colors whose components are defined
as Fixed XYZ colors. Fixed XYZ colors allow for 32-bit precision.

The ci parameter specifies the component instance identifying the path your
application uses to gain access to the conversion component. A component
instance is returned to your application when you call the Component
Manager’s OpenComponent or OpenDefaultComponent function to open a
connection to the component. When you no longer need access to the
conversion component, your application must call the Component Manager’s
CloseComponent function to close the connection and dispose of the private
storage used by the component instance.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-117

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMXYZToFixedXYZ function to overwrite the source colors with the
resulting converted color specifications.

SEE ALSO

For information on how to open a connection to the conversion component to
obtain a component instance and close the connection, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

CMFixedXYZToXYZ 3

To convert colors specified in XYZ color space whose components are
expressed as Fixed XYZ 32-bit signed values of type CMFixedXYZColor to
equivalent colors expressed as XYZ 16-bit unsigned values of type CMXYZColor,
use the CMFixedXYZToXYZ function. The XYZ color space is device independent.

pascal ComponentResult CMFixedXYZToXYZ (ComponentInstance ci,
const CMFixedXYZColor *src,
CMXYZColor *dst, unsigned long count);

ci The component instance identifying the connection your
application owns to the color conversion component that
performs the conversion. The ColorSync Manager color
conversion component has a component type of 'ccnv', a
component subtype of 'dflt', and a component manufacturer
of 'appl'.

src A pointer to an array containing the list of Fixed XYZ colors to
be converted to XYZ colors.

dst A pointer to an array containing the list of colors resulting from
the conversion specified as XYZ colors.

count The number of colors to be converted.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-118

DESCRIPTION

The CMFixedXYZToXYZ function converts one or more colors defined in the Fixed
XYZ color space to equivalent colors defined in the XYZ color space.

The ci parameter specifies the component instance identifying the path your
application uses to gain access to the conversion component. A component
instance is returned to your application when you call the Component
Manager’s OpenComponent or OpenDefaultComponent function to open a
connection to the component. When you no longer need access to the
conversion component, your application must call the Component Manager’s
CloseComponent function to close the connection and dispose of the private
storage used by the component instance.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMFixedXYZToXYZ function to overwrite the source colors with the
resulting converted color specifications.

SEE ALSO

For information on how to open a connection to the conversion component to
obtain a component instance and close the connection, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

CMRGBToHLS 3

To convert colors specified in the RGB color space to equivalent colors defined
in the HLS color space, use the CMRGBToHLS function. Both color spaces are
device dependent.

pascal ComponentResult CMRGBToHLS (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

ci The component instance identifying the connection your
application owns to the color conversion component that
performs the conversion. The ColorSync Manager color

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-119

conversion component has a component type of 'ccnv', a
component subtype of 'dflt', and a component manufacturer
of 'appl'.

src A pointer to an array containing the list of RGB colors to be
converted to HLS colors.

dst A pointer to an array containing the list of colors, resulting from
the conversion, as specified in the HLS color space.

count The number of colors to be converted.

DESCRIPTION

The CMRGBToHLS function converts one or more colors defined in the RGB color
space to equivalent colors defined in the HLS color space.

The ci parameter specifies the component instance identifying the path your
application uses to gain access to the conversion component. A component
instance is returned to your application when you call the Component
Manager’s OpenComponent or OpenDefaultComponent function to open a
connection to the component. When you no longer need access to the
conversion component, your application must call the Component Manager’s
CloseComponent function to close the connection and dispose of the private
storage used by the component instance.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMRGBToHLS function to overwrite the source colors with the
resulting converted color specifications.

SEE ALSO

For information on how to open a connection to the conversion component to
obtain a component instance and close the connection, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-120

CMHLSToRGB 3

To convert colors specified in the HLS color space to equivalent colors defined
in the RGB color space, use the CMHLSToRGB function. Both color spaces are
device dependent.

pascal ComponentResult CMHLSToRGB (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

ci The component instance identifying the connection your
application owns to the color conversion component that
performs the conversion. The ColorSync Manager color
conversion component has a component type of 'ccnv', a
component subtype of 'dflt', and a component manufacturer
of 'appl'.

src A pointer to an array containing the list of HLS colors to be
converted to RGB colors.

dst A pointer to an array containing the list of colors, resulting from
the conversion, as specified in the RGB color space.

count The number of colors to be converted.

DESCRIPTION

The CMHLSToRGB function converts one or more colors defined in the HLS color
space to equivalent colors defined in the RGB color space.

The ci parameter specifies the component instance identifying the path your
application uses to gain access to the conversion component. A component
instance is returned to your application when you call the Component
Manager’s OpenComponent or OpenDefaultComponent function to open a
connection to the component. When you no longer need access to the
conversion component, your application must call the Component Manager’s
CloseComponent function to close the connection and dispose of the private
storage used by the component instance.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-121

and allow the CMHLSToRGB function to overwrite the source colors with the
resulting converted color specifications.

SEE ALSO

For information on how to open a connection to the conversion component to
obtain a component instance and close the connection, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

CMRGBToHSV 3

To convert colors specified in the RGB color space to equivalent colors defined
in the HSV color space when the device types are the same, use the CMRGBToHSV
function. Both color spaces are device dependent.

pascal ComponentResult CMRGBToHSV (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

ci The component instance identifying the connection your
application owns to the color conversion component that
performs the conversion. The ColorSync Manager color
conversion component has a component type of 'ccnv', a
component subtype of 'dflt', and a component manufacturer
of 'appl'.

src A pointer to an array containing the list of RGB colors to be
converted to HSV colors.

dst A pointer to an array containing the list of colors, resulting from
the conversion, as specified in the HSV color space.

count The number of colors to be converted.

DESCRIPTION

The CMRGBToHSV function converts one or more colors defined in the RGB color
space to equivalent colors defined in the HSV color space.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-122

The ci parameter specifies the component instance identifying the path your
application uses to gain access to the conversion component. A component
instance is returned to your application when you call the Component
Manager’s OpenComponent or OpenDefaultComponent function to open a
connection to the component. When you no longer need access to the
conversion component, your application must call the Component Manager’s
CloseComponent function to close the connection and dispose of the private
storage used by the component instance.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMRGBToHSV function to overwrite the source colors with the
resulting converted color specifications.

SEE ALSO

For information on how to open a connection to the conversion component to
obtain a component instance and close the connection, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

CMHSVToRGB 3

To convert colors specified in the HSV color space to equivalent colors defined
in the RGB color space, use the CMHSVToRGB function. Both color spaces are
device dependent.

pascal ComponentResult CMHSVToRGB (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

ci The component instance identifying the connection your
application owns to the color conversion component that
performs the conversion. The ColorSync Manager color
conversion component has a component type of 'ccnv', a
component subtype of 'dflt', and a component manufacturer
of 'appl'.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-123

src A pointer to an array containing the list of HSV colors to be
converted to RGB colors.

dst A pointer to an array containing the list of colors, resulting from
the conversion, as specified in the RGB color space.

count The number of colors to be converted.

DESCRIPTION

The CMHSVToRGB function converts one or more colors defined in the HSV color
space to equivalent colors defined in the RGB color space.

The ci parameter specifies the component instance identifying the path your
application uses to gain access to the conversion component. A component
instance is returned to your application when you call the Component
Manager’s OpenComponent or OpenDefaultComponent function to open a
connection to the component. When you no longer need access to the
conversion component, your application must call the Component Manager’s
CloseComponent function to close the connection and dispose of the private
storage used by the component instance.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMHSVToRGB function to overwrite the source colors with the
resulting converted color specifications.

SEE ALSO

For information on how to open a connection to the conversion component to
obtain a component instance and close the connection, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-124

CMRGBToGray 3

To convert colors specified in the RGB color space to equivalent colors defined
in the Gray color space, use the CMRGBToGray function. Both color spaces are
device dependent.

pascal ComponentResult CMRGBToGray (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

ci The component instance identifying the connection your
application owns to the color conversion component that
performs the conversion. The ColorSync Manager color
conversion component has a component type of 'ccnv', a
component subtype of 'dflt', and a component manufacturer
of 'appl'.

src A pointer to an array containing the list of colors specified in
RGB space to be converted to colors specified in Gray space.

dst A pointer to an array containing the list of colors, resulting from
the conversion, as specified in the Gray color space.

count The number of colors to be converted.

DESCRIPTION

The CMRGBToGray function converts one or more colors defined in the RGB color
space to equivalent colors defined in the Gray color space.

The ci parameter specifies the component instance identifying the path your
application uses to gain access to the conversion component. A component
instance is returned to your application when you call the Component
Manager’s OpenComponent or OpenDefaultComponent function to open a
connection to the component. When you no longer need access to the
conversion component, your application must call the Component Manager’s
CloseComponent function to close the connection and dispose of the private
storage used by the component instance.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-125

and allow the CMRGBToGray function to overwrite the source colors with the
resulting converted color specifications.

SEE ALSO

For information on how to open a connection to the conversion component to
obtain a component instance and close the connection, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

PostScript Color-Matching Support Functions 3

The ColorSync Manager provides three functions that support color matching
by PostScript Level 2 devices. The default Apple-supplied CMM implements
these functions if the preferred CMM corresponding to the profile does not.

CMGetPS2ColorSpace 3

To receive the color space element data in text format usable as the parameter
to the PostScript setColorSpace operator, which characterizes the color space of
subsequent graphics data, use the CMGetPS2ColorSpace function.

pascal CMError CMGetPS2ColorSpace (CMProfileRef srcProf,
 unsigned long flags,
 CMFlattenUPP proc, void *refCon,
 Boolean *preferredCMMnotfound);

srcProf A profile reference to the source profile that defines the data
color space and identifies the preferred CMM. You cannot
specify NULL to indicate the system profile. If you use the system
profile, you must give an explicit reference.

flags Reserved for future use.

proc A calling program-supplied flatten function used to receive the
PostScript data from the CMM. For information, see the
MyColorSyncDataTransfer function on page 3-131.

refCon A reference constant for application data passed as a parameter
to calls to the MyColorSyncDataTransfer function.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-126

preferredCMMnotfound
A flag that returns true if the CMM corresponding to profile
was not available or if it was unable to perform the function
and the Apple-supplied default CMM was used. Otherwise, it
returns false.

DESCRIPTION

TheCMGetPS2ColorSpace function obtains the data color space element data
assigned to the PostScript Level 2 color space array (ps2CSATag) tag in the
source profile. If the tag does not exist in the profile, the CMM will create the
color space array from the profile.

The CMM obtains the PostScript data from the profile and calls your low-level
data transfer procedure passing the PostScript data to it. The CMM converts
the data into a PostScript stream and calls your procedure as many times as
necessary to transfer the data to it.

Typically, the low-level data transfer function returns this data to the calling
application or device driver to be passed to a PostScript printer as an operand
to the PostScript setcolorspace operator, which defines the color space of
graphics data to follow.

The CMGetPS2ColorSpace function is dispatched to the CMM component
specified by the source profile. If the designated CMM is not available or the
CMM does not implement this function, then the ColorSync Manager
dispatches the function to the Apple-supplied default CMM.

CMGetPS2ColorRenderingIntent 3

To receive the rendering intent element data in text format usable as the
parameter to the PostScript findRenderingIntent operator, which specifies the
color-matching option for subsequent graphics data, use the
CMGetPS2ColorRenderingIntent function.

pascal CMError CMGetPS2ColorRenderingIntent
(CMProfileRef srcProf, unsigned long flags,
 CMFlattenUPP proc, void *refCon,
 Boolean *preferredCMMnotfound);

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-127

srcProf A profile reference to the source profile. You cannot specify NULL
to indicate the system profile. If you use the system profile, you
must specify an explicit reference.

flags Reserved for future use.

proc A calling-program-supplied low-level data transfer function
used to receive the PostScript data from the CMM. For
information, see the MyColorSyncDataTransfer function on
page 3-131.

refCon A reference constant for application data passed as a parameter
to calls to the MyColorSyncDataTransfer function.

preferredCMMnotfound
A flag that returns true if the CMM corresponding to profile
was not available or if it was unable to perform the function
and the default CMM was used. Otherwise returns false.

DESCRIPTION

The CMGetPS2ColorRenderingIntent function obtains the rendering intent
element data for the PostScript Level 2 rendering intent
(ps2RenderingIntentTag) tag in the source profile. If the tag does not exist in
the profile, the ColorSync Manager will create it based on the profile contents.

The CMM obtains the PostScript data from the profile and calls your low-level
data transfer procedure passing the PostScript data to it. The CMM converts
the data into a PostScript stream and calls your procedure as many times as
necessary to transfer the data to it.

Typically, the low-level data transfer function returns this data to the calling
application or device driver to be passed to a PostScript printer.

The CMGetPS2ColorRenderingIntent function is dispatched to the CMM
component specified by the source profile. If the designated CMM is not
available or the CMM does not implement this function, then ColorSync
dispatches the CMGetPS2ColorRenderingIntent function to the default
Apple-supplied CMM.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-128

CMGetPS2ColorRendering 3

To receive the color rendering dictionary (CRD) element data in text usable as
the parameter to the PostScript setColorRendering operator, which specifies
the PostScript color rendering dictionary to be used for the following graphics
data, use the CMGetPS2ColorRendering function.

pascal CMError CMGetPS2ColorRendering
(CMProfileRef srcProf,
 CMProfileRef dstProf,
 unsigned long flags,
 CMFlattenUPP proc, void *refCon,
 Boolean *preferredCMMnotfound);

srcProf A profile reference to the source profile.

dstProf A profile reference to the destination profile.

flags Reserved for future use.

proc A calling-program-supplied flatten function used to perform
the data transfer. For information, see the
MyColorSyncDataTransfer function on page 3-131.

refCon A reference constant for application data passed as a parameter
to calls to the MyColorSyncDataTransfer function.

preferredCMMnotfound
A flag that returns true if the CMM corresponding to profile
was not available or if it was unable to perform the function
and the default CMM was used. Otherwise, it returns false.

DESCRIPTION

The CMGetPS2ColorRendering function obtains the color rendering dictionary
(CRD) element data for the PostScript Level 2 rendering intent specified by the
source profile. If the tag does not exist in the profile, the ColorSync Manager
will create it based on the profile contents.

The CMGetPS2ColorRendering function is dispatched to the CMM component
specified by the destination profile. If the designated CMM is not available or
the CMM does not implement this function, then the ColorSync Manager

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-129

dispatches the CMGetPS2ColorRendering function to the default Apple-supplied
CMM.

A profile’s ps2CRD0Tag element data contains the CRD for perceptual rendering.
A profile’s ps2CRD1Tag contains the CRD for relative colorimetric rendering. A
profile’s ps2CRD2Tag contains the CRD for saturation rendering. A profile’s
ps2CRD3Tag contains the CRD for absolute colorimetric rendering. If the profile
does not contain a CRD tag, the Apple-supplied CMM will create the CRD
from the profile.

The CMM obtains the PostScript data from the profile and calls your low-level
data transfer procedure passing the PostScript data to it. The CMM converts
the data into a PostScript stream and calls your procedure as many times as
necessary to transfer the data to it.

Typically, the low-level data transfer function returns this data to the calling
application or device driver to be passed to a PostScript printer.

SEE ALSO

Before your application or device driver sends the CRD to the printer, it can
call the CMGetPS2ColorRenderingVMSize function, described on page 3-129, to
determine the virtual memory size of the CRD.

CMGetPS2ColorRenderingVMSize 3

To determine the virtual memory size of the color rendering dictionary for a
printer profile before your application or driver obtains the CRD and sends it
to the printer, use the CMGetPS2ColorRenderingVMSize function.

pascal CMError CMGetPS2ColorRenderingVMSize
(CMProfileRef srcProf, CMProfileRef dstProf,
 unsigned long *vmSize,
 Boolean *preferredCMMnotfound);

srcProf A profile reference to the source profile whose CMM is to be
used.

dstProf A profile reference to the destination printer profile.

vmSize The virtual memory size of the CRD, returned by the function.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-130

preferredCMMnotfound
A flag that returns true if the preferred CMM was not available
or if it was unable to perform the function and the default
CMM was used. Otherwise returns false.

DESCRIPTION

Your application or device driver can call this function to determine if the
virtual memory size of the color rendering dictionary exceeds the printer’s
capacity before sending the CRD to the printer. If the printer’s profile contains
the Apple-defined optional tag 'psvm' described in “PostScript Color
Rendering Dictionary (CRD) Virtual Memory Size Tag Structure” on page 3-48,
then the Apple-supplied CMM will return the data supplied by this tag
specifying the CRD virtual memory size for the rendering intent’s CRD. If the
printer’s profile does not contain this tag, then the CMM uses an algorithm to
assess the VM size of the CRD, in which case the assessment may be larger
than the actual maximum VM size.

The source profile specifies the rendering intent to be used.

Locating the ColorSync Profiles Folder 3

Your application can use this function to determine the location of the
ColorSyncTM Profiles folder.

CMGetColorSyncFolderSpec 3

To obtain the hierarchical file system (HFS) reference number and the directory
ID for the ColorSyncTM Profiles folder, use the CMGetColorSyncFolderSpec
function.

pascal CMError CMGetColorSyncFolderSpec (short vRefNum,
 Boolean createFolder,
 short *foundVRefNum,
 long *foundDirID);

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-131

vRefNum The reference number of the volume to be examined. The
volume must be mounted. The constant kOnSystemDisk defined
in the Folders header file (Folders.h)specifies the active system
volume.

createFolder
A flag you set to true to direct the ColorSync Manager to create
the ColorSync Profiles folder, if it does not exist. You can use the
constants kCreateFolder and kDontCreateFolder, defined in
Folders.h file, to assign a value to the flag.

foundVRefNum
The HFS volume reference number. The ColorSync Manager
returns this value if the function completes successfully.

foundDirID The HFS directory ID. ColorSync returns this value if the
function completes successfully.

DESCRIPTION

If the ColorSync Profiles folder does not already exist, you can use this function
to create it.

SEE ALSO

For information about the Macintosh file system, see Inside Macintosh: Files.

Application-Defined Functions for the ColorSync Manager 3

Your application supplies the following functions for use with the ColorSync
Manager API functions. The ColorSync Manager API functions that use your
functions take a pointer to your function as an input parameter.

MyColorSyncDataTransfer 3

Your MyColorSyncDataTransfer function transfers profile data from the format
for embedded profiles to disk file format or vice versa. The
MyColorSyncDataTransfer function is also used by the PostScript functions to
transfer data from a profile to text format usable by a PostScript driver.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-132

This application-supplied function must conform to the following declaration.
For example, this is how you should declare the function if you were to name it
MyColorSyncDataTransfer:

pascal OSErr MyColorSyncDataTransfer(long command, long *size,
void *data, void *refCon);

command The command with which the MyColorSyncDataTransfer
function is called. This command specifies the operation the
function is to perform.

size On entry, the size in bytes of the data to be transferred. On
return, the size of the data actually transferred.

data A pointer to the buffer supplied by the ColorSync Manager to
be used for the data transfer.

refCon A reference constant used to hold the application data passed in
from the CMFlattenProfile function, the CMUnflattenProfile
function, or the CMGetPS2ColorSpace,
CMGetPS2ColorRenderingIntent, or CMGetPS2ColorRendering
functions. Each time the CMM calls your
MyColorSyncDataTransfer function, it passes this data to the
function.

DESCRIPTION

Your MyColorSyncDataTransfer function is called to flatten and unflatten
profiles or to transfer PostScript-related data from a profile to the PostScript
format to be sent to an application or device driver.

The ColorSync dispatcher and the CMM communicate with the
MyColorSyncDataTransfer function using the command parameter to identify
the operation to be performed. To read and write profile data, your function
must the support the following commands: openReadSpool, openWriteSpool,
readSpool, writeSpool, and closeSpool.

You determine the behavior of your MyColorSyncDataTransfer function. This
section describes how your function might handle the flattening and
unflattening processes.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-133

FLATTENING A PROFILE

The ColorSync Manager calls the specified profile’s preferred CMM when an
application calls the CMFlattenProfile function to transfer profile data
embedded in a graphics document.

The ColorSync Manager determines if the CMM supports the
CMFlattenProfile function. If so, the ColorSync Manager dispatches the
CMFlattenProfile function to the CMM. If not, ColorSync calls the default
Apple-supplied CMM dispatching the CMFlattenProfile function to it.

The CMM communicates with the MyColorSyncDataTransfer function using a
command parameter to identify the operation to be performed. The CMM calls
your function as often as necessary, passing to it on each call any data
transferred to the CMM from the CMFlattenProfile function’s refCon
parameter.

The ColorSync Manager calls your function with the following sequence of
commands: openWriteSpool, writeSpool, and closeSpool. Here is how you
should handle these commands:

■ When the CMM calls your function with the openWriteSpool command, you
should perform any initialization required to write profile data you receive
from the CMM to a buffer or file.

■ The CMM will call your function with the writeSpool command as many
times as necessary to transfer all the profile data to you. Each time you are
called, you should receive the data and write it to your buffer or file,
returning in the size parameter the number of bytes of data you actually
accepted.

■ When the CMM calls your function with the closeSpool command, you
should perform any required cleanup processes.

As part of this process, your function can embed the profile data in a graphics
document, for example, a PICT file or a TIFF file. For example, your
MyColorSyncDataTransfer function can call the QuickDraw PicComment
function to embed the flattened profile in a picture.

UNFLATTENING A PROFILE

When an application calls the CMUnflattenProfile function to transfer a profile
that was embedded in a graphics document to an independent disk file, the
ColorSync dispatcher calls your MyColorSyncDataTransfer function to obtain
the preferred CMM of the profile to be flattened. The ColorSync Manager calls

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-134

your function with the following sequence of commands: openReadSpool,
readSpool, closeSpool. Here is how you should handle these commands:

■ When the CMM calls your function with the openReadSpool command, you
should perform any initialization required to read from the embedded
profile format.

■ The CMM will call your function with the readSpool command as many
times as necessary, directing your function to extract the profile data from
the embedded format in the image file and return it to the CMM in the data
buffer. The CMM passes in the size parameter the number of bytes of data
you should return. Each time you are called, you should read and return the
data, also returning in the size parameter the number of bytes of data you
actually returned to the CMM.

■ When the CMM calls your function with the closeSpool command, you
should perform any required cleanup processes.

The preferred CMM is stored in the profile header’s CMMType field. The
MyColorSyncDataTransfer function must be able to buffer at least 8 bytes of
data to hold the CMMType field value.

The ColorSync Manager determines if the CMM supports the
CMUnflattenProfile function. If so, the ColorSync Manager calls the preferred
CMM to dispatch the CMUnflattenProfile function to it. If not, the ColorSync
Manager calls the default Apple-supplied CMM to dispatch the
CMUnflattenProfile function to it.

The CMM calls the calling program-supplied MyColorSyncDataTransfer to
direct it to unflatten the profile data and write it to a disk file. The CMM calls
your function as often as necessary, passing to it on each call any data
transferred to the CMM from the CMUnflattenProfile function’s refCon
parameter.

MyCMBitmapCallBackProc 3

Your MyCMBitmapCallBackProc function reports on the progress of a
color-matching or color-checking session being performed for a bitmap or a
pixel map.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-135

This application-supplied function must conform to the following declaration.
For example, this is how you should declare the function if you were to name it
MyCMBitmapCallBackProc:

pascal Boolean MyCMBitmapCallBackProc (long progress,
void *refCon);

progress A byte count that begins at an arbitrary value and counts down
to one when the matching is complete.

refCon The reference constant passed to your MyCMBitmapCallBackProc
function each time the Color Management Module (CMM) calls
your function.

DESCRIPTION

Your MyCMBitmapCallBackProc function allows your application to monitor the
progress of a color-matching or color-checking session for a bitmap or a pixel
map. Your function can also terminate the matching or checking operation.

Your callback function is called by the CMM performing the matching or
checking process if your application passes a pointer to your callback function
in the progressProc parameter when it calls one of the following functions:
CWMatchPixMap described on page 3-88, CWCheckPixMap described on page 3-90,
CWMatchBitmap described on page 3-92, and CWCheckBitMap described on
page 3-95.

The CMM used for the session calls your function at regular intervals. For
example, the Apple-supplied CMM calls your function approximately every
half second unless the color matching or checking occurs quickly enough to
warrant not calling your function; this happens when there is a small amount
of data to be matched or checked.

Each time the ColorSync Manager calls your function, it passes to the function
any data stored in the reference constant. This is the data that your application
specified in the refCon parameter when it called one of the color matching or
checking functions.

For large bitmaps and pixel maps, your application could display some type of
indicator to users, such as a progress thermometer, to register how much has
been done and how much is yet to be done. If your application were to do this,
for example, you could use the reference constant to pass the dialog box’s
window reference to the callback function.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-136

To terminate the matching or checking operation, your function should return a
value of true. Because pixel map matching is done in place, an application that
allows the user to terminate the process should revert to the prematched image
to avoid partial mapping.

For bitmap matching, if the matchedBitMap parameter of the CWMatchBitmap
function specifies NULL to indicate that the source bitmap is to be matched in
place and the application allows the user to abort the process, you should also
revert to the prematched bitmap if the user terminates the operation.

Each time the ColorSync Manager calls your progress function, it passes a byte
count in the progress parameter. The last time the ColorSync Manager calls
your progress function, it passes a byte count of zero to indicate the completion
of the matching or checking process. You should use the zero byte count as a
signal to perform any cleanup operations your function requires, such as filling
the thermometer or progress bar to completion to indicate to the user the end
of the checking or matching session, and then removing the dialog box used for
the display.

MyCMProfileFilterProc 3

After a profile has been included in the profile search result based on criteria
specified in the search record, your MyCMProfileFilterProc function can
examine the profile whose reference you specify to further determine if it
should be included or excluded from the profile search result list based on
criteria such as an element or elements not included in the CMSearchRecord
search record. Your MyCMProfileFilterProc function can also perform searching
using AND or OR logic.

This application-supplied function must conform to the following declaration.
For example, this is how you should declare the function if you were to name it
MyCMProfileFilterProc:

pascal Boolean MyCMProfileFilterProc (CMProfileRef prof,
void *refCon);

prof A reference to the profile to be tested for filtering.

refCon A reference constant that holds data passed through from the
CMNewProfileSearch function or the CMUpdateProfileSearch
function.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-137

DESCRIPTION

Your MyCMProfileFilterProc function is called after the CMNewProfileSearch
function searches for profiles based on the search record’s contents as specified
by the search bitmask.

When your application calls the CMNewProfileSearch, it gives a reference to a
search specification record of type CMSearchRecord, described on page 3-33, that
contains a filter field. If the filter field contains a pointer to your
MyCMProfileFilterProc function, then your function is called to determine if a
profile is to be eliminated from the search result list. Your function should
return true for a given profile to exclude that profile from the search result list.
If you do not want to filter profiles beyond the criteria in the search record,
specify a NULL value for the search record’s filter field.

C H A P T E R 3

ColorSync Manager Reference for Applications and Device Drivers

3-138

Result Codes 3

noErr 0 No error
cmProfileError –170 There is something wrong with the content of the

profile
cmMethodError –171 An error occurred during the CMM arbitration

process that determines the CMM to be used
cmMethodNotFound –175 CMM not present
cmProfileNotFound –176 Responder error
cmProfilesIdentical –177 Profiles are the same
cmCantConcatenateError –178 Profiles can't be concatenated
cmCantXYZ –179 CMM does not handle XYZ color space
cmCantDeleteProfile –180 Responder error
cmUnsupportedDataType –181 Responder error
cmNoCurrentProfile –182 Responder error
cmElementTagNotFound –4200 The tag you specified is not in the specified

profile
cmIndexRangeErr –4201 Index out of range
cmFatalProfileErr –4203 Returned from File Manager while updating a

profile file in response to CMUpdateProfile
Profile content may be corrupted

cmInvalidProfileLocation –4205 Operation not supported for this profile location
cmInvalidSearch –4206 Bad search handle
cmSearchError –4207 Internal error occurred during profile search.
cmInvalidColorSpace –4209 Profile color space does not match bitmap type
cmInvalidSrcMap –4210 Source pixel map or bitmap was invalid
cmInvalidDstMap –4211 Destination pix/bit map was invalid
cmNoGDevicesError –4212 Begin matching or ending matching—no

gdevices available
cmInvalidProfileComment –4213 Bad profile comment during drawpicture
cmRangeoverFlow –4214 One or more output color value overflows in

color conversion: all input color values will be
converted and the overflow will be clipped

cmCantCopyModifiedV1Profile –4215 It is illegal to copy version 1.0 profiles that have
been modified

C H A P T E R 4

Contents

4-1

Contents

Figure 3-0
Listing 3-0
Table 3-0

4 ColorSync Manager Reference
for Color Management Modules

Constants 4-3
Color Management Module Component Interface 4-3
Required Request Codes 4-4
Optional Request Codes 4-5

Required Functions 4-9

MyNCMInit

4-9

MyCMMatchColors

4-11

MyCMCheckColors

4-12
Optional Functions 4-14

MyCMMValidateProfile

4-15

MyCMMatchBitmap

4-16

MyCMCheckBitmap

4-19

MyCMConcatInit

4-22

MyCMMatchPixMap

4-24

MyCMCheckPixMap

4-27

MyCMNewLinkProfile

4-29

MyCMMGetPS2ColorSpace

4-31

MyCMMGetPS2ColorRenderingIntent

4-33

MyCMMGetPS2ColorRendering

4-35

MyCMMGetPS2ColorRenderingVMSize

4-38

MyCMMFlattenProfile

4-40

MyCMMUnflattenProfile

4-42

This document was created with FrameMaker 4.0.4

C H A P T E R 4

4-2

Contents

C H A P T E R 4

4-3

ColorSync Manager Reference for Color Management Modules 4

This chapter describes the request code constants passed to your color
management module (CMM) from the Component Manager when a
ColorSync-supportive application or device driver calls a ColorSync Manager
function to request services your CMM provides.

Your CMM must support a required subset of these request codes, and it
should support the others. This chapter also describes the functions your CMM
may define to respond to these ColorSync Manager request codes. For
information describing how to develop a CMM that responds to the ColorSync
Manager request codes, see the chapter “Developing Color Management
Modules” in

Advanced Color Imaging on the Mac OS.

Constants 4

This section describes the constants for the CMM component interface version
and the ColorSync Manager request codes.

Color Management Module Component Interface 4

If your CMM supports the ColorSync Manager version 2.0, it should return the
constant defined by the following enumeration when the Component Manager
calls your CMM with the

kComponentVersionSelect

 request code:

enum {
CMMInterfaceVersion = 1
};

In response to the

kComponentVersionSelect

 request code, a CMM should set its
entry point function’s result to the CMM version number. The high-order 16
bits represent the major version and the low-order 16 bits represent the minor
version. The

CMMInterfaceVersion

 constant represents the major version
number.

Note

A CMM that supports ColorSync 1.0 returns 0 for the
major version in response to the version request.

◆

The

kComponentVersionSelect

 request code is one of four required Component
Manager requests your CMM must handle. For complete details on the

This document was created with FrameMaker 4.0.4

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-4

Component Manager required request codes, see the chapter “Component
Manager” in

Inside Macintosh: More Macintosh Toolbox.

Required Request Codes 4

Your CMM must respond to the ColorSync Manager required request codes.
When a CMM receives a required request code from the ColorSync Manager,
the CMM must determine the nature of the request, perform the appropriate
processing, set an error code if necessary, and return an appropriate function
result to the Component Manager. For a description of how your CMM can
respond to ColorSync Manager requests from the Component Manager, see the
chapter “Developing Color Management Modules” in

Advanced Color Imaging
on the Mac OS.

The ColorSync Manager defines the following required request codes:

enum {
kCMMInit = 0,
kCMMMatchColors = 1,
kCMMCheckColors = 2
kNCMMInit = 6,

};

Constant descriptions

kCMMInit

This request code is provided for backward compatibility
with ColorSync 1.0. A CMM that supports ColorSync 1.0
profiles should respond to this request code by initializing
any private data required for the color-matching or
gamut-checking session to be held as indicated by
subsequent request codes. If your CMM supports only
ColorSync 1.0 profiles or both ColorSync 1.0 profiles and
ColorSync Manager version 2.0 profiles, you must support
this request code. If you support only ColorSync Manager
version 2.0 profiles, you should return an unimplemented
error in response to this request code.

kCMMMatchColors

In response to this request code, your CMM should match
the colors in the

myColors

 parameter to the color gamut of
the destination profile and replace the color-list color
values with the matched colors. For more information

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-5

about how your CMM should respond to this request
code, see the

MyCMMatchColors

 function on page 4-11.

kCMMCheckColors

In response to this request code, your CMM should test the
given list of colors in the

myColors

 parameter against the
gamut specified by the destination profile and report if the
colors fall within a destination device’s color gamut. For
more information about how your CMM should respond
to this request code, see the

MyCMCheckColors

 function on
page 4-12.

kNCMMInit

In response to this request code, your CMM should
initialize any private data it will need for the color session
and for subsequent requests from the calling application or
driver. For more information about how your CMM
should respond to this request code, see the

MyNCMInit

function on page 4-9.

Optional Request Codes 4

Your CMM should respond to the ColorSync Manager request codes defined
by the following enumeration, but it is not required to do so. For a description
of how your CMM can respond to ColorSync Manager requests from the
Component Manager, see “Developing Color Management Modules” in

Advanced Color Imaging on the Mac OS.

The ColorSync Manager defines the following optional request codes:

enum {
kCMMMatchPixMap = 3,
kCMMCheckPixMap = 4,
kCMMConcatenateProfiles = 5,
kCMMConcatInit = 7,
kCMMValidateProfile = 8,
kCMMMatchBitmap = 9,
kCMMCheckBitmap = 10,
kCMMGetPS2ColorSpace = 11,
kCMMGetPS2ColorRenderingIntent = 12,
kCMMGetPS2ColorRendering = 13,
kCMMFlattenProfile = 14,
kCMMUnflattenProfile = 15,

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-6

kCMMNewLinkProfile = 16,
kCMMGetPS2ColorRenderingVMSize = 17
};

Constant descriptions

kCMMMatchPixMap

In response to this request code, your CMM must match
the colors of the pixel map image pointed to by the

myPixMap

 parameter to the gamut of the destination device,
replacing the original pixel colors with their corresponding
colors as specified in the data color space of the destination
device’s color gamut. To perform the matching, you use
the profiles specified by a previous

kNCMMInit

,

kCMMInit

, or

kCMMConcatInit

request to your CMM. For more
information about how your CMM should respond to this
request code, see the

MyCMMatchPixMap

 function on
page 4-24.

kCMMCheckPixMap

In response to this request code, your CMM must check
the colors of the pixel map image pointed to by the

myPixMap

 parameter against the gamut of the destination
device to determine if the pixel colors are within the gamut
of the destination device and report the results. To perform
the check, you use the profiles specified by a previous

kNCMMInit

,

kCMMInit

, or

kCMMConcatInit

 request to your
CMM. For more information about how your CMM should
respond to this request code, see the

MyCMCheckPixMap

function on page 4-27.

kCMMConcatenateProfiles

This request code is for backward compatibility with
ColorSync 1.0.

kCMMConcatInit

In response to this request code, your CMM should
initialize any private data your CMM will need for a color
session involving the set of profiles specified by the profile
array pointed to by the

profileSet

 parameter. Your
function should also initialize any additional private data
needed in handling subsequent calls pertaining to this
component instance. For more information about how
your CMM should respond to this request code, see the

MyCMConcatInit

 function on page 4-22.

kCMMValidateProfile

In response to this request code, your CMM should test the

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-7

profile whose reference is passed in the

prof

 parameter to
determine if the profile contains the minimum set of
elements required for a profile of its type. For more
information about how your CMM should respond to this
request code, see the

MyCMMValidateProfile

 function on
page 4-15.

kCMMMatchBitmap

In response to this request code, your CMM must match
the colors of the source image bitmap pointed to by the

bitmap

 parameter to the gamut of the destination device
using the profiles specified by a previous

kNCMMInit

,

kCMMInit

, or

kCMMConcatInit

request to your CMM. For
more information about how your CMM should respond
to this request code, see the

MyCMMatchBitmap

 function on
page 4-16.

kCMMCheckBitmap

In response to this request code, your CMM must check
the colors of the source image bitmap pointed to by the

bitmap

 parameter against the gamut of the destination
device using the profiles specified by a previous

kNCMMInit,

kCMMInit,

 or

kCMMConcatInit

 request to your
CMM. For more information about how your CMM should
respond to this request code, see the

MyCMCheckBitmap

function on page 4-19.

kCMMGetPS2ColorSpace

In response to this request code, your CMM must obtain or
derive the color space element data from the source profile
whose reference is passed to your function in the

srcProf

parameter and pass the data to a low-level data-transfer
function supplied by the calling application or device
driver. For more information about how your CMM
should respond to this request code, see the

MyCMMGetPS2ColorSpace

 function on page 4-31.

kCMMGetPS2ColorRenderingIntent

In response to this request code, your CMM must obtain
the color-rendering intent from the header of the source
profile whose reference is passed to your function in the

srcProf

 parameter and then pass the data to a low-level
data-transfer function supplied by the calling application
or device driver. For more information about how your
CMM should respond to this request code, see the

MyCMMGetPS2ColorRenderingIntent

 function on page 4-33.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-8

kCMMGetPS2ColorRendering

In response to this request code, your CMM must obtain
the rendering intent from the source profile’s header and
generate the color rendering dictionary (CRD) data from
the destination profile, and then pass the data to a
low-level data-transfer function supplied by the calling
application or device driver. For more information about
how your CMM should respond to this request code, see
the

MyCMMGetPS2ColorRendering

 function on page 4-35.

kCMMFlattenProfile

In response to this request code, your CMM must extract
the profile data from the profile to be flattened, identified
by the

prof

 parameter, and pass the profile data to the
function specified in the

proc

 parameter. For more
information about how your CMM should respond to this
request code, see the

MyCMMFlattenProfile

 function on
page 4-40.

kCMMUnflattenProfile

In response to this request code, your CMM must create a
temporary file in which to store the profile data you
receive from the low-level data-transfer function supplied
by the calling application or driver. Your function must
return the file specification. For more information about
how your CMM should respond to this request code, see
the

MyCMMUnflattenProfile

 function on page 4-42.

kCMMNewLinkProfile

In response to this request code, your CMM must create a
single device-linked profile of type

DeviceLink

 that
includes the profiles passed to you in the array pointed to
by the

profileSet

 parameter. For more information about
how your CMM should respond to this request code, see
the

MyCMNewLinkProfile

 function on page 4-29.

kCMMGetPS2ColorRenderingVMSize

In response to this request code, your CMM must obtain or
assess the maximum virtual memory (VM) size of the CRD
specified by the destination profile. The CRD whose size
you return must be that of the dictionary for the rendering
intent specified by the source profile. For more information
about how your CMM should respond to this request

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-9

code, see the MyCMMGetPS2ColorRenderingVMSize function on
page 4-38.

Required Functions 4

This section describes the functions that your CMM should define to handle
ColorSync Manager required request codes.

MyNCMInit 4

A CMM must respond to the kNCMMInit request code. The ColorSync Manager
sends this code to request your CMM to instantiate any private data it needs. A
CMM responds to the kNCMMInit request code by calling a CMM-defined
subroutine, for example, MyNCMInit to handle the request.

pascal CMError MyNCMInit (ComponentInstance CMSession, CMProfileRef
 srcProfile, CMProfileRef dstProfile);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

srcProfile A reference to the source profile to be used in the
color-matching or color-checking session to be set up. Your
CMM should store any profile information it requires before
returning to the Component Manager. (The calling program
obtained the profile reference passed in this parameter.)

dstProfile A reference to the destination profile to be used in the
color-matching or color-checking session to be set up. Your
CMM should store any profile information it requires before
returning to the Component Manager. (The calling program
obtained the profile reference passed in this parameter.)

DESCRIPTION

The Component Manager calls your CMM with the kNCMMInit request code
when a ColorSync-supportive application or device driver specifies your CMM

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-10

for a color-matching or color-checking session. For example, when an
application or device driver calls the NCWNewColorWorld function, the
Component Manager calls your MyNCMInit function.

Using the storage pointed to by the CMSession handle, your MyNCMInit function
should initialize any private data your CMM will need for the color session
and for handling subsequent calls pertaining to this component instance. Your
function must obtain required information from the profiles and initialize
private data for subsequent color-matching or color-checking sessions with
these values. After your function returns to the Component Manager, it no
longer has access to the profiles.

This request gives you the opportunity to examine the profile contents before
storing them. If you do not support some aspect of the profile, then you should
return an unimplemented error in response to this request. For example, if your
CMM does not implement multichannel color support, you should return an
unimplemented error at this point.

In addition to the standard profile information you should preserve in response
to this request, you should preserve the quality flag setting specified in the
profile header and the rendering intent, also specified in the header.

The Component Manager calls your CMM with a standard open request to
open the CMM when a ColorSync-supportive application or device driver
requests that the Component Manager open a connection to your component.
At this time, your component should allocate any memory it needs in order to
maintain a connection for the requesting application or driver. You should
allocate memory from the current heap zone. It that attempt fails, you should
allocate memory from the system heap or the temporary heap. You can use the
SetComponentInstanceStorage function to associate the allocated memory with
the component instance. Whenever the calling application or driver requests
services from your component, the Component Manager supplies you with the
handle to this memory in the CMSession parameter.

The Component Manager may call your CMM with the kNCMMInit request code
multiple times after it calls your CMM with a request to open the CMM. For
example, it may call your CMM with an initialization request once with one
pair of profiles and then again with another pair of profiles. For each call, you
need to reinitialize the storage based on the content of the current profiles.

Your CMM should support all six classes of profiles defined by the ICC. For
information on the six classes of profiles, see the chapter “ColorSync Manager
Reference for Applications and Device Drivers” in the Advanced Color Imaging
Reference on the enclosed CD.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-11

MyCMMatchColors 4

A CMM must respond to the kCMMMatchColors request code. The ColorSync
Manager sends this request code to your CMM on behalf of an application or
device driver that called the CWMatchColors function or high-level QuickDraw
operations.

The ColorSync Manager dispatches this request to the Component Manager,
which calls your CMM to service the request. A CMM typically responds to the
kCMMMatchColors request code by calling a CMM-defined function (for example,
MyCMMatchColors) to handle the request by matching colors in the color list.

pascal CMError MyCMMatchColors (ComponentInstance CMSession,
 CMColor *myColors,
 unsigned long count);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

myColors A pointer to an array of type CMColor specified by the calling
application or device driver. On entry, this array contains the
list of colors to be matched. The color values are given in the
data color space of the source profile specified by a previous
kNCMMInit or kCMMConcatInit request to your CMM. On return,
this array contains the list of matched colors specified by your
function in the data color space of the destination profile. For a
description of the CMColor data type, see the description of the
section “The Color Union” in the chapter “ColorSync Manager
Reference for Applications and Device Drivers” on the enclosed
CD.

count A one-based count of the number of colors in the color list of
the CMColor array.

DESCRIPTION

Before the Component Manager calls your CMM with a ColorSync request to
match colors, it calls your CMM with a kNCMMInit, kCMMInit, or kCMMConcatInit
request passing your CMM references to the profiles to be used for the color
matching-session and requesting your CMM to initialize the session.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-12

If the Component Manager calls your CMM with a ColorSync kNCMMInit or
kCMMInit request code, it passes references to the source and destination
profiles to be used for the color-matching session. If it calls your CMM with the
ColorSync kCMMConcatInit request code, it passes a pointer to an array of type
ConcatProfileSet containing a set of profiles or a device-linked profile specified
by the calling application to be used for the color-matching session. For
information about the ConcatProfileSet data type, see the section
“Concatenated Profile Set Structure” in “ColorSync Manager Reference for
Applications and Device Drivers” in the Advanced Color Imaging Reference on
the enclosed CD. This chapter also explains the rules governing concatenated
profiles and device-linked profiles.

When the Component Manager calls your CMM with the kCMMMatchColors
request code, it passes to your CMM in the CMSession parameter a handle to
your CMM’s storage for the calling applications’s component instance.

In response to this request code, you must support 16-bit components for color
spaces other than multichannel components and 8-bit components for HiFi
colors.

Using the profile data you set in your storage for this component instance, your
MyCMMatchColors function should match the colors specified in the myColors
array to the color gamut of the destination profile, replacing the color value
specifications in the myColors array with the matched colors specified in the
data color space of the destination profile. If you used some other method to
store profile data for this component instance when you initialized the session,
you should obtain the profile data you require for the color matching from that
storage. The color list may contain multichannel color data types, so your
CMM must support them.

MyCMCheckColors 4

A CMM must respond to the kCMMCheckColors request code. The ColorSync
Manager sends this request code to your CMM on behalf of an application or
device driver that called the CWCheckColors function. The ColorSync Manager
dispatches this request to the Component Manager, which calls your CMM to
service the request. A CMM typically responds to the kCMMCheckColors request

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-13

code by calling a CMM-defined function (for example, MyCMCheckColors) to
handle the request.

pascal CMError MyCMCheckColors (ComponentInstance CMSession,
CMColor *myColors,
unsigned long count,
long *result);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

myColors A pointer to an array of type CMColor specified by the calling
application or device driver. On entry, this array contains the
list of colors to be checked against the destination device’s color
gamut. The color values are given in the data color space of the
source profile specified by a previous kNCMMInit or
kCMMConcatInit request to your CMM. For a description of the
CMColor data type, see the description of the section “The Color
Union” in the chapter “ColorSync Manager Reference for
Applications and Device Drivers” in the Advanced Color Imaging
Reference on the enclosed CD.

count A one-based count of the number of colors in the color list of
the CMColor array.

result A pointer to an array of long data types used as a bitfield, with
each bit representing a color in the array pointed to by myColors.
The result array contains enough members to allow for 1 bit to
represent each color in the myColors array. Your function sets a
bit in the array if the corresponding color-list color is out of
gamut for the destination profile. On return, this array indicates
the color-checking results.

DESCRIPTION

When your CMM receives a kCMMCheckColors request code, your CMM should
test the given list of colors against the gamut specified by the destination
profile to report if the colors fall within a destination device’s color gamut.
Before the Component Manager calls your CMM with a ColorSync request to
gamut check colors, it calls your CMM with a kNCMMInit, kCMMInit, or
kCMMConcatInit request passing your CMM references to the profiles to be used

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-14

for the color-checking session and requesting your CMM to initialize the
session.

If the Component Manager calls your CMM with a ColorSync kNCMMInit or
kCMMInit request, it passes references to the source and destination profiles to
be used for the color-checking session. (If it calls your CMM with the
ColorSync kCMMConcatInit request, it passes a pointer to an array of type
ConcatProfileSet containing a set of profiles or a device-linked profile specified
by the calling program to be used for the color-checking session.)

When the Component Manager calls your CMM with the kCMMCheckColors
request code, it passes to your CMM in the CMSession parameter a handle to
your CMM’s storage for the calling application’s or device driver’s component
instance. This is the storage whose data you initialized when the Component
Manager called you to initialize the session for this component instance.

Using the profile data set in your storage for this component instance, your
MyCMCheckColors function should check the colors specified in the myColors
array against the color gamut of the destination profile. Your function should
use the result array to return indication of whether the colors in the list are in
or out of gamut for the destination device. If you used some other method to
store profile data for this component instance when you initialized the session,
you should obtain the profile data you require for the color matching from that
storage. The color list may contain multichannel color data types, so your
CMM must support them. (If your CMM does not support them, you should
return an unimplemented error in response to the initialization request code.
See MyNCMInit, beginning on page 4-9, and MyCMConcatInit, beginning on
page 4-22, for more information.)

For each color in the list, your MyCMCheckColors function should set the
corresponding bit in the result bit array if the color is out of gamut for the
destination device as specified by the destination profile. The leftmost bit in the
field corresponds to the first color in the list.

The gamut test your function performs provides a preview of color matching.
The ColorSync Manager returns the results to the calling application or device
driver.

Optional Functions 4

This section describes the functions that your CMM should define to handle
ColorSync Manager optional request codes.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-15

MyCMMValidateProfile 4

A CMM should respond to the kCMMValidateProfile request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application or device driver that called the
CMValidateProfile function. The ColorSync Manager dispatches this request to
the Component Manager, which calls your CMM to service the request. A
CMM typically responds to the kCMMValidateProfile request code by calling a
CMM-defined function (for example, MyCMMValidateProfile) to handle the
request.

pascal CMError MyCMMValidateProfile (ComponentInstance CMSession,
 CMProfileRef prof,
 Boolean *valid);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

prof A reference to the profile to be tested for required profile
elements.

valid A flag whose value you set to true if the profile contains the
elements required for a color-matching or color-checking
session for a profile of this type and false if it doesn’t.

DESCRIPTION

Your MyCMMValidateProfile function should test the profile whose reference is
passed in the prof parameter to determine if the profile contains the minimum
set of elements required for a profile of its type. For each profile type, such as a
device profile, there is a specific set of required tagged elements defined by the
ICC that the profile must include.

The ICC also defines optional tags, which may be included in a profile. Your
CMM might use these optional elements to optimize or improve its processing.
Additionally, a profile might include private tags defined to provide your
CMM with processing capability it uses. The profile developer can define these
private tags, register the tag signatures with the ICC, and include the tags in a
profile.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-16

Your MyCMMValidateProfile function should check for the existence of the
required minimum set of profile elements for a profile of this type and any
optional or private tags required by your CMM.

Instead of itself checking the profile for the minimum profile elements
requirements for the profile type, your MyCMMValidateProfile function may use
the Component Manager functions to call the default Apple-supplied CMM
and have it perform the minimum defaults requirements validation. The
signature of the Apple-supplied CMM is 'appl'.

To call the Apple-supplied CMM when responding to a kCMMValidateProfile
request from an application, your CMM can use the standard mechanisms used
by applications to call another component. For information, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

MyCMMatchBitmap 4

A CMM should respond to the kCMMMatchBitmap request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application or device driver that called the CWMatchBitMap
function or high-level QuickDraw operations. The ColorSync Manager
dispatches this request to the Component Manager, which calls your CMM to
service the request. A CMM typically responds to the kCMMMatchBitmap request
code by calling a CMM-defined function (for example, MyCMMatchBitmap) to
handle the request.

pascal CMError MyCMMatchBitmap(ComponentInstance CMSession,
 const CMBitmap *bitmap,
 CMBitmapCallBackUPP progressProc,
 void *refCon,
 CMBitmap *matchedBitmap);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

bitmap A pointer to the bitmap containing the source image data
whose colors your function must match.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-17

progressProc A pointer to a callback function supplied by the calling
application or device driver that monitors the color-matching
progress or aborts the operation as your function matches the
bitmap colors. Your MyCMMatchBitmap function must call this
function periodically to allow it to report progress to the user.

refCon A reference constant passed from the calling application or
driver, which your MyCMMatchBitmap function must pass through
as a parameter to calls it makes to the MyCMBitmapCallBackProc
function.

matchedBitMap A pointer to a bitmap in which your function stores the
resulting color-matched image. The calling program allocates
the pixel buffer pointed to by the image field of the CMBitMap
structure. If this value is null, then your MyCMMatchBitmap
function must match the bitmap colors in place.

DESCRIPTION

If your CMM supports this request code, your MyCMMatchBitmap function should
be prepared to receive any of the bitmap types defined by the ColorSync
Manager. Your MyCMMatchBitmap function must match the colors of the source
image bitmap pointed to by bitmap to the color gamut of the destination profile
using the profiles specified by a previous kNCMMInit, kCMMInit, or
kCMMConcatInit request to your CMM. If the matchedBitMap parameter points to
a bitmap, you should store the resulting color-matched image in that bitmap.
Otherwise, you should store the resulting color-matched image in the source
bitmap pointed to by the bitmap parameter. The color-matched bitmap image
your function creates is returned to the calling application or driver.

Before the Component Manager calls your CMM with a ColorSync request to
match the colors of a bitmap, it calls your CMM with a kNCMMInit, kCMMInit, or
kCMMConcatInit request passing your CMM references to the profiles to be used
for the color matching session and requesting your CMM to initialize the
session.

If the Component Manager calls your CMM with a ColorSync kNCMMInit or
kCMMInit request, it passes references to the source and destination profiles to
be used for the color-matching session. If it calls your CMM with the ColorSync
kCMMConcatInit request code, it passes a pointer to an array of type
ConcatProfileSet containing a set of profiles or a device-linked profile specified
by the calling program to be used for the color-matching session. For
information about the ConcatProfileSet data type, see the section

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-18

“Concatenated Profile Set Structure” in “ColorSync Manager Reference for
Applications and Device Drivers” in the Advanced Color Imaging Reference on
the enclosed CD.

When the Component Manager calls your CMM with the kCMMMatchColors
request code, it passes to your CMM in the CMSession parameter a handle to
your CMM’s storage for the calling applications’s component instance. Your
MyCMMatchBitmap function should use the profile data you set in your storage for
this component instance to perform the color matching. If you used some other
method to store profile data for this component instance when you initialized
the session, you should obtain the profile data you require for the color
matching from that storage.

Your MyCMMatchBitmap function must call the progress function supplied by the
calling application or device driver at regular intervals to allow it to report
progress to the user on the color-matching session. Your MyCMMatchBitmap
function should monitor the progress function for a returned value of true,
which indicates that the user interrupted the color-matching process. In this
case, you should terminate the color-matching process. The Apple-supplied
CMM calls the MyCMBitmapCallBackProc function approximately every half
second unless color matching occurs quickly enough to warrant not calling it at
all; this happens when there is a small amount of data to be matched.

Here is the prototype for the MyCMBitmapCallBackProc function pointed to by the
progressProc parameter:

pascal Boolean MyCMBitmapCallBackProc (long progress,
void *refCon);

Each time your MyCMMatchBitmap function calls the MyCMBitmapCallBackProc
function, it must pass to the function any data stored in the reference constant.
When the Component Manager calls your CMM with the kCMMMatchBitmap
request code, it passes to your CMM the reference constant from the calling
program.

Each time your function calls the MyCMBitmapCallBackProc function, your
function must pass it a byte count in the progress parameter identifying the
remaining number of bytes. The last time your MyCMMatchBitmap function calls
the MyCMBitmapCallBackProc function, it must pass a byte count of 0. A byte
count of 0—meaning there is no more data to match—indicates the completion
of the matching process and signals the progress function to perform any
cleanup operations it requires.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-19

If the source profile’s dataColorSpace field value and the space field value of
the source bitmap pointed to by the bitMap parameter do not specify the same
data color space, your function should terminate the color-matching process
and return an error code.

Also, if the destination profile’s dataColorSpace field value and the space field
value of the resulting bitmap pointed to by the matchedBitMap parameter do not
specify the same data color space, your function should terminate the
color-matching process and return an error code.

If your CMM does not support a bitmap type that you receive, you can return
an unimplemented error. In this case, the ColorSync Manager unpacks the
colors of the bitmap and calls your CMMMatchColors function, passing it the
bitmap colors in a color list. You should avoid defaulting to this behavior, if
possible, because it incurs overhead and slows down performance.

MyCMCheckBitmap 4

A CMM should respond to the kCMMCheckBitmap request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application or device driver that called the CWCheckBitMap
function. The ColorSync Manager dispatches this request to the Component
Manager, which calls your CMM to service the request. A CMM typically
responds to the kCMMCheckBitmap request code by calling a CMM-defined
function (for example, MyCMCheckBitmap) to handle the request.

pascal CMError MyCMCheckBitmap(ComponentInstance CMSession,
 const CMBitmap *bitmap,
 CMBitmapCallBackUPP progressProc,
 void *refCon,
 CMBitmap *resultBitmap);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

bitmap A pointer to the bitmap containing the source image data
whose colors your function must check.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-20

progressProc A pointer to a callback function supplied by the calling
application or device driver that monitors the color-checking
progress or aborts the operation as your function checks the
colors of the source image. Your MyCMCheckBitmap function must
call this function periodically to allow it to report progress to
the user.

refCon A reference constant passed from the calling application or
driver, which your MyCMCheckBitmap function must pass through
as a parameter to calls it makes to the MyCMBitmapCallBackProc
function.

resultBitmap A pointer to the resulting bitmap allocated by the calling
application or device driver. Your MyCMCheckBitmap function
must set pixels of the bitmap image to 1 if the corresponding
pixel of the source bitmap indicated by bitMap is out of gamut.

DESCRIPTION

If your CMM supports this request code, your MyCMMCheckBitmap function
should be prepared to receive any of the bitmap types defined by the
ColorSync Manager. Your MyCMCheckBitmap function must check the colors of
the source image bitmap pointed to by bitmap against the color gamut of the
destination profile using the profiles specified by a previous kNCMMInit,
kCMMInit, or kCMMConcatInit request to your CMM. If a pixel is out of the
destination profile’s color gamut, your function should set the corresponding
pixel in the image of the bitmap pointed to by the resultBitmap parameter. The
ColorSync Manager returns the resulting bitmap to the calling application or
driver to report the outcome of the gamut check.

Before the Component Manager calls your CMM with a ColorSync request to
gamut check the colors of a bitmap, it calls your CMM with a kNCMMInit,
kCMMInit, or kCMMConcatInit request passing your CMM references to the
profiles to be used for the color-checking session and requesting your CMM to
initialize the session.

If the Component Manager calls your CMM with a ColorSync kNCMMInit or
kCMMInit request, it passes references to the source and destination profiles to
be used for the session. If it calls your CMM with the ColorSync kCMMConcatInit
request code, it passes a pointer to an array of type ConcatProfileSet
containing a set of profiles specified by the calling application to be used for
the session. For information about the ConcatProfileSet data type, see the
section “Concatenated Profile Set Structure” in the chapter “ColorSync

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-21

Manager Reference for Applications and Device Drivers” in the Advanced Color
Imaging Reference on the enclosed CD.

When the Component Manager calls your CMM with the kCMMMatchColors
request code, it passes to your CMM in the CMSession parameter a handle to
your CMM’s storage for the calling applications’s component instance. Your
MyCMCheckBitmap function should use the profile data you set in your storage for
this component instance to perform the color-checking process. If you used
some other method to store profile data for this component instance when you
initialized the session, you should obtain the profile data you require for the
color-checking process from that storage.

Your MyCMCheckBitmap function must call the progress function supplied by the
calling application or device driver at regular intervals to allow it to report
progress to the user on the color-checking session. Your MyCMCheckBitmap
function should monitor the progress function for a returned value of true,
which indicates that the user interrupted the color-matching process. In this
case, you should terminate the color-matching process.

The Apple-supplied CMM calls the MyCMBitmapCallBackProc function
approximately every half second unless the gamut checking occurs quickly
enough to warrant not calling it at all; this happens when there is a small
amount of data to be checked.

Here is the prototype for the MyCMBitmapCallBackProc function pointed to by the
progressProc parameter:

pascal Boolean MyCMBitmapCallBackProc (long progress,
void *refCon);

Each time your MyCMCheckBitmap function calls the MyCMBitmapCallBackProc
function, it must pass to the function any data stored in the reference constant.
When the Component Manager called your CMM with the kCMMCheckBitmap
request code, it passed to your CMM the reference constant from the calling
program.

Each time your function calls the MyCMBitmapCallBackProc function, your
function must pass it a byte count in the progress parameter identifying the
remaining number of bytes to be checked. The last time your MyCMMatchBitmap
function calls the MyCMBitmapCallBackProc function, it must pass a byte count of
0 to indicate the completion of the color-checking process. This signals the
progress function to perform any cleanup operations it requires.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-22

If the source profile’s dataColorSpace field value and the space field value of
the source bitmap pointed to by the bitMap parameter do not specify the same
data color space, your function should terminate the color-checking process
and return an error code.

If your CMM does not support a bitmap type that you receive, you can return
an unimplemented error. In this case, the ColorSync Manager unpacks the
colors of the bitmap and calls your MyCMMatchColors function, passing it the
bitmap colors in a color list. You should avoid defaulting to this behavior, if
possible, because it incurs overhead and slows down performance.

MyCMConcatInit 4

A CMM should respond to the kCMMConcatInit request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application or device driver that called the
CWConcatColorWorld function. The ColorSync Manager dispatches this request
to the Component Manager, which calls your CMM to service the request. A
CMM typically responds to the kCMMConcatInit request code by calling a
CMM-defined function (for example, MyCMConcatInit) to handle the request.

pascal CMError MyCMConcatInit (ComponentInstance CMSession,
CMConcatProfileSet *profileSet);

session A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

profileSet A pointer to a data structure of type CMConcatProfileSet
containing an array of profiles to be used in a color-matching or
color-checking session. The profiles in the array are in
processing order—source through destination. The profileSet
field of the data structure contains the array. For a description
of the CMConcatProfileSet data structure, see “Concatenated
Profile Set Structure” in “ColorSync Manager Reference for
Applications and Device Drivers” on the enclosed CD.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-23

DESCRIPTION

Using the private storage pointed to by the CMSession handle, your
MyCMConcatInit function should initialize any private data your CMM will need
for a color session involving the set of profiles specified by the profile array
pointed to by the profileSet parameter. Your function should also initialize
any additional private data needed in handling subsequent calls pertaining to
this component instance.

A color-matching or color-checking session for a set of profiles entails various
color transformations among devices in a sequence for which your CMM is
responsible. Your function must obtain required information from the profiles
and initialize private data for subsequent color-matching or color-checking
session with these values. After your function returns to the Component
Manager, it no longer has access to the profiles.

This request gives you the opportunity to examine the profile contents before
storing them. If you do not support some aspect of the profile, then you should
return an unimplemented error in response to this request. For example, if your
CMM does not implement multichannel color support, you should return an
unimplemented error at this point.

When your CMM uses a device-linked profile or a set of concatenated profiles,
you must adhere to the following guidelines and rules:

■ You should use the quality flag setting—indicating normal mode, draft
mode, or best mode—specified by the first profile for the entire
color-matching session; you should ignore the quality flags of following
profiles in the sequence. The profile header flag field holds the quality flag
setting. Your CMM may choose to ignore the quality flag. This is allowed,
but not recommended unless you support best mode by default.

■ You must use the rendering intent specified by the first profile to color match
to the second profile, the rendering intent specified by the second profile to
color match to the third profile, and so on through the series of concatenated
profiles.

■ If the calling application or driver passed a color space profile in the middle
of the profile sequence, the Apple-supplied CMM ignores this profile. Your
CMM should also ignore it.

For specific guidelines on handling device-linked profiles and additional
information on handling concatenated profiles, see the chapter “ColorSync
Manager Reference for Applications and Device Drivers” in the Advanced Color
Imaging Reference on the enclosed CD.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-24

The Component Manager calls your CMM with a standard open request to
open the CMM when a ColorSync-supportive application or device driver
requests that the Component Manager open a connection to your component.
At this time, your component should allocate any memory it needs in order to
maintain a connection for the requesting application or driver. You should
attempt to allocate memory from the current heap zone. It that attempt fails,
you should allocate memory from the system heap or the temporary heap. You
can use the SetComponentInstanceStorage function to associate the allocated
memory with the component instance. Whenever the calling application or
driver requests services from your component, the Component Manager
supplies you with the handle to this memory in the session parameter. For
complete details on the SetComponentInstanceStorage function, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

The Component Manager may call your CMM with the kCMMConcatInit request
code multiple times after it calls your CMM with a request to open the CMM.
For example, it may call your CMM with an initialization request once with
one pair of profiles and then again with another pair of profiles. For each call,
you need to reinitialize the storage based on the content of the current profiles.

Your CMM should support all six classes of profiles defined by the ICC. For
information on the six classes of profiles, see the chapter “ColorSync Manager
Reference for Applications and Device Drivers” in the Advanced Color Imaging
Reference on the enclosed CD.

MyCMMatchPixMap 4

A CMM should respond to the kCMMMatchPixMap request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application that called the CWMatchPixMap function or
high-level QuickDraw operations. The ColorSync Manager dispatches this
request to the Component Manager, which calls your CMM to service the
request. A CMM typically responds to the kCMMMatchPixMap request code by
calling a CMM-defined function (for example, MyCMMatchPixMap) to handle the
request.

pascal CMError MyCMMatchPixMap(ComponentInstance CMSession,
 PixMap *myPixMap,
 CMBitmapCallBackUPP progressProc,
 void *refCon);

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-25

session A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

myPixMap A pointer to the pixel map to be matched. A pixel map is a
QuickDraw structure describing pixel data. The pixel map is
stored in nonrelocatable memory. Your function replaces the
original colors of the pixel image with the matched colors
corresponding to the color gamut of the destination device.

progressProc A pointer to a callback function, supplied by the calling
application or device driver, that monitors the color-matching
progress or terminates the operation as your function matches
the pixel map colors. Your MyCMMatchPixMap function must call
this function at regular intervals to allow it to report progress to
the user.

refCon A reference constant passed from the calling application or
driver, which your MyCMMatchPixMap function must pass through
as a parameter to calls it makes to the MyCMBitmapCallBackProc
function.

DESCRIPTION

If your CMM supports this request code, your MyCMMatchPixMap function should
be prepared to receive any of the pixel map types defined by QuickDraw.Your
MyCMMatchPixMap function must match the colors of the pixel map image
pointed to by myPixMap parameter to the destination profile’s color gamut,
replacing the original pixel colors with their corresponding colors as specified
in the data color space of the destination device’s color gamut.

Before the Component Manager calls your CMM with a ColorSync request to
match the colors of a pixel map, it calls your CMM with a kNCMMInit or
kCMMConcatInit request. Your CMM sets up the destination profile information
during initialization in response to the kNCMMInit or kCMMConcatInit request
code.

When the Component Manager calls your CMM with the kCMMMatchPixMap
request code, it passes to your CMM in the session parameter a handle to your
CMM’s private storage for the calling applications’s component instance. Your
MyCMMatchPixMap function should use the profile data you set in your storage for
this component instance to perform the color matching. If you used some other
method to store profile data for this component instance when you initialized

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-26

the session, you should obtain the profile data you require for the color
matching from that storage.

Your MyCMMatchPixMap function must call the progress function supplied by the
calling application or device driver at regular intervals to allow it to report
progress to the user on the color-matching session. Your MyCMMatchPixMap
function should monitor the progress function for a returned value of true,
which indicates that the user interrupted the color-matching process. In this
case, you should terminate the color-matching process. The Apple-supplied
CMM calls the progress function approximately every half second unless color
matching occurs quickly enough to warrant not calling it at all; this happens
when there is a small amount of data to be matched.

Here is the prototype for the MyCMBitmapCallBackProc function pointed to by the
progressProc parameter:

pascal Boolean MyCMBitmapCallBackProc (long progress,
void *refCon);

Each time your MyCMMatchPixMap function calls the MyCMBitmapCallBackProc
function, it must pass to the function any data stored in the reference constant.
When the Component Manager called your CMM with the kCMMMatchPixMap
request code, it passed to your CMM the reference constant from the calling
program.

Each time your function calls the MyCMBitmapCallBackProc function, your
function must pass it a byte count in the progress parameter identifying the
remaining number of bytes. The last time your MyCMMatchPixMap function calls
the MyCMBitmapCallBackProc function, it must pass a byte count of 0 to indicate
the completion of the matching process, signaling the progress function to
perform any cleanup operations it requires.

The data color space of a pixel map is implicitly RGB. If the source and
destination profiles’ data color spaces (dataColorSpace field) are not also RGB,
your function should not perform the color matching. Instead, your function
should return an error.

If your CMM does not support a pixel map type that you receive, you can
return an unimplemented error. In this case, the ColorSync Manager unpacks
the colors of the pixel map and calls your MyCMMatchColors function, passing it
the pixel map colors in a color list. You should avoid defaulting to this
behavior, if possible, because it incurs overhead and slows down performance.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-27

MyCMCheckPixMap 4

A CMM should respond to the kCMMCheckPixMap request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application that called the CWCheckPixMap function. The
ColorSync Manager dispatches this request to the Component Manager, which
calls your CMM to service the request. A CMM typically responds to the
kCMMCheckPixMap request code by calling a CMM-defined function (for
example, MyCMCheckPixMap) to handle the request.

pascal CMError MyCMCheckPixMap(ComponentInstance CMSession,
 const PixMap *myPixMap,
 CMBitmapCallBackUPP progressProc,
 BitMap *myBitMap, void *refCon);

session A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

myPixMap A pointer to a nonrelocatable pixel map whose colors are to be
checked. A pixel map is a QuickDraw structure describing pixel
data.

progressProc A pointer to a callback function, supplied by the calling
application or device driver, that monitors the color-checking
progress or terminates the operation as your function checks
the pixel map colors. Your MyCMCheckPixMap function must call
this function at regular intervals to allow it to report progress to
the user.

myBitMap A QuickDraw bitmap whose boundaries equal those of the
pixel map indicated by the myPixMap parameter. Your
MyCMCheckPixMap function must set a pixel to 1 if the
corresponding pixel of the pixel map indicated by myPixMap is
out of gamut.

refCon A reference constant passed from the calling application or
driver, which your MyCMCheckPixMap function must pass through
as a parameter to calls it makes to the MyCMBitmapCallBackProc
function.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-28

DESCRIPTION

If your CMM supports this request code, your MyCMCheckPixMap function should
be prepared to receive any of the pixel map types defined by QuickDraw.Your
MyCMCheckPixMap function must check the colors of the pixel map image pointed
to by the myPixMap parameter against the color gamut of the destination profile
to determine if the colors are within the gamut. If a pixel color of the pixel map
indicated by myPixMap is out of gamut, your function must set to 1 the
corresponding pixel of the bitmap indicated by myBitMap. The ColorSync
Manager returns the bitmap showing the gamut check results to the calling
application or device driver.

Before the Component Manager calls your CMM with a ColorSync request to
check the colors of a pixel map, it calls your CMM with a kNCMMInit or
kCMMConcatInit request. Your CMM sets up the destination profile information
during initialization in response to the kNCMMInit or kCMMConcatInit request
code.

When the Component Manager calls your CMM with the kCMMCheckPixMap
request code, it passes to your CMM in the session parameter a handle to your
CMM’s private storage for the calling applications’s component instance. Your
MyCMCheckPixMap function should use the profile data you set in your storage for
this component instance. If you used some other method to store profile data
for this component instance when you initialized the session, you should
obtain the profile data you require for the color-checking process from that
storage.

Your MyCMMatchPixMap function must call the progress function supplied by the
calling application or device driver at regular intervals to allow it to report
progress to the user on the color-checking session. Your MyCMCheckPixMap
function should monitor the progress function for a returned value of true,
which indicates that the user interrupted the color-checking process. In this
case, you should terminate the color-checking process. The Apple-supplied
CMM calls the progress function approximately every half second unless color
checking occurs quickly enough to warrant not calling it at all; this happens
when there is a small amount of data to be matched.

Here is the prototype for the MyCMBitmapCallBackProc function pointed to by the
progressProc parameter:

pascal Boolean MyCMBitmapCallBackProc (long progress,
void *refCon);

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-29

Each time your MyCMCheckPixMap function calls the MyCMBitmapCallBackProc
function, it must pass to the function any data stored in the reference constant.
When the Component Manager called your CMM with the kCMMCheckPixMap
request code, it passed to your CMM the reference constant from the calling
program.

Each time your function calls the MyCMBitmapCallBackProc function, your
function must pass it a byte count in the progress parameter identifying the
remaining number of bytes to be checked. As your MyCMCheckPixMap function
checks the pixels of the myPixMap map, it should set the corresponding pixel of
myBitMap to 0 if the color is in gamut and 1 if it is out of gamut. The last time
your MyCMCheckPixMap function calls the MyCMBitmapCallBackProc function, it
must pass a byte count of 0 to indicate the completion of the color-checking
process, signaling the progress function to perform any cleanup operations it
requires.

The data color space of a pixel map is implicitly RGB. If the source and
destination profiles’ data color spaces (dataColorSpace field) are not also RGB,
your function should not perform the color check. Instead, your function
should return an error.

If your CMM does not support a pixel map type that you receive, you can
return an unimplemented error. In this case, the ColorSync Manager unpacks
the colors of the pixel map and calls your MyCMMatchColors function, passing it
the pixel map colors in a color list. You should avoid defaulting to this
behavior, if possible, because it incurs overhead and slows down performance.

MyCMNewLinkProfile 4

A CMM should respond to the kCMMNewLinkProfile request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application that called the CWNewLinkProfile function.
The ColorSync Manager dispatches this request to the Component Manager,
which calls your CMM to service the request. A CMM typically responds to the

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-30

kCMMNewLinkProfile request code by calling a CMM-defined function (for
example, MyCMNewLinkProfile) to handle the request.

pascal CMError MyCMNewLinkProfile(ComponentInstance CMSession,
CMProfileRef *prof, const
CMProfileLocation *targetLocation,
CMConcatProfileSet *profileSet);

session A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

prof A reference to a device-linked profile of type DeviceLink. Your
MyCMNewLinkProfile function creates this profile, opens it to
obtain a reference to it, and returns the profile reference in this
parameter. The profile may be a file-based profile or a
handle-based profile. It must not be a pointer-based profile or a
temporary profile.

targetLocation
The location specification for the resulting profile, which your
function returns. This is the file specification where you created
the profile. For information on how to specify the location, see
the sections “Profile Location Union” and “Profile Location
Structure”, both in the chapter “ColorSync Manager Reference
for Applications and Device Drivers” in the Advanced Color
Imaging Reference on the enclosed CD.

profileSet A pointer to a data structure of type CMConcatProfileSet
containing an array of profiles. Your function must include
these profiles in order in any device-linked profile it creates.
The profiles in the array are in processing order—source
through destination. The profileSet field of the data structure
contains the array. For a description of the CMConcatProfileSet
data structure, see “Concatenated Profile Set Structure” in the
chapter “ColorSync Manager Reference for Applications and
Device Drivers” in the Advanced Color Imaging Reference on the
enclosed CD.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-31

DESCRIPTION

Your MyCMNewLinkProfile function must create a single device-linked profile of
type DeviceLink that includes the profiles passed to you in the array pointed to
by the profileSet parameter. For information about profiles of type DeviceLink,
see the chapter “ColorSync Manager Reference for Applications and Device
Drivers” in the Advanced Color Imaging Reference on the enclosed CD. You must
adhere to the requirements for device-linked profiles described in same chapter.

After your function creates the device-linked profile, it must open the profile
and return a reference to the profile in the prof parameter.

The International Color Consortium Profile Format Specification, version 2.0,
document revision 3.x, also describes device-linked profiles. For information on
how to obtain a copy of this document, contact the Developer Support
organization of Apple Computer. See the preface of this book for information
explaining how to contact Developer Support.

MyCMMGetPS2ColorSpace 4

A CMM may respond to the kCMMGetPS2ColorSpace request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application that called the CMGetPS2ColorSpace function.
The ColorSync Manager dispatches this request to the Component Manager,
which calls your CMM to service the request. A CMM typically responds to the
kCMMGetPS2ColorSpace request code by calling a CMM-defined function (for
example, MyCMMGetPS2ColorSpace) to handle the request.

pascal CMError MyCMMGetPS2ColorSpace(ComponentInstance CMSession,
 CMProfileRef srcProf,
 unsigned long flags,
 CMFlattenUPP proc,
 void *refCon);

session A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

srcProf A profile reference to the source profile from which you must
obtain or derive the color space element data.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-32

flags Reserved for future use.

proc A pointer to a MyColorSyncDataTransfer function supplied by
the calling application or device driver. Your
MyCMMGetPS2ColorSpace function calls this function repeatedly as
necessary until you have passed all the source profile’s color
space element data to this function.

refCon A reference constant, containing data specified by the calling
application or device driver, that your MyCMMGetPS2ColorSpace
function must pass to the MyColorSyncDataTransfer function.

DESCRIPTION

Only for special cases should a custom CMM need to support this request code.
If your CMM supports this function, your MyCMMGetPS2ColorSpace function
must obtain or derive the color space element data from the source profile
whose reference is passed to your function in the srcProf parameter.

The color space data may be assigned to the PostScript Level 2 color space
array (ps2CSATag) tag in the source profile. The byte stream containing the color
space element data that your function passes to the MyColorSyncDataTransfer
function is used as the operand to the PostScript setColorSpace operator.

Your function must allocate a data buffer in which to pass the color space
element data to the MyColorSyncDataTransfer function supplied by the calling
application or driver. Your MyCMMGetPS2ColorSpace function must call the
MyColorSyncDataTransfer function repeatedly until you have passed all the data
to it. Here is the prototype for the MyColorSyncDataTransfer function pointed to
by the proc parameter:

pascal OSErr MyColorSyncDataTransfer(long command, long *size,
void *data, void *refCon);

Your MyCMMGetPS2ColorSpace function communicates with the
MyColorSyncDataTransfer function using a command parameter to identify the
operation to be performed. Your function should call the
MyColorSyncDataTransfer function first with the openWriteSpool command to
direct the MyColorSyncDataTransfer function to the begin the process of writing
the profile color space element data you pass it in the data buffer. Next, you
should call the MyColorSyncDataTransfer function with the writeSpool
command. After the MyColorSyncDataTransfer function returns in the size
parameter the amount of data it actually wrote, you should call the

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-33

MyColorSyncDataTransfer function again with the writeSpool command,
repeating this process as often as necessary until all the color space data is
transferred. After the data is transferred, you should call the
MyColorSyncDataTransfer function with the closeSpool command.

When your function calls the MyColorSyncDataTransfer function, it passes in the
data buffer the profile data to be transferred to the MyColorSyncDataTransfer
function and the size in bytes of the buffered data in the size parameter. The
MyColorSyncDataTransfer function may not always write all the data you pass it
in the data buffer. Therefore, on return the MyColorSyncDataTransfer function
command passes back in the size parameter the number of bytes it actually
wrote. Your MyCMMGetPS2ColorSpace function keeps track of the number of bytes
of remaining color space element data.

Each time your MyCMMGetPS2ColorSpace function calls the
MyColorSyncDataTransfer function, you pass it the reference constant passed to
your function in the reference constant parameter.

SEE ALSO

For information about PostScript operations, see the PostScript Language
Manual, second edition.

MyCMMGetPS2ColorRenderingIntent 4

A CMM may respond to the kCMMGetPS2ColorRenderingIntent request code, but
it is not required to do so. The ColorSync Manager sends this request code to
your CMM on behalf of an application that called the
CMGetPS2ColorRenderingIntent function. The ColorSync Manager dispatches
this request to the Component Manager, which calls your CMM to service the
request. A CMM typically responds to the kCMMGetPS2ColorRenderingIntent
request code by calling a CMM-defined function (for example,
MyCMMGetPS2ColorRenderingIntent) to handle the request.

pascal CMError MyCMMGetPS2ColorRenderingIntent(ComponentInstance
CMSession, CMProfileRef srcProf,
unsigned long flags,
CMFlattenUPP proc, void *refCon);

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-34

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

srcProf A profile reference to the source profile whose header contains
the rendering intent.

flags Reserved for future use.

proc A pointer to a function supplied by the calling application or
device driver. Your MyCMMGetPS2ColorRenderingIntent function
calls this function repeatedly as necessary until you have
passed all the source profile’s rendering intent data to this
function.

refCon A reference constant, containing data specified by the calling
application or device driver, that your
MyCMMGetPS2ColorRenderingIntent function must pass to the
MyColorSyncDataTransfer function.

DESCRIPTION

Only for special cases should a custom CMM need to support this request code.
If your CMM supports this function, your MyCMMGetPS2ColorRenderingIntent
function must obtain the rendering intent from the source profile whose
reference is passed to your function in the srcProf parameter. The byte stream
containing the rendering intent data that your function passes to the
MyColorSyncDataTransfer function is used as the operand to the PostScript
findRenderingIntent operator.

Your function must allocate a data buffer in which to pass the rendering intent
data to the MyColorSyncDataTransfer function supplied by the calling
application or driver. Your MyCMMGetPS2ColorRenderingIntent function must call
the MyColorSyncDataTransfer function repeatedly until you have passed all the
data to it.

Here is the prototype for the MyColorSyncDataTransfer function pointed to by
the proc parameter:

pascal OSErr MyColorSyncDataTransfer(long command, long *size,
void *data, void *refCon);

Your MyCMMGetPS2ColorRenderingIntent function communicates with the
MyColorSyncDataTransfer function using a command parameter to identify the

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-35

operation to be performed. Your function should call the
MyColorSyncDataTransfer function first with the openWriteSpool command to
direct the MyColorSyncDataTransfer function to the begin the process of writing
the profile color-rendering intent element data you pass it in the data buffer.
Next, you should call the MyColorSyncDataTransfer function with the
writeSpool command. After the MyColorSyncDataTransfer function returns in
the size parameter the amount of data it actually read, you should call the
MyColorSyncDataTransfer function again with the writeSpool command,
repeating this process as often as necessary until all the color-rendering intent
data is transferred. After the data is transferred, you should call the
MyColorSyncDataTransfer function with the closeSpool command.

When your function calls the MyColorSyncDataTransfer function, it passes in the
data buffer the profile data to be transferred to the MyColorSyncDataTransfer
function and the size in bytes of the buffered data in the size parameter. The
MyColorSyncDataTransfer function may not always write all the data you pass it
in the data buffer. Therefore, on return the MyColorSyncDataTransfer function
command passes back in the size parameter the number of bytes it actually
wrote. Your MyCMMGetPS2ColorRenderingIntent function keeps track of the
number of bytes of remaining color-rendering intent element data.

Each time your MyCMMGetPS2ColorRenderingIntent function calls the
MyColorSyncDataTransfer function, you pass it the reference constant passed to
your function in the reference constant parameter.

SEE ALSO

For information about PostScript operations, see the PostScript Language
Manual, second edition.

MyCMMGetPS2ColorRendering 4

A CMM may respond to the kCMMGetPS2ColorRendering request code, but it is
not required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application that called the CMGetPS2ColorRendering
function. The ColorSync Manager dispatches this request to the Component
Manager, which calls your CMM to service the request. A CMM typically
responds to the kCMMGetPS2ColorRendering request code by calling a

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-36

CMM-defined function (for example, MyCMMGetPS2ColorRendering) to handle the
request.

pascal CMError MyCMMGetPS2ColorRendering(ComponentInstance CMSession,
CMProfileRef srcProf, CMProfileRef dstProf,
unsigned long flags,CMFlattenUPP proc,
void *refCon);

CMSession A handle to your CMM’s private storage for the instance of
your component associated with the calling application or
device driver.

srcProf A profile reference to the source profile whose header indicates
the rendering intent for generating the CRD.

dstProf A profile reference to the destination profile from which you
obtain or derive the color-rendering dictionary (CRD).

flags Reserved for future use.

proc A pointer to a function supplied by the calling application or
device driver. Your MyCMMGetPS2ColorRendering function calls
this function repeatedly as necessary until you have passed all
the color-rendering dictionary (CRD) element data to this
function.

refCon A reference constant, containing data specified by the calling
application or device driver, that your
MyCMMGetPS2ColorRendering function must pass to the
MyColorSyncDataTransfer function.

DESCRIPTION

Only for special cases should a custom CMM need to support this request code.
If your CMM supports this function, your MyCMMGetPS2ColorRendering function
must obtain the rendering intent from the header of the source profile
identified by the srcProf parameter. The rendering intent identifies the CRD
data that you must obtain or derive from the destination profile whose
reference is passed to your function in the dstProf parameter. The byte stream
containing the specified rendering intent’s CRD data that your function passes
to the MyColorSyncDataTransfer function is used as the operand to the
PostScript setColorRendering operator.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-37

A profile may contain tags that specify the CRD data for each rendering intent.
A profile’s ps2CRD0Tag element data contains the CRD for perceptual rendering.
A profile’s ps2CRD1Tag contains the CRD for relative colorimetric rendering. A
profile’s ps2CS2Tag contains the CRD for saturation rendering. A profile’s
ps2CS3Tag contains the CRD for absolute colorimetric rendering. If the profile
does not contain a CRD tag, your CMM should create the CRD from the
destination profile using the rendering intent specified by the source profile.

Your function must allocate a data buffer in which to pass the CRD data to the
MyColorSyncDataTransfer function supplied by the calling application or driver.
Your MyCMMGetPS2ColorRendering function must call the
MyColorSyncDataTransfer function repeatedly until you have passed all the data
to it. Here is the prototype for the MyColorSyncDataTransfer function pointed to
by the proc parameter:

pascal OSErr MyColorSyncDataTransfer(long command, long *size,
void *data, void *refCon);

Your MyCMMGetPS2ColorRendering function communicates with the
MyColorSyncDataTransfer function using a command parameter to identify the
operation to be performed. Your function should call the
MyColorSyncDataTransfer function first with the openWriteSpool command to
direct the MyColorSyncDataTransfer function to the begin the process of writing
the profile CRD data you pass it in the data buffer. Next, you should call the
MyColorSyncDataTransfer function with the writeSpool command. After the
MyColorSyncDataTransfer function returns in the size parameter the amount of
data it actually wrote, you should call the MyColorSyncDataTransfer function
again with the writeSpool command, repeating this process as often as
necessary until all the CRD data is transferred. After the data is transferred,
you should call the MyColorSyncDataTransfer function with the closeSpool
command.

When your function calls the MyColorSyncDataTransfer function, it passes in the
data buffer the profile data to be transferred to the MyColorSyncDataTransfer
function and the size in bytes of the buffered data in the size parameter. The
MyColorSyncDataTransfer function may not always write all the data you pass it
in the data buffer. Therefore, on return the MyColorSyncDataTransfer function
command passes back in the size parameter the number of bytes it actually
wrote. Your MyCMMGetPS2ColorRendering function keeps track of the number of
bytes of remaining CRD data.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-38

Each time your MyCMMGetPS2ColorRendering function calls the
MyColorSyncDataTransfer function, you pass it the reference constant passed to
your function in the reference constant parameter.

SEE ALSO

For information about PostScript operations, see the PostScript Language
Manual, second edition.

MyCMMGetPS2ColorRenderingVMSize 4

A CMM may respond to the kCMMGetPS2ColorRenderingVMSize request code, but
it is not required to do so. The ColorSync Manager sends this request code to
your CMM on behalf of an application that called the
CMGetPS2ColorRenderingVMSize function. The ColorSync Manager dispatches
this request to the Component Manager, which calls your CMM to service the
request. A CMM typically responds to the kCMMGetPS2ColorRenderingVMSize
request code by calling a CMM-defined function (for example,
MyCMMGetPS2ColorRenderingVMSize) to handle the request.

pascal CMError MyCMMGetPS2ColorRenderingVMSize(ComponentInstance
CMSession, CMProfileRef srcProf,
CMProfileRef dstProf,
unsigned long vmSize);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

srcProf A profile reference to the source profile specifying the rendering
intent to be used.

dstProf A profile reference to the destination printer profile from which
you obtain or assess the virtual memory (VM) size of the CRD.

vmSize The VM size of the CRD, returned by the function.

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-39

DESCRIPTION

Only for special cases should a custom CMM need to support this request code.
If your CMM supports this function, your MyCMMGetPS2ColorRenderingVMSize
function must obtain the maximum VM size of the CRD for the rendering
intent specified by the source profile.

Your function must return the VM size in the vmSize parameter. (In turn, the
ColorSync Manager returns the VM size to the calling application or device
driver.) The CRD whose maximum size you return must be that of the
dictionary for the rendering intent specified by the source profile.

If the destination profile contains the Apple-defined private tag 'psvm',
described later in this section, then your CMM may read the tag and return the
CRD VM size data supplied by this tag for the specified rendering intent. If the
destination profile does not contain this tag, then you must assess the VM size
of the CRD. In this case, the assessment may be larger than the actual
maximum VM size.

The CMPS2CRDVMSizeType data type defines the Apple-defined 'psvm' optional
tag that a profile may contain to identify the maximum VM size of a CRD for
different rendering intents. This tag’s element data includes an array
containing one entry for each rendering intent and its virtual memory size.

The CMIntentCRDVMSize data type defines the rendering intent and its maximum
VM size:

struct CMIntentCRDVMSize {
long rendering Intent;
unsigned long VMSize;

};

For example, a rendering intent might be 0 and its VM size 120 KB.

Constant descriptions

renderingIntent The rendering intent whose CRD VM size you want to
obtain. Rendering intent values are
0 (cmPerceptual)
1 (cmRelativeColorimetric)
2 (cmSaturation)
3 (cmAbsoluteColorimetric)

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-40

VMSize The VM size of the CRD for the rendering intent specified
for the renderingIntent field.

The CMPS2CRDVMSizeType data type for the tag includes an array containing one
or more members of type CMIntentCRDVMSize:

struct CMPS2CRDVMSizeType {
OSType typeDescriptor;
unsigned long reserved;
unsigned long count;
CMIntentCRDVMSize intentCRD[1];

};

Constant descriptions

typeDescriptor The 'psvm' tag signature.
reserved Reserved for future use.
count The number of entries in the intentCRD array.
CMIntentCRDVMSize A variable-sized array of four or more members defined by

the CMIntentCRDSize data type.

MyCMMFlattenProfile 4

A CMM may respond to the kCMMFlattenProfile request code, but it is not
required to do so. For most CMMs, the Apple-default CMM can handle this
request code. The ColorSync Manager sends this request code to your CMM on
behalf of an application or device driver that called the CMFlattenProfile
function. The ColorSync Manager dispatches this request to the Component
Manager which calls your CMM to service the request. A CMM that handles
the kCMMFlattenProfile request code typically responds by calling a
CMM-defined function (for example, MyCMMFlattenProfile).

pascal CMError MyCMMFlattenProfile (ComponentInstance CMSession,
CMProfileRef prof, unsigned
long flags, CMFlattenUPP
proc, void *refCon);

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-41

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

prof A reference to the profile to be flattened.

flags Reserved for future use.

proc A pointer to the MyColorSyncDataTransfer function supplied by
the calling application or device driver to perform the low-level
data transfer. Your MyCMMFlattenProfile function calls this
function repeatedly as necessary until all the profile data is
transferred.

refCon A reference constant containing data specified by the calling
application or device driver.

DESCRIPTION

Only in rare circumstances should a custom CMM need to support this request
code. The process of flattening a profile is complex, and the Apple-supplied
default CMM handles this process adequately for most cases. A custom CMM
might respond to this request code if the CMM provides special services such
as profile data encryption or compression, for example. Read the rest of this
description if your CMM handles this request code.

Your MyCMMFlattenProfile function must extract the profile data from the
profile to be flattened, identified by the prof parameter, and pass the profile
data to the function specified in the proc parameter.

Your MyCMMFlattenProfile function calls the MyColorSyncDataTransfer function
supplied by the calling application. Here is the prototype for the
MyColorSyncDataTransfer function pointed to by the proc parameter:

pascal OSErr MyColorSyncDataTransfer(long command, long *size,
void *data, void *refCon);

Your MyCMMFlattenProfile function communicates with the
MyColorSyncDataTransfer function using a command parameter to identify the
operation to be performed. Your function should call the
MyColorSyncDataTransfer function first with the openWriteSpool command to
direct the MyColorSyncDataTransfer function to the begin the process of writing
the profile data you pass it in the data buffer. Next, you should call the
MyColorSyncDataTransfer function with the writeSpool command. After the

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-42

MyColorSyncDataTransfer function returns in the size parameter the amount of
data it actually wrote, you should call the MyColorSyncDataTransfer function
again with the writeSpool command, repeating this process as often as
necessary until all the profile data is transferred. After the data is transferred,
you should call the MyColorSyncDataTransfer function with the closeSpool
command.

When your function calls the MyColorSyncDataTransfer function, it passes in the
data buffer the profile data to be transferred to the MyColorSyncDataTransfer
function and the size in bytes of the buffered data in the size parameter. The
MyColorSyncDataTransfer function may not always write all the data you pass it
in the data buffer. Therefore, on return the MyColorSyncDataTransfer function
command passes back in the size parameter the number of bytes it actually
wrote. Your function keeps track of the number of bytes of remaining profile
data.

Your MyCMMFlattenProfile function is responsible for obtaining the profile data
from the profile, allocating a buffer in which to pass the data to the
MyColorSyncDataTransfer function, and keeping track of the amount of
remaining data to be transferred to the MyColorSyncDataTransfer function.

Each time your MyCMMFlattenProfile function calls the
MyColorSyncDataTransfer function, you pass it the reference constant
passed to your function in the reference constant parameter.

MyCMMUnflattenProfile 4

A CMM may respond to the kCMMUnflattenProfile request code, but it is not
required to do so. For most CMMs, the Apple-default CMM can handle this
request code. The ColorSync Manager sends this request code to your CMM on
behalf of an application or device driver that called the CMUnflattenProfile
function. The ColorSync Manager dispatches this request to the Component
Manager, which calls your CMM to service the request. A CMM that handles
the kCMMUnflattenProfile request code typically responds by calling a
CMM-defined function (for example, MyCMMUnflattenProfile).

pascal CMError MyCMMUnflattenProfile (ComponentInstance CMSession,
FSSpec *resultFileSpec,
CMFlattenUPP proc,
void *refCon);

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-43

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

resultFileSpec
A file specification for the profile file. This is a temporary file
specification. You must create this temporary file, which is
returned to the calling application or device driver. The calling
application or driver is responsible for disposing of the file
when finished with it.

proc A pointer to a function supplied by the calling application or
device driver to perform the low-level data transfer. Your
MyCMMFlattenProfile function calls this function repeatedly as
necessary until all the profile data is transferred.

refCon A reference constant containing data specified by the calling
application program.

DESCRIPTION

Only in rare circumstances should a custom CMM need to support this request
code. The process of unflattening a profile is complex, and the Apple-supplied
default CMM handles this process adequately for most cases. A custom CMM
might respond to this request code if the CMM provides special services such
as profile data encryption or compression, for example. Read the rest of this
description if your CMM handles this request code.

Your MyCMMUnflattenProfile function must create a file with a unique name in
which to store the profile data. (You should create this file in the temporary
items folder.) The ColorSync Manager returns the temporary file specification
to the calling application or device driver.

To obtain the profile data, your MyCMMUnflattenProfile function calls the
MyColorSyncDataTransfer function supplied by the calling application or device
driver. Here is the prototype for the MyColorSyncDataTransfer function pointed
to by the proc parameter:

pascal OSErr MyColorSyncDataTransfer (long command, long *size,
void *data, void *refCon);

Before calling the MyColorSyncDataTransfer function, your
MyCMMUnflattenProfile function must allocate a buffer to hold the profile data

C H A P T E R 4

ColorSync Manager Reference for Color Management Modules

4-44

returned to you from the MyColorSyncDataTransfer function in the data
parameter.

Your MyCMMUnflattenProfile function communicates with the
MyColorSyncDataTransfer function using a command parameter to identify the
operation to be performed. Your function should call the
MyColorSyncDataTransfer function first with the openReadSpool command to
direct the MyColorSyncDataTransfer function to begin the process of
transferring data. Following this, you should call the MyColorSyncDataTransfer
function with the readSpool command as often as necessary until the
MyColorSyncDataTransfer function has passed your function all the profile data
from the graphics file. After you have received all the profile data, your
function should call the MyColorSyncDataTransfer function with the closeSpool
command.

Each time you call the MyColorSyncDataTransfer function, you should pass it a
pointer to the data buffer you created, the size in bytes of the profile data to be
returned to you in the buffer, and the reference constant passed to you from the
calling application.

On return, the MyColorSyncDataTransfer function passes to you the profile data
that your function must write to the temporary file that you created for the new
profile file. The MyColorSyncDataTransfer function will not always transfer the
number of bytes of profile data you requested. Therefore, the
MyColorSyncDataTransfer function returns in the size parameter the number of
bytes of profile data it actually returned in the data buffer.

The profile file you create is returned to the calling application or device driver
in the resultFileSpec parameter. Your MyCMUnflattenProfile function must
identify the profile size and maintain a counter tracking the amount of data
transferred to you and the amount of remaining data in order to determine
when to call the MyColorSyncDataTransfer function with the closeSpool
command. To determine the profile size, your function can obtain the profile
header, which specifies the size.

The calling application or device driver uses the reference constant to pass to
the MyColorSyncDataTransfer function information the MyColorSyncDataTransfer
function requires to transfer the data.

C H A P T E R 5

Contents

5-1

Contents

Figure 4-0
Listing 4-0
Table 4-0

5 Color Manager Reference

Constants and Data Types 5-3

ITab

5-3

SProcRec

5-4

CProcRec

5-4

ReqListRec

5-5
Color Manager Functions 5-5

Managing Colors 5-5

Color2Index

5-5

Index2Color

5-6

InvertColor

5-7

RealColor

5-7

GetSubTable

5-8

MakeITable

5-9
Managing Color Tables 5-10

GetCTSeed

5-10

ProtectEntry

5-10

ReserveEntry

5-11

SetEntries

5-12

SaveEntries

5-13

RestoreEntries

5-14
Operations on Search and Complement Functions 5-15

AddSearch

5-16

AddComp

5-16

DelSearch

5-16

DelComp

5-17

SetClientID

5-17
Application-Defined Functions 5-17

This document was created with FrameMaker 4.0.4

C H A P T E R 5

5-2

Contents

MySearchProc

5-17

MyCompProc

5-18

C H A P T E R 5

5-3

Color Manager Reference 5

This section presents a complete reference to the data types and functions of
the Color Manager.

Constants and Data Types 5

The Color Manager contains data structures for holding inverse table
information and links in the chains of custom search and complement
functions.

ITab 5

The

ITab

 data structure contains the inverse table information that the Color
Manager uses for fast mapping of RGB color values.

struct ITab {
long iTabSeed; /* copy of color table seed */
short iTabRes; /* resolution of table */
unsigned char iTTable[1]; /* byte color table index values */

};
typedef struct ITab ITab;
typedef ITab *ITabPtr, **ITabHandle;

Field descriptions

iTabSeed

The

iTabSeed

 value, initially set from the corresponding
CLUT’s

ctSeed

 field. If at any time these don’t match, then
the color table was changed, and the inverse table needs to
be rebuilt.

iTabRes

The resolution of this inverse table.

iTabTable

An array of index values. The size of the

iTabTable

 field in
bytes is

2

3*iTabRes

.

This document was created with FrameMaker 4.0.4

C H A P T E R 5

Color Manager Reference

5-4

SProcRec 5

The

SProcRec

 data structure contains a pointer to a custom search function and
a handle to the next

SProcRec

 data structure in the function list.

struct SProcRec {
Handle nxtSrch; /* handle to next SProcRec */
ColorSearchProcPtr srchProc; /* pointer to search function */

};
typedef struct SProcRec SProcRec;
typedef SProcRec *SProcPtr, **SProcHndl;

Field descriptions

nxtSrch

A handle to the next

SProcRec

 data structure in the chain of
search functions.

srchProc

A pointer to a custom search function (described on
page 5-17).

CProcRec 5

The

CProcRec

 data structure contains a pointer to a custom complement
function and a pointer to the next complement function in the list.

struct CProcRec {
Handle nxtComp; /* handle to next CProcRec */
ColorComplementProcPtr

compProc; /* pointer to complement function */
};
typedef struct CProcRec CProcRec;
typedef CProcRec *CProcPtr, **CProcHndl;

Field descriptions

nxtComp

A handle to the next

CPRocRec

 data structure in the list.

compProc

A pointer to a complement function, as described on
page 5-18.

C H A P T E R 5

Color Manager Reference

5-5

ReqListRec 5

The

ReqListRec

 data structure is a parameter to the

SaveEntries

 function by
which you can describe color table entries to be saved.

struct ReqListRec {
short reqLSize; /* request list size minus 1 */
short reqLData[1] /* request list data */

};
typedef struct ReqListRec ReqListRec;

Field descriptions

reqLSize

The size of this

ReqListRec

 data structure minus one.

reqLData

An array of integers representing offsets into a color table.

Color Manager Functions 5

The Color Manager provides functions for color management, color table
management, and inverse table management. System software, such as Color
QuickDraw and the Palette Manager, calls these functions automatically;
applications should generally never need to call these functions, which are
described here for completeness.

Managing Colors 5

You can find the index to the best approximation of a single color with the

Color2Index

 function, and you can find the indexes to the best approximation
of a set of colors with the

GetSubTable

 function.

Color2Index 5

System software uses the

Color2Index

 function to obtain the index of the best
available approximation for a given color in the color table of the current

GDevice

 data structure.

pascal long Color2Index (const RGBColor *myColor);

C H A P T E R 5

Color Manager Reference

5-6

myColor

A pointer to the RGB color value to be approximated.

DESCRIPTION

The

Color2Index

 function returns the index of the best approximation for a
given color that is available in the color table of the current

GDevice

 data
structure. Note that

Color2Index

 returns a long integer, in which the low-order
word is the index value; the high-order word contains zeros.

You should not call

Color2Index

 from within a custom search function
(described on page 5-17).

Index2Color 5

System software uses the

Index2Color

 function to obtain the

RGBColor

 data
structure corresponding to an index value in the color table of the current

GDevice

 data structure.

pascal void Index2Color (
long index,
RGBColor *aColor);

index

The index value whose color entry is sought.

aColor

A pointer to the returned

RGBColor

 data structure.

DESCRIPTION

The

Index2Color

 function returns the

RGBColor

 data structure corresponding to
an index value in the color table of the current

GDevice

 data structure. For the
index value you should supply a long integer in which the high-order word is
padded with zeros.

C H A P T E R 5

Color Manager Reference

5-7

InvertColor 5

System software uses the

InvertColor

 function to find the complement of an

RGBColor

 data structure.

pascal void InvertColor (RBGColor *myColor);

myColor

The

RGBColor

 data structure for which the complement is to be
found.

DESCRIPTION

The

InvertColor

 function returns the complement of an absolute color, using
the list of complement functions in the current device data structure. The
default complement function uses the one’s complement of each component of
the requested color.

RealColor 5

System software uses the

RealColor

 function to determine whether a given

RGBColor

 data structure actually exists in the current device’s color table.

pascal Boolean RealColor (const RGBColor *color);

color

The

RGBColor

 data structure to be tested.

DESCRIPTION

The

RealColor

 function determines whether the color is available in the current

GDevice

 data structure’s CLUT, basing its search on the current resolution of the
inverse table. For example, if the current value of the

iTabRes

 field is 4,

RealColor

 returns

true

 if there exists a color that exactly matches the top 4 bits
of red, green, and blue. (The

iTabRes

 field of the inverse table is described on
page 5-3.)

C H A P T E R 5

Color Manager Reference

5-8

GetSubTable 5

System software uses the

GetSubTable

 function to search one color table for the
best matches to colors in another color table. You can use this function to
determine the best indexes in the current

GDevice

 data structure’s CLUT for a
set of colors in your application’s color table.

pascal void GetSubTable (
CTabHandle myColors,
short iTabRes,
CTabHandle targetTbl);

myColors

A handle to a color table containing the colors for which you
want matches.

iTabRes The resolution of the inverse table to be used.

targetTbl A handle to a color table whose colors are to be matched.

DESCRIPTION

The GetSubTable function searches one color table for the best matches to colors
in another color table. Supply the colors you want matched in the myColors
parameter. Supply the color table to be searched in the targetTbl parameter.
GetSubTable stores indexes from the color table in targetTbl in the value field of
the color table in the myColors parameter.

The Color Manager uses the Color2Index function for each RGBColor data
structure in the color table of the myColors parameter. It determines the best
match in the target table and stores that index value in the color table of the
myColors parameter.

If you supply nil for targetTbl, then the Color Manager searches the current
GDevice data structure’s CLUT, and uses its inverse table. Otherwise a
temporary inverse table is built, with a resolution of the value in the iTabRes
parameter.

SPECIAL CONSIDERATIONS

Depending on the requested resolution, building the inverse table can require
large amounts of temporary space in the application heap: twice the size of the
table itself, plus a fixed overhead of 3–15 KB for each inverse table resolution.

C H A P T E R 5

Color Manager Reference

5-9

MakeITable 5

System software uses the MakeITable function to generate an inverse table for a
color table.

pascal void MakeITable (
CTabHandle cTabH,
ITabHandle iTabH,
short res);

cTabH The color table for which an inverse table is to be generated.

iTabH The generated inverse table.

res The resolution needed for the inverse table.

DESCRIPTION

The MakeITable function generates an inverse table based on the current
contents of the color table pointed to by the colorTab parameter, with a
resolution specified by the value in the res parameter. Reserved color table
pixel values are not included in the resulting color table. MakeITable tests its
input parameters and returns an error in QDError if the resolution is less than
three or greater than five. Passing nil in the colorTab or inverseTab parameter
substitutes an appropriate handle from the current GDevice data structure,
while passing 0 in the res parameter substitutes the current GDevice data
structure’s inverse table resolution. These defaults can be used in any
combination with explicit values, or with nil parameter values.

This function allows maximum precision in mapping colors, even if colors in
the color table differ by less than the resolution of the inverse table. Five-bit
inverse tables are not needed when drawing in normal Color QuickDraw
modes. However, Color QuickDraw transfer modes such as add, subtract, and
blend may require a 5-bit inverse table for best results with certain color tables.
MakeITable returns an error in QDError if the destination inverse table memory
cannot be allocated. The 'mitq' resource governs how much memory is
allocated for temporary internal structures; this resource type is for internal use
only.

C H A P T E R 5

Color Manager Reference

5-10

SPECIAL CONSIDERATIONS

Depending on the requested resolution, building the inverse table can require
large amounts of temporary space in the application heap: twice the size of the
table itself, plus a fixed overhead of 3–15 KB for each inverse table resolution.

Managing Color Tables 5

The functions in this section enable a specialized application to obtain a seed
value for a color table you create so that the Color Manager can note when the
table is changed, and to change the values and protection of color table entries.

GetCTSeed 5

You can use the GetCTSeed function to obtain a unique seed value for a color
table created by your application.

pascal long GetCTSeed (void);

DESCRIPTION

The GetCTSeed function returns a unique seed value that you can use in the
ctSeed field of a color table created by your application. The seed value
guarantees that the color table is recognized as distinct from the destination,
and that color table translation is performed properly. The return value is
greater than the value stored in the constant minSeed.

ProtectEntry 5

You can use the ProtectEntry function to add protection to or remove
protection from an entry in the current GDevice data structure’s color table.

pascal void ProtectEntry (
short index,
Boolean protect);

C H A P T E R 5

Color Manager Reference

5-11

index The index to the entry whose protection is to be changed.

protect A Boolean value: specify true to protect the entry, false to
remove protection.

DESCRIPTION

The ProtectEntry function adds or removes protection for an entry in the
current GDevice data structure’s color table, depending on the value of the
protect parameter. A protected entry can’t be changed by other applications.
ProtectEntry returns a protection error in QDErr if you attempt to protect an
already protected entry. However, it can remove protection from any entry.

ReserveEntry 5

You can use the ReserveEntry function to reserve or remove reservation from an
entry in the current GDevice data structure’s color table.

pascal void ReserveEntry (
short index,
Boolean reserve);

index The index to the entry.

reserve A Boolean value, true to reserve the entry, false to remove the
reservation.

DESCRIPTION

The ReserveEntry function reserves or removes the reservation of an entry in
the current color table, depending on the value of the reserve parameter. A
reserved entry cannot be matched by another application’s search function, and
Color2Index (or other functions that depend on it such as RGBForeColor,
RGBBackColor, and SetCPixel) never return that entry to another client. You
could use this function to selectively protect a color for color table animation.

The ReserveEntry function copies the low byte of the gdID field of the current
GDevice data structure into the low byte of the ColorSpec.value field of the color
table when reserving an entry, and leaves the high byte alone. ReserveEntry
acts like selective protection and does not allow any changes if the current gdID

C H A P T E R 5

Color Manager Reference

5-12

field is different than the one in the ColorSpec.value field of the reserved entry.
If a requested match is already reserved, ReserveEntry returns a protection
error. It can remove reservation from any entry.

SetEntries 5

You can use the SetEntries function to set a group of color table entries for the
current GDevice data structure.

pascal void SetEntries (
short start,
short count,
cSpecArray aTable);

start The index of the first entry to be changed.

count The number of entries to be changed.

aTable An array of ColorSpec data structures containing the colors to
be used.

DESCRIPTION

The SetEntries function sets a group of color table entries for the current
GDevice data structure, starting at a given position for the specified number of
entries. Use the aTable parameter to directly specify a cSpecArray structure, not
the beginning of a color table. The ColorSpec.value fields of the entries must be
in the logical range for the target device’s assigned pixel depth. Thus, with a
4-bit pixel size, the ColorSpec.value fields should be in the range 1 to 15. With
an 8-bit pixel size, the range is 0 to 255. Note that all values are zero-based; for
example, to set three entries, pass 2 in the count parameter.

▲ W A R N I N G

Instead of using SetEntries, you should use the Palette
Manager function SetEntryColor to allow your application
to run in a multiscreen or multitasking environment. ▲

The SetEntries positional information works in logical space rather than in the
actual memory space used by the hardware. Requesting a change at the fourth
position in the color table may not modify the fourth color table entry in the

C H A P T E R 5

Color Manager Reference

5-13

hardware, but it does correctly change the color on the screen for any pixels
with a value of 4 in the video card. The SetEntries mode characterized by a
start position and a length is called sequence mode. In this case, SetEntries
sequentially loads new colors into the hardware in the same order as they
appear in the aTable parameter, copies the clientID fields for changed color
table entries from the current GDevice data structure’s gdID field, and ignores
the ColorSpec.value fields.

The other SetEntries mode is called index mode. It allows the cSpecArray
structure to specify where the data will be installed on an entry-by-entry basis.
To use this mode, pass –1 for the start position, with a valid count and a pointer
to the cSpecArray data structure. Each entry is installed into the color table at
the position specified by the ColorSpec.value field of each entry in the
cSpecArray data structure. In the current GDevice data structure’s color table,
the ColorSpec.value fields of all changed entries are assigned the GDevice data
structure’s gdID value.

When the Color Manager changes color table entries, it invalidates all cached
fonts, and changes the color tables’s seed number so that the next drawing
operation triggers the Color Manager to rebuild the inverse table. If any of the
requested entries are protected or out of range, the Color Manager returns a
protection error, and nothing happens. The Color Manager changes a reserved
entry only if the current gdID field of the current GDevice data structure matches
the low byte of the intended ColorSpec.value field in the color table.

SaveEntries 5

You can use the SaveEntries function to save a selection of color table entries.

pascal void SaveEntries (
CTabHandle srcTable,
CTabHandle resultTable,
ReqListRec *selection);

srcTable The color table containing entries to be saved.

resultTabl1 The color table in which to save the entries.

selection The entries to be saved, as indicated not by a range of indexes,
but by a special structure noted in the description.

C H A P T E R 5

Color Manager Reference

5-14

DESCRIPTION

The SaveEntries function saves a selection of color table entries from the
srcTable parameter in the resultTable parameter. The entries to be set are
enumerated in the selection parameter, which uses the ReqListRec data
structure described on page 5-5. (These values are offsets into a ColorTable data
structure, not the contents of the ColorSpec.value field.)

If an entry is not present in srcTable, then SaveEntries sets that position of the
selection parameter to colReqErr, and that position of resultTable contains
random values. If SaveEntries can’t find one or more entries, then it posts an
error code to QDError; however, for every entry in selection which is not
colReqErr, the values in resultTable are valid. SaveEntries assumes that the
color table specified by the srcTable parameter and the request list specified by
the selection parameter have the same number of entries.

SaveEntries optionally allows nil as the value of its source color table
parameter. If you supply nil, SaveEntries uses the current device’s color table
as the source. The output of SaveEntries is the same as the input for
RestoreEntries, except for the order.

RestoreEntries 5

You can use the RestoreEntries function to set a selection of color table entries.

pascal void RestoreEntries (
CTabHandle srcTable,
CTabHandle dstTable,
ReqListRec *selection);

srcTable The color table containing entries to be restored.

dstTable The color table in which to restore the entries.

selection The entries to be restored, as indicated not by a range of
indexes, but by a special structure noted in the SaveEntries
description.

C H A P T E R 5

Color Manager Reference

5-15

DESCRIPTION

The RestoreEntries function sets a selection of color table entries from the
srcTable parameter into the dstTable parameter, but doesn’t rebuild the inverse
table. You enumerate the dstTable entries to be set in the selection parameter,
which uses the ReqListRec data structure shown on page 5-5. (These values are
offsets into srcTable, not the contents of the ColorSpec.value field.)

If a request is beyond the end of the destination color table, RestoreEntries sets
that position in the requestList data structure to colReqErr, and returns an
error. RestoreEntries assumes that the color table specified by the srcTable
parameter and the request list specified by the selection parameter have the
same number of entries.

If dstTbl is nil, or points to the current GDevice data structure’s color table,
RestoreEntries changes the device’s color table and the hardware CLUT to
these new colors. RestoreEntries does not change the color table’s seed, so no
invalidation occurs (which may cause RGBForeColor to act strangely).
RestoreEntries ignores protection and reservation of color table entries.

SPECIAL CONSIDERATIONS

You generally should use the Palette Manager to give your application its own
set of colors; use of RestoreEntries should be limited to special-purpose
applications. RestoreEntries allows you to change a color table without
changing its ctSeed field. You can execute the application code and then use
RestoreEntries to put the original colors back in. However, in some cases
things in the background may appear in the wrong colors, since they were
never redrawn. To void this, your application must build its own new inverse
table and redraw the background. If you then use RestoreEntries, you should
call the CTabChanged function to clean up correctly.

Operations on Search and Complement Functions 5

These functions enable specialized applications to add and remove custom
search and complement functions to the current graphics device’s list of
functions, and to identify your application to the custom functions.

C H A P T E R 5

Color Manager Reference

5-16

AddSearch 5

You can use the AddSearch function to add a function to the head of the current
GDevice data structure’s list of search functions. AddSearch creates and allocates
an SProcRec data structure, which is defined page 5-4.

pascal void AddSearch (ColorSearchProcPtr searchProc);

searchProc A pointer to your custom search function (described on
page 5-17).

AddComp 5

You can use the AddComp function to add a function to the head of the current
device data structure’s list of complement functions. AddComp creates and
allocates a CProcRec data structure, which is described on page 5-4.

pascal void AddComp (ColorComplementProcPtr compProc);

compProc A pointer to your complement function, as described on
page 5-18.

DelSearch 5

You can use the DelSearch function to remove a custom search function from
the current GDevice data structure’s list of search functions. DelSearch disposes
of the chain element, but does nothing to the ProcPtr data structure.

pascal void DelSearch (ColorSearchProcPtr searchProc);

searchProc A pointer to the custom search function (described on
page 5-17) to be deleted.

C H A P T E R 5

Color Manager Reference

5-17

DelComp 5

You can use the DelComp function to remove a custom complement function
from the current GDevice data structure’s list of complement functions. DelComp
disposes of the chain element, but does nothing to the ProcPtr data structure.

pascal void DelComp (ColorComplementProcPtr compProc);

compProc A pointer to the complement function (described on page 5-18)
to be deleted.

SetClientID 5

You can use the SetClientID function to set the gdID field in the current GDevice
data structure to identify this client program to its search and complement
functions.

pascal void SetClientID (short id);

id The ID to be set in the device data structure.

Application-Defined Functions 5

By creating a custom search function, your application can override the Color
Manager’s code for inverse table mapping. By creating a custom complement
function, your application can override the Color Manager’s color inversion
method.

MySearchProc 5

By creating a custom search function, your application can override the Color
Manager’s code for inverse table mapping. Your MySearchProc function should

C H A P T E R 5

Color Manager Reference

5-18

examine the RGBColor data structure passed to it by the Color Manager and
return the index to the best-mapping color in the current GDevice data structure.

pascal Boolean MySearchProc (
RGBColor *rgb,
long *position);

rgb The RGBColor data structure passed to your search function

position The index of the best-mapping color your function finds.

DESCRIPTION

The Color Manager specifies the desired color in the RGBColor field of a
ColorSpec data structure and passes it by a pointer on the stack. Your function
should return the corresponding index in the ColorSpec.value field. If your
function can’t handle the search, return false as the function value, and pass
the RGBColor data structure back to the Color Manager in the rgb parameter.

The Color Manager calls each search function in the list until one returns the
Boolean value true. If no search function installed in the linked list returns
true, the Color Manager calls the default search function.

MyCompProc 5

By creating a custom complement function, your application can override the
Color Manager’s color inversion method. Your MyCompProc color inversion
function should invert the RGBColor data structure passed to it in the rgb
parameter, and return the inverted value in that parameter.

pascal void MyCompProc (RGBColor *rgb);

rgb The RGBColor data structure passed to your function.

GL-1

Glossary

abstract profile

 A profile that allows
applications to perform special color effects
independent of the devices on which the
effects are rendered.

additive color theory

The process of
mixing red, green, and blue lights which are
each approximately one-third of the visible
spectrum. Additive color theory explains
how red, green, and blue light can be added
to make white light.

absolute colorimetric matching

A

rendering intent

 that is used for a
device-independent color space in which
the result is an idealized print viewed on a
perfect paper having a large dynamic range
and color gamut. In reality, paper cannot
reproduce densities less than a particular
minimum density.

animated color

A color that the Palette
Manager uses for special animation effects.
Animated colors work only on devices that
have a color table; that is, they do not work
on direct devices.

application-owned dialog

box

A dialog
box, created by an application, for
presenting a color picker.

brightness

A term in color theory used to
describe differences in the intensity of light
reflected from or transmitted by a color
image. The hue of an object may be blue,
but the adjectives dark or light distinguish
the brightness of one object from another.
Compare with

hue

 and

saturation.

CIE-based color spaces

Color spaces that
allow color to be expressed in a
device-independent way, unlike RGB colors
which vary with display and scanner
characteristics and CMYK colors which
vary with printer, ink, and paper
characteristics. CIE-based color spaces
result from work carried out in 1931 by the
Commission Internationale d’Eclairage
(CIE). These color spaces are also referred to
as device independent color spaces.

CMM

See

color management module.

color channel

See color component.

color component

 A dimension of a color
value expressed as a numeric value. For the
ColorSync Manager, depending on the color
space, a color value may consist of one, two,
three, four, or eight components, also
referred to as channels.

color gamut

See

gamut.

color management module

A component,
also referred to as a CMM, that carries out
the actual color matching and gamut
checking processes based on requests
resulting from calls a program makes to the
ColorSync Manager API. An application or
driver can supply its own CMM or it can
use the robust default CMM that Apple
supplies.

color picker

Code, implemented as a
component, that allows users to select a
color from a range of possible colors.

This document was created with FrameMaker 4.0.4

G L O S S A R Y

GL-2

Color Picker Manager

A set of system
software functions that provide applications
with a standard user interface for soliciting
color choices from users.

color picker–owned dialog box

A dialog
box, defined by a color picker, for
presenting the color picker.

color space

 A model for representing
color in terms of intensity values; a color
space specifies how color information is
represented. It defines a multidimensional
space whose dimensions, or

components,
represent intensity values.

color space profile

 A profile that contains
the data necessary to translate color values,
such as CIE into RGB or RGB into CIE, as
necessary for color matching. Color space
profiles provide a convenient means for
CMMs to convert between different
non-device profiles.

courteous color

A color that accepts
whatever value the Color Manager
determines is the closest match available in
the color table. Compare

tolerant color

.

default system profile

The system profile
for the display device that the ColorSync
Manager includes and uses unless the user
selects a different system profile through
the ColorSync Manager control panel.

destination profile

The profile that
describes the characteristics of the output
device for which the image is destined. The
profile is used to color match the image to
the device’s gamut.

device-independent color spaces

See
CIE-based color spaces.

device-linked profile

A profile that
combines multiple profiles, such as various
device profiles associated with the creation
and editing of an image.

device profile

A structure that provides a
means of defining the color characteristics
of a given device in a particular state.

event forecasters

Warnings sent by an
application to a color picker about user
actions that might adversely affect the color
picker.

explict color

A color that specifies an
index value in the devices color table rather
than an RGB color.

gamut

The range of color that a device
can produce, also referred to as the device’s
color gamut.

HSV

space

A transformation of RGB
space that allow colors to be described in
terms more natural to an artist. The name

HSV

 stands for

hue, saturation,

 and

value.

HLS space

A transformation of RGB
space that allow colors to be described in
terms more natural to an artist. The name

HLS

 stands for

hue, lightness,

 and

saturation.

hue

The name of the color that places the
color in its correct position in the spectrum.
For example, if a color is described as blue,
it is distinguished from yellow, red, green,
or other colors. Compare with

brightness

and

saturation.

indexed color space

The color space used
when drawing with indirectly specified
colors.

G L O S S A R Y

GL-3

inhibited color

A color that is prevented
from appearing on particular screens.
Colors can be specifically inhibited on a
2-bit, 4-bit, and 8-bit color or grayscale
screen.

inverse table

A special data structure
arranged by the Color Manager in such a
manner that, given an arbitrary RGB color,
the Color Manager can very rapidly look up
its pixel value.

interchange color
space

Device-independent color spaces
that are used for the interchange of color
data from the native color space of one
device to the native color space of another
device.

L*a*b* space

A nonlinear transformation
(that is, a third-order approximation) of the
Munsell color-notation system designed to
match perceived color difference with
quantitative distance in color space.

L*u*v* color space

A nonlinear
transformation of XYZ space used to create
a perceptually linear color space. This color
space was designed to match perceived
color difference with quantitative distance
in color space.

new color

In a color picker dialog box, the
latest color selected by the user.

original color

In a color picker dialog box,
the color that the user is about to change.

palette

A set of colors optimized for use
on display devices with a limited number of
colors. A palette defines a set of RGB colors,
how they are to be used, and the tolerances
within which they must be matched.

perceptual matching A rendering intent

in which all the colors of a given gamut
may be scaled to fit within another gamut.
The colors maintain their relative positions,
so the relationship between colors is
maintained.

pixel value

A number used by system
software and a graphics device to represent
a color. The translation from the color that
an application specificies in an

RGBColor

data structure to a pixel value is performed
at the time the application draws the color.
The process differs for indexed and direct
devices.

profile

A structure that may contain
measurements representing a color gamut,
including information such as the lightest
and darkest possible tones, and maximum
densities for red, green, blue, cyan,
magenta, and yellow. The International
Color Consortium defines several different
types of profiles. Each of these types of
profiles must include a different required
set of information, but all of these profile
types follow the same format.

profile chromaticities

Color values that
define the extremes of saturation that the
device can produce for its primary and
secondary colors (red, green, blue, cyan,
magenta, yellow).

reference white point

A specific
definition of what is considered white light
represented in terms of XYZ space and
usually based on the whitest light that can
be generated by a given device.

G L O S S A R Y

GL-4

RGB space

A three-dimensional color
space whose components are the red, green,
and blue intensities that make up a given
color.

relative colorimetric matching

A

rendering intent

in which the colors that
fall within the gamuts of both devices are
left unchanged. Relative colorimetric
matching allows some colors in both images
to be exactly the same, which is useful
when colors must match quantitatively. A
disadvantage of relative colorimetric
matching is that many colors may map to a
single color resulting in tone compression.

rendering intent

The approach taken
when a CMM maps or translates the colors
of an image to the color gamut of a
destination device. Each profile supports
four different rendering intents:

perceptual
matching, relative colorimetric matching,
saturation matching,

and

 absolute
colorimetric matching.

saturation

The degree of hue in a color or
a color’s strength. A neutral gray is
considered to have zero saturation. A
saturated red would have the a color
similar to apple red. Compare with

brightness

and

hue.

saturation matching

 A rendering intent
in which the relative saturation of colors is
maintained from gamut to gamut. Colors
outside the gamut are usually converted to
colors with the same saturation, but
different lightness, at the edge of the gamut.

source profile

The profile that is
associated with the image and describes the
characteristics of the device on which the
image was created.

subtractive color theory

The process of
combining subtractive colorants such as
inks or dyes. In this theory colorants of
cyan, magenta, and yellow are used to
subtract a portion of the white light that is
illuminating an object.

system-owned dialog box

The default
dialog box provided by system software for
applications that create custom dialog boxes
for color pickers. Applications can make
this a box modal, modeless, or moveable
modal dialog box.

system profile

The profile that defines the
color characteristics for the system’s display
device. The ColorSync Manager provides a
control panel to allow the user to specify
the system profile for the current display
device.

tolerant color

A color that accepts—
within a specified range—the value that the
Color Manager determines is the closest
match available in the color table. If there is
no match within the specified range, the
Palette Manager loads the required color.
Compare

courteous color

.

tristimulus values

An hypothetical set of
primaries, XYZ, set up by the CIE that
correspond to the way the eye’s retina
behaves. The term

tristimulus

 comes from
the fact that color perception results from
the retina of the eye responding to three
types of stimuli. After experimentation, the
CIE set up a hypothetical set of primaries,
XYZ, that correspond to the way the eye’s
retina behaves.

Yxy color space

 A color space belonging
to the XYZ base family that expresses the
XYZ values in terms of x and y chromaticity

G L O S S A R Y

GL-5

coordinates, somewhat analogous to the
hue and saturation coordinates of HSV
space.

XYZ color space

The fundamental
CIE-based color space that allows colors to
be expressed as a mixture of the three

tristimulus values

 X, Y, and Z.

G L O S S A R Y

GL-6

GL-1

Glossary

abstract profile

 A profile that allows
applications to perform special color effects
independent of the devices on which the
effects are rendered.

additive color theory

The process of
mixing red, green, and blue lights which are
each approximately one-third of the visible
spectrum. Additive color theory explains
how red, green, and blue light can be added
to make white light.

absolute colorimetric matching

A

rendering intent

 that is used for a
device-independent color space in which
the result is an idealized print viewed on a
perfect paper having a large dynamic range
and color gamut. In reality, paper cannot
reproduce densities less than a particular
minimum density.

animated color

A color that the Palette
Manager uses for special animation effects.
Animated colors work only on devices that
have a color table; that is, they do not work
on direct devices.

application-owned dialog

box

A dialog
box, created by an application, for
presenting a color picker.

brightness

A term in color theory used to
describe differences in the intensity of light
reflected from or transmitted by a color
image. The hue of an object may be blue,
but the adjectives dark or light distinguish
the brightness of one object from another.
Compare with

hue

 and

saturation.

CIE-based color spaces

Color spaces that
allow color to be expressed in a
device-independent way, unlike RGB colors
which vary with display and scanner
characteristics and CMYK colors which
vary with printer, ink, and paper
characteristics. CIE-based color spaces
result from work carried out in 1931 by the
Commission Internationale d’Eclairage
(CIE). These color spaces are also referred to
as device independent color spaces.

CMM

See

color management module.

color channel

See color component.

color component

 A dimension of a color
value expressed as a numeric value. For the
ColorSync Manager, depending on the color
space, a color value may consist of one, two,
three, four, or eight components, also
referred to as channels.

color gamut

See

gamut.

color management module

A component,
also referred to as a CMM, that carries out
the actual color matching and gamut
checking processes based on requests
resulting from calls a program makes to the
ColorSync Manager API. An application or
driver can supply its own CMM or it can
use the robust default CMM that Apple
supplies.

color picker

Code, implemented as a
component, that allows users to select a
color from a range of possible colors.

This document was created with FrameMaker 4.0.4

G L O S S A R Y

GL-2

Color Picker Manager

A set of system
software functions that provide applications
with a standard user interface for soliciting
color choices from users.

color picker–owned dialog box

A dialog
box, defined by a color picker, for
presenting the color picker.

color space

 A model for representing
color in terms of intensity values; a color
space specifies how color information is
represented. It defines a multidimensional
space whose dimensions, or

components,
represent intensity values.

color space profile

 A profile that contains
the data necessary to translate color values,
such as CIE into RGB or RGB into CIE, as
necessary for color matching. Color space
profiles provide a convenient means for
CMMs to convert between different
non-device profiles.

courteous color

A color that accepts
whatever value the Color Manager
determines is the closest match available in
the color table. Compare

tolerant color

.

default system profile

The system profile
for the display device that the ColorSync
Manager includes and uses unless the user
selects a different system profile through
the ColorSync Manager control panel.

destination profile

The profile that
describes the characteristics of the output
device for which the image is destined. The
profile is used to color match the image to
the device’s gamut.

device-independent color spaces

See
CIE-based color spaces.

device-linked profile

A profile that
combines multiple profiles, such as various
device profiles associated with the creation
and editing of an image.

device profile

A structure that provides a
means of defining the color characteristics
of a given device in a particular state.

event forecasters

Warnings sent by an
application to a color picker about user
actions that might adversely affect the color
picker.

explict color

A color that specifies an
index value in the devices color table rather
than an RGB color.

gamut

The range of color that a device
can produce, also referred to as the device’s
color gamut.

HSV

space

A transformation of RGB
space that allow colors to be described in
terms more natural to an artist. The name

HSV

 stands for

hue, saturation,

 and

value.

HLS space

A transformation of RGB
space that allow colors to be described in
terms more natural to an artist. The name

HLS

 stands for

hue, lightness,

 and

saturation.

hue

The name of the color that places the
color in its correct position in the spectrum.
For example, if a color is described as blue,
it is distinguished from yellow, red, green,
or other colors. Compare with

brightness

and

saturation.

indexed color space

The color space used
when drawing with indirectly specified
colors.

G L O S S A R Y

GL-3

inhibited color

A color that is prevented
from appearing on particular screens.
Colors can be specifically inhibited on a
2-bit, 4-bit, and 8-bit color or grayscale
screen.

inverse table

A special data structure
arranged by the Color Manager in such a
manner that, given an arbitrary RGB color,
the Color Manager can very rapidly look up
its pixel value.

interchange color
space

Device-independent color spaces
that are used for the interchange of color
data from the native color space of one
device to the native color space of another
device.

L*a*b* space

A nonlinear transformation
(that is, a third-order approximation) of the
Munsell color-notation system designed to
match perceived color difference with
quantitative distance in color space.

L*u*v* color space

A nonlinear
transformation of XYZ space used to create
a perceptually linear color space. This color
space was designed to match perceived
color difference with quantitative distance
in color space.

new color

In a color picker dialog box, the
latest color selected by the user.

original color

In a color picker dialog box,
the color that the user is about to change.

palette

A set of colors optimized for use
on display devices with a limited number of
colors. A palette defines a set of RGB colors,
how they are to be used, and the tolerances
within which they must be matched.

perceptual matching A rendering intent

in which all the colors of a given gamut
may be scaled to fit within another gamut.
The colors maintain their relative positions,
so the relationship between colors is
maintained.

pixel value

A number used by system
software and a graphics device to represent
a color. The translation from the color that
an application specificies in an

RGBColor

data structure to a pixel value is performed
at the time the application draws the color.
The process differs for indexed and direct
devices.

profile

A structure that may contain
measurements representing a color gamut,
including information such as the lightest
and darkest possible tones, and maximum
densities for red, green, blue, cyan,
magenta, and yellow. The International
Color Consortium defines several different
types of profiles. Each of these types of
profiles must include a different required
set of information, but all of these profile
types follow the same format.

profile chromaticities

Color values that
define the extremes of saturation that the
device can produce for its primary and
secondary colors (red, green, blue, cyan,
magenta, yellow).

reference white point

A specific
definition of what is considered white light
represented in terms of XYZ space and
usually based on the whitest light that can
be generated by a given device.

G L O S S A R Y

GL-4

RGB space

A three-dimensional color
space whose components are the red, green,
and blue intensities that make up a given
color.

relative colorimetric matching

A

rendering intent

in which the colors that
fall within the gamuts of both devices are
left unchanged. Relative colorimetric
matching allows some colors in both images
to be exactly the same, which is useful
when colors must match quantitatively. A
disadvantage of relative colorimetric
matching is that many colors may map to a
single color resulting in tone compression.

rendering intent

The approach taken
when a CMM maps or translates the colors
of an image to the color gamut of a
destination device. Each profile supports
four different rendering intents:

perceptual
matching, relative colorimetric matching,
saturation matching,

and

 absolute
colorimetric matching.

saturation

The degree of hue in a color or
a color’s strength. A neutral gray is
considered to have zero saturation. A
saturated red would have the a color
similar to apple red. Compare with

brightness

and

hue.

saturation matching

 A rendering intent
in which the relative saturation of colors is
maintained from gamut to gamut. Colors
outside the gamut are usually converted to
colors with the same saturation, but
different lightness, at the edge of the gamut.

source profile

The profile that is
associated with the image and describes the
characteristics of the device on which the
image was created.

subtractive color theory

The process of
combining subtractive colorants such as
inks or dyes. In this theory colorants of
cyan, magenta, and yellow are used to
subtract a portion of the white light that is
illuminating an object.

system-owned dialog box

The default
dialog box provided by system software for
applications that create custom dialog boxes
for color pickers. Applications can make
this a box modal, modeless, or moveable
modal dialog box.

system profile

The profile that defines the
color characteristics for the system’s display
device. The ColorSync Manager provides a
control panel to allow the user to specify
the system profile for the current display
device.

tolerant color

A color that accepts—
within a specified range—the value that the
Color Manager determines is the closest
match available in the color table. If there is
no match within the specified range, the
Palette Manager loads the required color.
Compare

courteous color

.

tristimulus values

An hypothetical set of
primaries, XYZ, set up by the CIE that
correspond to the way the eye’s retina
behaves. The term

tristimulus

 comes from
the fact that color perception results from
the retina of the eye responding to three
types of stimuli. After experimentation, the
CIE set up a hypothetical set of primaries,
XYZ, that correspond to the way the eye’s
retina behaves.

Yxy color space

 A color space belonging
to the XYZ base family that expresses the
XYZ values in terms of x and y chromaticity

G L O S S A R Y

GL-5

coordinates, somewhat analogous to the
hue and saturation coordinates of HSV
space.

XYZ color space

The fundamental
CIE-based color space that allows colors to
be expressed as a mixture of the three

tristimulus values

 X, Y, and Z.

G L O S S A R Y

GL-6

IN-1

Index

A

ActivatePalette

 function 1-13

AddComp

 function 5-16

AddPickerToDialog

 function 2-40

AddSearch

 function 5-16

AnimateEntry

 function 1-21

AnimatePalette

 function 1-22
animating palettes 1-20 to 1-22
Apple CMM enumeration 3-9
Apple profile header data structure 3-26
application-defined functions

MyColorChangedFunction

2-60

MyCompProc

5-18

MyPickerFilerFunction

2-59

MySearchProc

5-18
application-owned dialog box structure 2-26

C

callback function 3-134

CMCloseProfile

 function 3-51

CMCopyProfile

 function 3-55

CMCountProfileElements

 function 3-61

CMDisposeProfileSearch

 function 3-104

CMEnableMatchingComment

 function 3-77

CMFixedXYZToXYZ

 function 3-117

CMFlattenProfile

 function 3-58

CMGetColorSyncFolderSpec

 function 3-130

CMGetCWInfo

 function 3-87

CMGetIndProfileElement

 function 3-67

CMGetIndProfileElementInfo

 function 3-66

CMGetPartialProfileElement

 function 3-65

CMGetProfileElement

 function 3-62

CMGetProfileHeader

 function 3-64

CMGetPS2ColorRendering

 function 3-128

CMGetPS2ColorRenderingIntent

 function 3-126

CMGetPS2ColorRenderingVMSize

 function 3-129

CMGetPS2ColorSpace

 function 3-125

CMGetScriptProfileDescription

 function 3-74

CMGetSystemProfile

 function 3-100

CMHLSToRGB

 function 3-120

CMHSVToRGB

 function 3-122

CMLabToXYZ

 function 3-109

CMLuvToXYZ

 function 3-112
CMM check bitmap colors function 4-19
CMM check colors function 4-12
CMM check pixel map colors function 4-27
CMM component interface version constant 4-3
CMM concatenated profiles initialization

function 4-22
CMM create device-linked profile function 4-29
CMM information data structure 3-32
CMM initialization function 4-9
CMM match bitmap colors function 4-16
CMM match colors function 4-11
CMM match pixel map colors function 4-24
CMM PostScript color rendering function 4-35
CMM PostScript color rendering intent

function 4-33
CMM PostScript color space function 4-31
CMM PostScript CRD VM size function 4-38
CMM profile flattening function 4-40
CMM profile unflattening function 4-42
CMM profile validation function 4-15
CMMs, obtaining information about 3-87

CMNewProfile

 function 3-53

CMNewProfileSearch

 function 3-101

CMOpenProfile

 function 3-50

CMProfileElementExists

 function 3-61

CMRemoveProfileElement

 function 3-73

CMRGBToGray

 function 3-124

CMRGBToHLS

 function 3-118

CMRGBToHSV

 function 3-121

CMSearchGetIndProfileFileSpec

function 3-105

This document was created with FrameMaker 4.0.4

I N D E X

IN-2

CMSearchGetIndProfile

 function 3-104

CMSetPartialProfileElement

 function 3-70

CMSetProfileElement

 function 3-71

CMSetProfileElementReference

 function 3-73

CMSetProfileElementSize

 function 3-69

CMSetProfileHeader

 function 3-72

CMSetSystemProfile

 function 3-99

CMUnflattenProfile

 function 3-59

CMUpdateProfile

 function 3-52

CMUpdateProfileSearch

 function 3-102

CMValidateProfile

 function 3-57

CMXYZToFixedXYZ

 function 3-116

CMXYZToLab

 function 3-108

CMXYZToLuv

 function 3-111

CMXYZToYxy

 function 3-113

CMY2RGB

 function 2-54
CMY color data structure 3-39
CMY color structure 2-35
CMYK color data structure 3-38

CMYxyToXYZ

 function 3-114

Color2Index

 function 5-5
color-changed functions 2-19, 2-60
color checking

checking a bitmap 3-95
checking a pixel map 3-90

color conversion
from fixed XYZ to XYZ 3-117
from HLS to RGB 3-120
from HSV to RGB 3-122
from L*a*b* to XYZ 3-109
from L*u*v* to XYZ 3-112
from RGB to Gray 3-124
from RGB to HLS 3-118
from RGB to HSV 3-121
from XYZ to fixed XYZ 3-116
from XYZ to L*a*b* 3-108
from XYZ to L*u*v* 3-111
from XYZ to Yxy 3-113
from Yxy to XYZ 3-114

color-conversion-component function selectors
enumeration 3-20

color conversion component version
constant 3-22

ColorInfo

 data type 1-6
Color Manager 5-3 to 5-18

application-defined functions for 5-17 to 5-18
constants and data types in 5-3 to 5-5
functions in 5-5 to 5-17

color matching
concluding a high-level session 3-77
creating a color world for 3-81
creating a concatenated color world for 3-82
disposing of a color world 3-86
matching a bitmap 3-92
matching a list of colors 3-97
matching a pixel map 3-88
setting up a high-level session 3-75
turning on or off 3-77
using embedded profiles 3-78
using low-level functions 3-80

color models, conversion between 2-54 to 2-57
color packing enumeration 3-14
color picker–defined functions

MyColorPickerDispatch

2-61

MyDoEdit

2-79

MyDoEvent

2-77

MyDrawPicker

2-76

MyExtractHelpItem

2-75

MyGetColor

2-66

MyGetDialog

2-64

MyGetEditMenuState

2-74

MyGetIconData

2-69

MyGetItemList

2-64

MyGetProfile

2-72

MyGetPrompt

2-70

MyInitPicker

2-63

MyItemHit

2-78

MySetBaseItem

2-68

MySetColor

2-67

MySetOrigin

2-71

MySetProfile

2-73
MySetPrompt 2-70
MySetVisibility 2-65
MyTestGraphicsWorld 2-62

Color Picker Manager 2-5 to 2-80
application-defined functions for 2-58 to 2-60
color picker–defined functions for 2-60 to 2-80
constants and data structures in 2-5 to 2-36
functions in 2-36 to 2-58
result codes in 2-80

I N D E X

IN-3

color picker parameter block 2-20
color pickers

color-changed functions for 2-60
event filter functions for 2-18 to 2-19, 2-59

colors
in a palette 1-6

color spaces enumeration 3-15
color space signatures enumeration 3-13
ColorSync 1.0 element tag signatures

enumeration 3-22
ColorSync data-transfer function command

enumeration 3-9
ColorSync Manager bitmap data structure 3-42
ColorSync Manager gestalt selectors

enumeration 3-7
color types enumeration 2-7
color union data structure 3-40
color world information data structure 3-31
color world reference data structure 3-44
concatenated profile set data structure 3-30
CopyPalette function 1-23
courteous colors, PmBackColor and 1-17
CRD virtual memory size tag data structure 3-48
CreateColorDialog function 2-38
CreatePickerDialog function 2-39
CTabToPalette function 1-25
CWCheckBitMap function 3-95
CWCheckColors function 3-98
CWCheckPixMap function 3-90
CWConcatColorWorld function 3-82
CWDisposeColorWorld function 3-86
CWMatchBitmap function 3-92
CWMatchColors function 3-97
CWMatchPixMap function 3-88
CWNewLinkProfile function 3-84

D

data-transfer function 3-131
DelComp function 5-17
DelSearch function 5-16
dialog placement specifiers enumeration 2-8
DisposeColorPicker function 2-44

DisposePalette function 1-10
DoPickerDraw function 2-47
DoPickerEdit function 2-46
DoPickerEvent function 2-45

E

editing data structure 2-29
edit menu items structure 2-19
edit menu operations enumeration 2-7
edit menu state structure 2-20
EntryToIndex function 1-30
entry usage, setting 1-29
event data structure 2-27
event filter function 2-18
event filter functions (for color pickers) 2-18 to

2-19, 2-59
event forecasters enumeration 2-11
ExtractPickerHelpItem function 2-51

F

file specification location data structure 3-24
Fix2SmallFract function 2-57
fixed XYZ color data structure 3-35
format conventions xiv to xv

G

gestaltColorMatchingVersion selector 3-7
GetColor function 2-37
GetCTSeed function 5-10
GetEntryColor function 1-27
GetEntryUsage function 1-27
GetNewPalette function 1-8
GetPalette function 1-14
GetPaletteUpdates function 1-15
GetPickerColor function 2-49
GetPickerEditMenuState function 2-50
GetPickerOrigin function 2-43

I N D E X

IN-4

GetPickerProfile function 2-53
GetPickerVisibility function 2-42
GetSubTable function 5-8
Gray color data structure 3-39

H

handle specification data structure 3-25
help item structure 2-33
HiFi color data structure 3-39
high-level color-matching-session reference data

structure 3-44
HLS color data structure 3-37
HSL2RGB function 2-55
HSL color structure 2-34
HSV2RGB function 2-56
HSV color data structure 3-38
HSV color structure 2-34

I

Index2Color function 5-6
index mode 5-13
InitPalettes function 1-7
InitPalettes procedure 1-7
InvertColor function 5-7
item hit modifiers enumeration 2-7
item hit structure 2-31

L

L*a*b* color data structure 3-36
LS 3-37
L*u*v* color data structure 3-36

M

Macintosh Programmer’s Workshop xv

MakeITable function 5-9
MyCMBitmapCallBackProc function 3-134
MyCMCheckColors function 4-13
MyCMCheckPixMap function 4-27
MyCMMatchBitmap function 4-16
MyCMMatchColors function 4-11
MyCMMatchPixMap function 4-24
MyCMMCheckBitmap function 4-19
MyCMMFlattenProfile function 4-40
MyCMMGetPS2ColorRendering function 4-36
MyCMMGetPS2ColorRenderingVMSize

function 4-38
MyCMMGetPS2ColorSpace function 4-31
MyCMMUnflattenProfile function 4-42
MyCMMValidateProfile function 4-15
MyCMNewLinkProfile function 4-30
MyCMProfileFilterProc function 3-136
MyColorChangedFunction function 2-60
MyColorPickerDispatch function 2-61
MyColorSyncDataTransfer function 3-131, 3-132
MyCompProc function 5-18
MyDoEdit function 2-79
MyDoEvent function 2-77
MyDrawPicker function 2-76
MyExtractHelpItem function 2-75
MyGetColor function 2-66
MyGetDialog function 2-64
MyGetEditMenuState function 2-74
MyGetIconData function 2-69
MyGetItemList function 2-64
MyGetProfile function 2-72
MyGetPrompt function 2-70
MyInitNCMM function 4-9
MyInitPicker function 2-63
MyItemHit function 2-78
MyPickerFilterFunction function 2-59
MySearchProc function 5-18
MySetBaseItem function 2-68
MySetColor function 2-67
MySetOrigin function 2-71
MySetProfile function 2-73
MySetPrompt function 2-70
MySetVisibility function 2-65
MyTestGraphicsWorld function 2-62

I N D E X

IN-5

N

NCMBeginMatching function 3-75, 3-77
NCMDrawMatchedPicture function 3-78
NCMUseProfileComment function 3-79
NCWNewColorWorld function 3-81
NewPalette function 1-9
NSetPalette function 1-12

P

Palette data type 1-5
Palette Manager

See also palettes 1-6
allocation of colors 1-6
functions 1-6 to 1-30
initialization 1-7

palette resource 1-30
palettes

animating 1-20 to 1-22
animating entries 1-21
colors of 1-6
creating 1-8 to 1-11
drawing with 1-16 to 1-20
manipulating 1-23 to 1-26
manipulating entries 1-27 to 1-30
modifying 1-27 to 1-30
record format 1-5
resource format 1-30
resources 1-30
setting entry usage 1-29
usage categories 1-3
and windows 1-11 to 1-16

PaletteToCTab function 1-26
PickColor function 2-36
picker actions enumeration 2-5
picker attributes 2-10
picker color structure 2-16
picker flags 2-8
picker icon structure 2-17
picker initialization structure 2-18
picker message request codes 2-12
picker messages enumeration 2-12

picker-owned dialog box structure 2-25
picker structure 2-17
picture comment IDs enumeration 3-10
picture comment selectors enumeration 3-11
'pltt' resource 1-30
PmBackColor function 1-17
PmForeColor function 1-16
PMgrVersion function 1-7
pointer specification data structure 3-25
PostScript

obtaining profile data for 3-125 to 3-130
PrGeneral function operation codes

enumeration 3-22
profile 2.0 header data structure 3-26
profile classes enumeration 3-8
profile header for ColorSync 1.0 data

structure 3-45
profile location data structure 3-24
profile location type enumeration 3-5
profile location union data structure 3-23
profile reference abstract data structure 3-43
profiles

adding a reference tag 3-73
checking elements of 3-61
closing 3-51
copying 3-55
counting elements of 3-61
creating 3-53
creating a device-linked profile 3-84
embedding in a picture 3-79
flattening 3-58
folder, locating 3-130
getting an element of 3-62
getting a partial element of 3-65
getting location of 3-56
getting the header of 3-64
getting the system profile 3-100
obtaining an element’s tag and size 3-66
obtaining element data 3-67
obtaining the name and script code of 3-74
opening 3-50
removing an element of 3-73
reserving an element’s data size 3-69
searching the contents of 3-101 to 3-106
setting or replacing element data 3-71

I N D E X

IN-6

setting partial element data 3-70
setting the header 3-72
setting the system profile 3-99
unflattening 3-59
updating 3-52
validating 3-57

profile search record data structure 3-33
profile search result reference abstract data

structure 3-44
ProtectEntry function 5-10

R

RealColor function 5-7
rendering intent values enumeration 3-19
request codes

optional, constants for 4-5
required, constants for 4-4

request codes for color pickers 2-12
ReserveEntry function 5-11
ResizePalette function 1-24
resources

palette 1-30
'pltt' 1-30

RestoreBack function 1-20
RestoreDeviceClut function 1-24
RestoreEntries function 5-14
RestoreFore function 1-18
RGB2CMY function 2-55
RGB2HSL function 2-56
RGB2HSV function 2-57
RGB color data structure 3-37

S

SaveBack function 1-19
SaveEntries function 5-13
SaveFore function 1-18
sequence mode 5-13
SetClientID function 5-17
SetEntries function 5-12

SetEntryColor function 1-28
SetEntryUsage function 1-29
SetPalette function 1-11
SetPaletteUpdates function 1-15
SetPickerColor function 2-48
SetPickerOrigin function 2-44
SetPickerProfile function 2-52
SetPickerPrompt function 2-42
SetPickerVisibility function 2-41
SmallFract2Fix function 2-58
system-owned dialog box structure 2-24

U

usage categories in palettes 1-3

W

Window Manager, interactions with Palette
Manager 1-11 to 1-16

X

XYZ color component data structure 3-35
XYZ color data structure 3-35

Y

Yxy color data structure 3-37

I N D E X

IN-7

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe Illustrator



 and
Adobe Photoshop



.

Text type is Palatino



 and display type is
Helvetica



. Bullets are ITC Zapf
Dingbats



. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITERS

Judy Melanson, Tony Francis, Michael
Kline, Rob Dearborn

DEVELOPMENTAL EDITORS

Jeanne Woodward, Beverly McGuire

ILLUSTRATORS

Bruce Lee, Ruth Anderson, Lisa Hymel

PRODUCTION EDITORS

Lorraine Findlay, Alex Solinski

PROJECT MANAGER

Trish Eastman

LEAD WRITER

Tony Francis

LEAD EDITOR

Jeanne Woodward

LEAD ILLUSTRATOR

Bruce Lee

Special thanks to David Hayward , Don
Moccia, Steve Swen, Tom Mohr, and Anil
Gursahani.

Acknowledgment to Richard Collyer.
Fdgar Lee, David Van Brink, Wei-Ling
Chu, Han Nguyen, Forrest Tanaka, John
Myer, Josh Weisberg, John Wang,
Shannon Holland, and Dave Johnson.

This document was created with FrameMaker 4.0.4

	Contents
	Figures, Tables, and Listings
	P R E FA C E
	Palette Manager Reference
	Color Picker Manager Reference
	ColorSync Manager Reference for Apps & Device Drivers
	ColorSync Manager Reference for Color Management Modules
	Color Manager Reference
	Glossary
	Index
	Colophon

